國中數學重點知識點總結

國中數學重點知識點總結 篇1

一、一次函式圖象 y=kx+b

一次函式的圖象可以由k、b的正負來決定:

k大於零是一撇(由左下至右上,增函式)

k小於零是一捺(由右上至左下,減函式)

b等於零必過原點;

b大於零交點(指圖象與y軸的交點)在上方(指x軸上方)

b小於零交點(指圖象與y軸的交點)在下方(指x軸下方)

其圖象經過(0,b) 和 (-b/k , 0) 這兩點(兩點就可以決定一條直線),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。

b的數值就是一次函式在y軸上的截距(不是距離,有正、負、零之分)。

二、不等式組的解集

1、步驟:去分母(後分子應加上括弧)、去括弧、移項、合併同類項、係數化為1 。

2、解一元一次不等式組時,先求出各個不等式的解集,然後按不等式組解集的四種類型所反映的規律,寫出不等式組的解集:不等式組解集的確定方法,若a

A 的解集是 解集 小小的取小

B 的解集是 解集 大大的取大

C 的解集是 解集 大小的 小大的取中間

D 的解集是空集 解集 大大的 小小的無解

另需注意等於的問題。

國中數學重點知識點總結 篇2

圓周角知識點

1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)

2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半。

3、推論:

1)在同圓或等圓中,相等的圓周角所對的弧相等。

2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構成直角,有900圓周角可構成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)

4、圓內接四邊形的性質定理:圓內接四邊形的對角互補。(任意一個外角等於它的內對角)

補充:

1、兩條平行弦所夾的弧相等。

2、圓的兩條弦1)在圓外相交時,所夾角等於它所對的兩條弧度數差的一半。2)在圓內相交時,所夾的角等於它所夾兩條弧度數和的一半。

3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。

平均數中位數與眾數知識點

1、數據13,10,12,8,7的平均數是10

2、數據3,4,2,4,4的眾數是4

3、數據1,2,3,4,5的中位數是3

有理數知識點

1、大於0的數叫做正數。

2、在正數前面加上負號“-”的數叫做負數。

3、整數和分數統稱為有理數。

4、人們通常用一條直線上的點表示數,這條直線叫做數軸。

5、在直線上任取一個點表示數0,這個點叫做原點。

6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。

7、由絕對值的定義可知:

一個正數的絕對值是它本身;

一個負數的絕對值是它的相反數;

0的絕對值是0。

8、正數大於0,0大於負數,正數大於負數。

9、兩個負數,絕對值大的反而小。

10、有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。

12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

13、有理數減法法則:減去一個數,等於加上這個數的相反數。

14、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值向乘。任何數同0相乘,都得0。

15、有理數中仍然有:乘積是1的兩個數互為倒數。

16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。

17、三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。

18、一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。

19、有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。

國中數學重點知識點總結 篇3

考點1

相似三角形的概念、相似比的意義、畫圖形的放大和縮小。

考核要求:

(1)理解相似形的概念;

(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。

考點2

平行線分線段成比例定理、三角形一邊的平行線的有關定理

考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。

注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。

考點3

相似三角形的概念

考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。

考點4

相似三角形的判定和性質及其套用

考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地套用。

考點5

三角形的重心

考核要求:知道重心的定義並初步套用。

考點6

向量的有關概念

考點7

向量的加法、減法、實數與向量相乘、向量的線性運算

考核要求:掌握實數與向量相乘、向量的線性運算

考點8

銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。

考點9

解直角三角形及其套用

考核要求:

(1)理解解直角三角形的意義;

(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。

考點10

函式以及函式的定義域、函式值等有關概念,函式的表示法,常值函式

考核要求:

(1)通過實例認識變數、自變數、因變數,知道函式以及函式的定義域、函式值等概念;

(2)知道常值函式;

(3)知道函式的表示方法,知道符號的意義。

考點11

用待定係數法求二次函式的解析式

考核要求:

(1)掌握求函式解析式的方法;

(2)在求函式解析式中熟練運用待定係數法。

注意求函式解析式的步驟:一設、二代、三列、四還原。

考點12

畫二次函式的圖像

考核要求:

(1)知道函式圖像的意義,會在平面直角坐標系中用描點法畫函式圖像

(2)理解二次函式的圖像,體會數形結合思想;

(3)會畫二次函式的大致圖像。

考點13

二次函式的圖像及其基本性質

考核要求:

(1)藉助圖像的直觀、認識和掌握一次函式的性質,建立一次函式、二元一次方程、直線之間的聯繫;

(2)會用配方法求二次函式的頂點坐標,並說出二次函式的有關性質。

注意:

(1)解題時要數形結合;

(2)二次函式的平移要化成頂點式。

考點14

圓心角、弦、弦心距的概念

考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。

考點15

圓心角、弧、弦、弦心距之間的關係

考核要求:認清圓心角、弧、弦、弦心距之間的關係,在理解有關圓心角、弧、弦、弦心距之間的關係的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。

考點16

垂徑定理及其推論

垂徑定理及其推論是圓這一板塊中最重要的知識點之一。

考點17

直線與圓、圓與圓的位置關係及其相應的數量關係

直線與圓的位置關係可從與之間的關係和交點的個數這兩個側面來反映。在圓與圓的位置關係中,常需要分類討論求解。

考點18

正多邊形的有關概念和基本性質

考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。

考點19

畫正三、四、六邊形。

考核要求:能用基本作圖工具,正確作出正三、四、六邊形。

考點20

確定事件和隨機事件

考核要求:

(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關係;

(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。

考點21

事件發生的可能性大小,事件的機率

考核要求:

(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;

(2)知道機率的含義和表示符號,了解必然事件、不可能事件的機率和隨機事件機率的取值範圍;

(3)理解隨機事件發生的頻率之間的區別和聯繫,會根據大數次試驗所得頻率估計事件的機率。

注意:

(1)在給可能性的大小排序前可先用“一定發生”、“很有可能發生”、“可能發生”、“不太可能發生”、“一定不會發生”等詞語來表述事件發生的可能性的大小;

(2)事件的機率是確定的常數,而機率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。

考點22

等可能試驗中事件的機率問題及機率計算

考核要求:

(1)理解等可能試驗的概念,會用等可能試驗中事件機率計算公式來計算簡單事件的機率;

(2)會用枚舉法或畫“樹形圖”方法求等可能事件的機率,會用區域面積之比解決簡單的機率問題;

(3)形成對機率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單機率問題。

注意:

(1)計算前要先確定是否為可能事件;

(2)用枚舉法或畫“樹形圖”方法求等可能事件的機率過程中要將所有等可能情況考慮完整。

考點23

數據整理與統計圖表

考核要求:

(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;

(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。

國中數學重點知識點總結 篇4

1、通過猜想,驗證,計算得到的定理:

(1)全等三角形的判定定理:

(2)與等腰三角形的相關結論:

①等腰三角形兩底角相等(等邊對等角)

②等腰三角形頂角的平分線,底邊上的中線,底邊上的高互相重合(三線合一)

③有兩個角相等的三角形是等腰三角形(等角對等邊)

(3)與等邊三角形相關的結論:

①有一個角是60°得等腰三角形是等邊三角形

②三個角都相等的三角形是等邊三角形

③三條邊都相等的三角形是等邊三角形

(4)與直角三角形相關的結論:

①勾股定理:在直角三角形中,兩直角邊的平方和等於斜邊的平方

②勾股定理逆定理:在一個三角形中兩直角邊的平方和等於斜邊的平方,那么這個三角形一定是直角三角形

③HL定理:斜邊和一條直角邊對應相等的兩個三角形全等

④在三角形中30°角所對的直角邊等於斜邊的一半

2、兩條特殊線

(1)線段的垂直平分線

①線段的垂直平分線上的點到線段兩邊的距離相等互為逆定理{

②到一條線段兩個端點距離相等的點在這條線段的垂直平分線上

③三角形的三條垂直平分線交於一點,並且這一點到這三個頂點的距離相等

(2)角平分線

①角平分線上的點到這個角的兩邊距離相等互為逆定理{

②在一個角的內部,並且到這個角的兩邊距離相等的的點,在這個角的角平分線上

3、命題的逆命題及真假

①在兩個命題中,如果一個命題的條件與結論是另一個命題的結論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題

②如果一個定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理

③反正法:從否定命題的結論入手,並把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設不成立,所以肯定了命題的結論,使命題獲得了證明

第二章一元二次方程

1、一元二次方程:只含有一個未知數X的整式方程,並且可以化成aX?+bX+C=0(a≠0)形式稱它為一元二次方程

aX?+bX+C=0(a≠0)→一般形式

aX?叫二次項bX叫一次項C叫常數項a叫二次項係數b叫一次項係數

2、一元二次方程解法:

(1)配方法:(X±a)?=b(b≥0)註:二次項係數必須化為1

(2)公式法:aX?+bX+C=0(a≠0)確定a,b,c的值,計算b?-4ac≥0

若b?-4ac>0則有兩個不相等的實根,若b?-4ac=0則有兩個相等的實根,若b?-4ac<0則無解

若b?-4ac≥0則用公式X=-b±√b?-4ac/2a註:必須化為一般形式

(3)分解因式法

①提公因式法:ma+mb=0→m(a+b)=0

平方差公式:a?-b?=0→(a+b)(a-b)=0

②運用公式法:{

完全平方公式:a?±2ab+b?=0→(a±b)?=0

③十字相乘法

例題:X?-2X-3=0

1/111

×}X?的係數為1則可以寫成{常數項係數為3則可寫成{

1/-31-3

--------

-3+1=-2交叉相乘在相加求值,值必須等於一次項係數

(X+1)(X-3)=o

國中數學重點知識點總結 篇5

一、數與代數A:數與式:

1:有理數

有理數:

①整數→正整數/0/負整數

②分數→正分數/負分數

數軸:

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。

④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

絕對值:

①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

②正數的絕對值是他本身/負數的絕對值是他的相反數/0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

有理數的運算:加法:

①同號相加,取相同的符號,把絕對值相加。

②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

減法: 減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

②任何數與0相乘得0。

③乘積為1的兩個有理數互為倒數。

除法:

①除以一個數等於乘以一個數的倒數。

②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

2:實數

無理數:無限不循環小數叫無理數

平方根:

①如果一個正數X的平方等於A,那么這個正數X就叫做A的算術平方根。

②如果一個數X的平方等於A,那么這個數X就叫做A的平方根。

③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:

①如果一個數X的立方等於A,那么這個數X就叫做A的立方根。

②正數的立方根是正數/0的立方根是0/負數的立方根是負數。

③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:

①實數分有理數和無理數。

②在實數範圍內,相反數,倒數,絕對值的意義和有理數範圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。

3:代數式

代數式:單獨一個數或者一個字母也是代數式。

合併同類項:

①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。

②把同類項合併成一項就叫做合併同類項。

③在合併同類項時,我們把同類項的係數相加,字母和字母的指數不變。

4:整式與分式

整式:

①數與字母的乘積的代數式叫單項式,幾個單項式的.和叫多項式,單項式和多項式統稱整式。

②一個單項式中,所有字母的指數和叫做這個單項式的次數。

③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

整式運算:加減運算時,如果遇到括弧先去括弧,再合併同類項。

冪的運算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一樣。

A0=1,A-P=1/AP

整式的乘法:

①單項式與單項式相乘,把他們的係數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。

②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:

①單項式相除,把係數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式

方法:提公因式法/運用公式法/分組分解法/十字相乘法

分式:

①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對於任何一個分式,分母不為0。

②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。

分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個分式等於乘以這個分式的倒數。

加減法:

①同分母的分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:

①分母中含有未知數的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。

B:方程與不等式

1:方程與方程組

一元一次方程:

①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:去分母,移項,合併同類項,未知數係數化為1。

二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

2:不等式與不等式組

不等式:

①用符號〉,=,〈號連線的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

3:函式

變數:因變數,自變數。

在用圖象表示變數之間的關係時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。

一次函式:

①若兩個變數X,Y間的關係式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函式。

②當B=0時,稱Y是X的正比例函式。

一次函式的圖象:

①把一個函式的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函式的圖象。

②正比例函式Y=KX的圖象是經過原點的一條直線。

③在一次函式中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

二、空間與圖形

A:圖形的認識:

1:點,線,面

點,線,面:

①圖形是由點,線,面構成的。

②面與面相交得線,線與線相交得點。

③點動成線,線動成面,面動成體。

展開與摺疊:

①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。

②N稜柱就是底面圖形有N條邊的稜柱。

截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

3視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧,扇形:

①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個扇形。

2:角

線:

①線段有兩個端點。

②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

③將線段的兩端無限延長就形成了直線。直線沒有端點。

④經過兩點有且只有一條直線。

比較長短:

①兩點之間的所有連線中,線段最短。

②兩點之間線段的長度,叫做這兩點之間的距離。

角的度量與表示:

①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

②一度的1/60是一分,一分的1/60是一秒。

角的比較:

①角也可以看成是由一條射線繞著他的端點旋轉而成的。

②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時

國中數學重點知識點總結 篇6

1 過兩點有且只有一條直線

2 兩點之間線段最短

3 同角或等角的補角相等

4 同角或等角的餘角相等

5 過一點有且只有一條直線和已知直線垂直

6 直線外一點與直線上各點連線的所有線段中,垂線段最短

7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行

8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9 同位角相等,兩直線平行

10 內錯角相等,兩直線平行

11 同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13 兩直線平行,內錯角相等

14 兩直線平行,同旁內角互補

15 定理 三角形兩邊的和大於第三邊

16 推論 三角形兩邊的差小於第三邊

17 三角形內角和定理 三角形三個內角的和等於180

18 推論1 直角三角形的兩個銳角互余

19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和

20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角

國中數學重點知識點總結 篇7

三角和的公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

倍角公式

tan2A = 2tanA/(1-tan2 A)

Sin2A=2SinA?CosA

Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A

三倍角公式

sin3A = 3sinA-4(sinA)3;

cos3A = 4(cosA)3 -3cosA

tan3a = tan a ? tan(π/3+a)? tan(π/3-a)

三角函式特殊值

α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2

α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)

a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2

α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2

α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3

α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)

α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2

α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1

α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞

α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1

α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞

三角函式記憶順口溜

1三角函式記憶口訣

“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函式的名稱的變化:“變”是指正弦變餘弦,正切變餘切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。

以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小於零,所以右邊符號為負,所以右邊為-sinα。

2符號判斷口訣

全,S,T,C,正。這五個字口訣的`意思就是說:第一象限內任何一個角的四種三角函式值都是“+”;第二象限內只有正弦是“+”,其餘全部是“-”;第三象限內只有正切是“+”,其餘全部是“-”;第四象限內只有餘弦是“+”,其餘全部是“-”。

也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、餘弦指的是對應象限三角函式為正值的名稱。口訣中未提及的都是負值。

“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函式為正值。

3三角函式順口溜

三角函式是函式,象限符號坐標註。函式圖像單位圓,周期奇偶增減現。

同角關係很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;

中心記上數字一,連結頂點三角形。向下三角平方和,倒數關係是對角,

頂點任意一函式,等於後面兩根除。誘導公式就是好,負化正後大化小,

變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,

將其後者視銳角,符號原來函式判。兩角和的餘弦值,化為單角好求值,

餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。

計算證明角先行,注意結構函式名,保持基本量不變,繁難向著簡易變。

逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。

萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;

一加餘弦想餘弦,一減餘弦想正弦,冪升一次角減半,升冪降次它為范;

三角函式反函式,實質就是求角度,先求三角函式值,再判角取值範圍;

利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。

國中數學重點知識點總結 篇8

這學期,一個全新的教育理念生本教育進入了我們的視線,將生本教育融入到高效課堂中來,通過這段時間的摸索和探索,我對實施高效生本課堂做如下總結。

一、學生們得到了釋放

“生本教育”要求教師放棄講解,而是拋出有價值的問題讓學生你一句我一句的討論,體現出學生是學習的主人。在課堂上給學生充足的時間,讓孩子們自主交流、展示成果、互相質疑,在合作、交流、質疑中主動學習,獲取知識和解決問題的能力,經過自己的實踐獲得的知識,他們特別有成就感,自信心增強,在這種氛圍中學習,孩子們很放鬆,他們得到了釋放,在課堂上很放的開,對學習更加感興趣了。其中,我們班的崔新偉同學的變化就很明顯,原來的時候他在課堂上屬於不主動積極回答問題的那類學生,學習的參與積極性不高,但自從我們開始讓學生們一小組合作為單位討論、探究並走向講台當小老師為大家講題後,他像換了一個人似的,積極性特別高。看到同學們的變化,我特別高興特別激動。

二、老師的角色得到翻天覆地的變化

關於這一點我深有體會,自從實施了高效生本課堂,我才意識到我這樣的老師太強勢了,而且我發現在教學中我們太自作多情了,很多時候我們一廂情願承擔了許多工作,渴望孩子們按照我們設計的方向去發展,但到最後卻往往是我們自己失敗。

三、遇到的問題

在高效生本課堂中,我發現孩子們都是自信的、快樂的,當學生從自己研究和探索中發現規律,找到解決問題的方法的時候,我感到非常的意外和喜悅。但是,有時候還存在一些問題,孩子們怎么這么不合作?語言表達能力怎么這么欠缺?每次做總結時怎么總是說不到點子上,還這么羅嗦?實際上,他們的現狀都非常正常,因為在前期,我們並沒有在課堂上有意識的去培養孩子的.這些方面的好習慣,現在,我們剛剛接觸生本教育,作為老師是新手,很多地方作的都不夠,又何況是孩子們呢?但是,通過他們的變化,發現他們在學習上衝勁十足,自主意識很強,慢慢有了合作意識,更多的是學習上的創新意識,我深切的意識到,孩子們的潛力是無窮無盡的。

國中數學重點知識點總結 篇9

國中數學集合的運算中考知識點集錦

集合的運算知識:它包括有交換律、結合律、分配對偶律、對偶律、同一律等。

集合的運算定律

交換律:A∩B=B∩A

A∪B=B∪A

結合律:A∪(B∪C)=(A∪B)∪C

A∩(B∩C)=(A∩B)∩C

分配對偶律:A∩(B∪C)=(A∩B)∪(A∩C)

A∪(B∩C)=(A∪B)∩(A∪C)

對偶律:(A∪B)^C=A^C∩B^C

(A∩B)^C=A^C∪B^C

同一律:A∪Φ=A

A∩U=A

求補律:A∪A'=U

A∩A'=Φ

對合律:(A')'=A

等冪律:A∪A=A

A∩A=A

零一律:A∪U=U

A∩U=A

吸收律:A∪(A∩B)=A

A∩(A∪B)=A

德·摩根定律(反演律):(A∪B)'=A'∩B'

(A∩B)'=A'∪B'

知識拓展:容斥原理(特殊情況):card(A∪B)=card(A)+card(B)-card(A∩B)

國中數學重點知識點總結 篇10

把一元二次方程化成ax2+bx+c的一般形式,然後把各項係數a, b, c的值代入求根公式就可得到方程的根。

公式法

公式:x=[-b±√(b2-4ac)]/2a

當Δ=b2-4ac>0時,求根公式為x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(兩個不相等的實數根)

當Δ=b2-4ac=0時,求根公式為x1=x2=-b/2a(兩個相等的實數根)

當Δ=b2-4ac<0時,求根公式為x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a

例3.用公式法解方程 2x2-8x=-5

解:將方程化為一般形式:2x2-8x+5=0

∴a=2, b=-8,c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= (4±√6)/2

∴原方程的解為x?=(4+√6)/2,x?=(4-√6)/2.

大家不知道的是兩個複數根在國中數學的學習中理解為無實數根。

國中數學重點知識點總結 篇11

一、學情分析的目標:

(1)進一步培養良好的數學行為習慣和學習習慣。

(2)加強學風建設,培養學習數學的興趣,明確學習任務,注重學法指導,提高學習效率。

(3)培養學生獲得知識和技能,培養觀察和分析推理的能力,培養學生實事求是,嚴肅認真的科學態度和學習方法。

二、學情分析的內容:

主要包括學生學習起點狀態的分析、學生潛在狀態的分析兩部分。學生起點狀態的分析主要從三個維度展開:知識維度,指學生的認知基礎;技能維度,指學生已有的學習能力;素質維度,指學生的學習態度、學習習慣、意志品質……學生潛在狀態的分析,主要指學生可能發生的狀況與可能的發展。下面我就國中數學課作學情分析,敬請各位老師斧正。

在我的數學教學中,我認為學生的數學基礎影響學生的學習興趣,九年級任務重,學習進度快,兩級分化嚴重,學生學習主動性不夠,學生學習習慣有待提高。學生除了需要學習數學,還要學習其它科目,時間有限,需要我們教師教會學生解題方法以提高速度。

三、學情分析的方法:

1.學生的熱點問題要善於剖析

我們捕捉到的來自學生中間的信息,可能非常凌亂,成因也可能會很複雜,與數學教學的聯繫或許未必緊密,不可能把捕捉到的所有信息簡單地堆砌到課堂教學中去。這就需要教師學會用實事求是的觀點、方法,耐心分析、遴選出與思想數學結合最緊密、最有代表性的學生熱點。分清哪些是積極的、哪些是消極的

2.用心捕捉學生熱點問題

學生在為人處事的生活實踐中,常常會對某一事物或某一問題表現出極大的關注和傾向,這種關注點和傾向性構成了學生的熱點,成為把脈學情的捷徑。數學課是一門思維較強的課程,準確把握學生學習中的熱點問題,有助於增強教學的實效性和針對性。

做好學生的思想工作,闡明中考競爭的嚴峻形勢,讓學生有憂患意識,從而調動學習的積極性。多與各科教師聯繫,及時了解學生動態,接受科任老師的建議。多與家長交流,形成合力,共同督促學生學習,使其進步。學生進行深刻的自我反思,對自己的學習提出具體的要求,促成每個學生形成適合自己的良好學習方法。

國中數學重點知識點總結 篇12

一、圓

1、圓的有關性質

在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。

由圓的意義可知:

圓上各點到定點(圓心O)的距離等於定長的點都在圓上。

就是說:圓是到定點的距離等於定長的點的集合,圓的內部可以看作是到圓。心的距離小於半徑的點的集合。

圓的外部可以看作是到圓心的距離大於半徑的點的集合。連結圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。

圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大於半圓的弧叫優弧。小於半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。

圓心相同,半徑不相等的兩個圓叫同心圓。

能夠重合的兩個圓叫等圓。

同圓或等圓的`半徑相等。

在同圓或等圓中,能夠互相重合的弧叫等弧。

二、過三點的圓

1、過三點的圓

過三點的圓的作法:利用中垂線找圓心

定理不在同一直線上的三個點確定一個圓。

經過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內接三角形。

2、反證法

反證法的三個步驟:

①假設命題的結論不成立。

②從這個假設出發,經過推理論證,得出矛盾。

③由矛盾得出假設不正確,從而肯定命題的結論正確。

例如:求證三角形中最多只有一個角是鈍角。

證明:設有兩個以上是鈍角。

則兩個鈍角之和>180°

與三角形內角和等於180°矛盾。

不可能有二個以上是鈍角。

即最多只能有一個是鈍角。

三、垂直於弦的直徑

圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。

垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。

推理1:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對兩條弧。

弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。

平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一個條弧。

推理2:圓兩條平行弦所夾的弧相等。

四、圓心角、弧、弦、弦心距之間的關係

圓是以圓心為對稱中心的中心對稱圖形。

實際上,圓繞圓心旋轉任意一個角度,都能夠與原來的圖形重合。

頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。

定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。

推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其餘各組量都分別相等。

五、圓周角

頂點在圓上,並且兩邊都和圓相交的角叫圓周角。

推理1:同弧或等弧所對的圓周角相等。同圓或等圓中,相等的圓周角所對的弧也相等。

推理2:半圓(或直徑)所對的圓周角是直角。90°的圓周角所對的弦是直徑。

推理3:如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形。

由於以上的定理、推理,所添加輔助線往往是添加能構成直徑上的圓周角的輔助線。

國中數學重點知識點總結 篇13

一.行程問題

行程問題要點解析

基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關係。基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間關鍵問題:確定行程過程中的位置相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)追擊問題:追擊時間=路程差÷速度差(寫出其他公式)流水問題:順水行程=(船速+水速)×順水時間逆水行程=(船速-水速)×逆水時間

順水速度=船速+水速逆水速度=船速-水速靜水速度=(順水速度+逆水速度)÷2水速=(順水速度-逆水速度)÷2基本題型:已知路程(相遇問題、追擊問題)、時間(相遇時間、追擊時間)、速度(速度和、速度差)中任意兩個量,求出第三個量。

二、利潤問題

每件商品的利潤=售價-進貨價毛利潤=銷售額-費用

利潤率=(售價--進價)/進價*100%

三、計算利息的基本公式

儲蓄存款利息計算的基本公式為:利息=本金×存期×利率利率的換算:

年利率、月利率、日利率三者的換算關係是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意與存期相一致。利潤與折扣問題的公式利潤=售出價-成本利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%漲跌金額=本金×漲跌百分比折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅後利息=本金×利率×時間×(1-20%)

四、濃度問題

溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量五、增長率問題

若平均增長(下降)數百分率為x,增長(或下降)前的是a,增長(或下降)n次後的量是b,則它們的數量關係可表示為:a(1x)b或a(1x)b

國中數學重點知識點總結 篇14

一、問題提出

多數人的眼裡,數學是一門比較難學的學科。特別是新課程改革後,數學新增加了很多內容,相當多的一部分學生向老師抱怨說數學課本的內容和知識點那么多,老是記不住,學過就忘了。有的還說課本里的內容太簡單了,能看懂,但是到考試的時候不會做題,題目跟學過的知識點聯繫不起來。老師也說,想不明白明明很簡單的題目搞不懂為什麼學生不會做,教學相當的被動。為了更好地指導老師教學和學生學習數學,我們設計了一份關於數學的學習興趣,學習習慣,學習態度,學習信心和新課程改革的調查問卷。

二.調查研究

(1)調查對象

針對可能會出現不同的情況,我們對六年級的部分學生進行了抽樣調查。

(2)調查結果和分析

(一)對待數學的興趣與態度

從調查數據可以看出來,42.80%的同學對數學用著濃厚的興趣,他們都認為數學是一門有趣,有挑戰性的學科。這對數學老師無形是一個鼓舞,大家都知道興趣是最好的老師。這證明數學相對於其他學科來說,自有吸引學生的特性,只要好好的引導,適當的處理教材的內容,很多學生還是願意學,並且學好它的,但不可否認,由於數學理論性和邏輯性很強,教科書相對枯燥,在實際生活中難以用到,這也造成相當多的一部分學生不喜歡學數學,不過隨著新課程的改革,數學教科書的例子已經越來越多採用現實生活的例子,這對提高學生學數學的興趣有一定的幫助。

學生對數學的興趣主要取決於學生自己的數學基礎。能否培養他們的興趣,這將對教學的成功與否具有非常重要的意義。影響學生學習數學興趣的因素是多方面的:有學生本身的因素,也有老師的因素,也有課本本身的因素。

在調查中,對數學有興趣的學生,17.74%是因為“數學有趣”,23.91%是因為“數學與生活聯繫緊密,將來有很多地方可以用到”,11.57%的學生是因為覺得“數學有我想從事的事業和理想”,38.82%的學生是因為感到“數學可以鍛鍊邏輯思維”,只有7.97%的學生是因為“老師講得好”才喜歡。調查的問卷中可以體現出,學生對數學是否感興趣,取決於能否讓學生感到數學有用和能否可以鍛鍊他們的邏輯思維。

對數學沒有興趣的學生,38.00%的學生認為“數學太難”,30.75%的學生是因為“以前沒學好,基礎不好”,9.75%的學生是因為數學跟自己理想從事的方向太遠了,只有8.00%的學生認為數學沒有多大用處,13.50%的學生回答是因為“老

師教得不好”。因此,如何扭轉學生對數學的看法以至改變這種現狀,這將是教師必須認真對待的教學問題。這就要求教師備課要充分,上課語言要簡潔易懂,將課本的重難點講解透徹,把握到位;加強學生的基礎訓練,使學生對基礎知識做到融會貫通。

(二)學生對數學知識的歸納情況。

由調查數據可以看出,絕大部分學生對書本中的小結都是持肯定的態度的,也就是說每一章的小結或多或少都會對學生有一定的幫助,但是我們應該怎樣去看待這個小結,怎樣去對待每一章或是每一個知識點的小結歸納,從第一組數據我們可以看到有32.58%的學生覺得書本中總結得還可以,有44.19%的學生覺得總結得不夠,有10.49%的學生覺得很難把這些總結轉化為自己的知識,還有12.73%的同學就是沒什麼感覺,而從第二組數據里可以看到,能夠真正自己把知識總結出來又轉化為自己的知識的只有11.57%的同學,這也就意味著我們老師要在學完每一章或是每一個知識點之後幫學生總結歸納相關的知識,使之形成一個系統的知識結構,便於學生對知識的理解和掌握。

(三)學生對數學的學習習慣。

由調查數據可以看出,目前絕大多數學生在數學學習的時間安排上都不是那么的有規律,每天都安排時間複習的學生幾乎是沒有,好像有一種“即興”學習的感覺,那也從另外一個方面反映了當前的中學生學習負擔比較重,他們不但需要學習數學這一科,還要學很多的科目,那我們應該怎樣來解決這個問題呢首先就是要減輕學生的負擔,實行真正的素質教學.其次就是要從學生方面加以突破,因為時間都是自己擠出來的,那就需要我們老師教會學生解題的方法以提高學生的解題速度

三.小結

調查問卷主要反映出以下幾個問題:

(1)相當多的一部分學生喜歡數學,覺得數學是有趣的一門學科,但是學起來覺得有一定的難度。

(2)相當多的學生不注重課本知識,課後少做習題,甚至不做習題。

(3)沒有形成良好的學習數學的習慣,基本沒有做到課前預習,課堂上認真聽課,課後複習的學習三步曲。

(4)由於種種原因,學生上課聽課的質量不高。

(5)學習數學的積極性不夠高,效率不高。

(6)沒有形成系統的學習習慣,不善於總結,歸納出一套自己的學習數學的方法。

(7)新課程標準的課本知識跳躍性大,習題難度大,內容多,學生難以消化吸收。

四、建議

針對目前數學學習現狀,為了進一步提高學生的學習成績,教師必須幫助學生完善學習過程。

(1)教師要指導學生進行預習,使他們養成每節新課前都要進行預習的習慣,從而了解下節課教師上課的內容提高聽課效率。

(2)教師要指導學生採用科學的學習方法,提高學習效率。要培養學生課後先看書再完成作業的學習習慣,真正理解上節課老師所講的內容,再運用掌握的知識去完成作業加以鞏固,使每個學生都能自覺地採用科學的方法進行學習。

(3)教師要採用適當的方法提高學生學習的積極性、主動性,使學生做到對老師批改的作業要及時了解,對做錯的題目要認真、及時訂正。同時要培養學生養成嚴謹的學習態度,杜絕“治標不治本”的訂正方法。對於學習中出現的問題要認真思考,決不輕易放過。

(4)教師要指導學生養成系統複習的學習習慣。只有這樣,才能在各種測驗中臨危不懼,瀟灑應對。靠臨時“抱佛腳”去應付測驗是無法真正提高學習成績的。(5)教師要引導學生樹立正確的學習動機,從思想上扭轉部分學生的觀念,幫助他們培養良好的學習動機,使他們能主動養成積極的學習。

(6)教師應探索新課程教學模式,積極穩妥推進新課程改革。

國中數學重點知識點總結 篇15

1、菱形的定義:有一組鄰邊相等的平行四邊形叫做菱形。

2、菱形的性質:⑴矩形具有平行四邊形的一切性質;

⑵菱形的四條邊都相等;

⑶菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。

⑷菱形是軸對稱圖形。

提示:利用菱形的性質可證得線段相等、角相等,它的對角線互相垂直且把菱形分成四個全等的直角三角形,由此又可與勾股定理聯繫,可得對角線與邊之間的關係,即邊長的平方等於對角線一半的平方和。

3、因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

4、因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④因式分解與整式乘法的關係:m(a+b+c)

5、公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

6、公因式確定方法:①係數是整數時取各項最大公約數。②相同字母取最低次冪③係數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

7、提取公因式步驟:①確定公因式。②確定商式③公因式與商式寫成積的形式。

8、平方根表示法:一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。

9、中被開方數的取值範圍:被開方數a≥0

10、平方根性質:①一個正數的平方根有兩個,它們互為相反數。②0的平方根是它本身0。③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。

11、平方根與算術平方根區別:定義不同、表示方法不同、個數不同、取值範圍不同。

12、聯繫:二者之間存在著從屬關係;存在條件相同;0的算術平方根與平方根都是0

13、含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。

14、求正數a的算術平方根的方法;

完全平方數類型:①想誰的平方是數a。②所以a的平方根是多少。③用式子表示。

求正數a的算術平方根,只需找出平方後等於a的正數。

國中數學重點知識點總結 篇16

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。

國中數學知識點:因式分解的一般步驟

關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個範圍內因式分解,應該是指在有理數範圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

國中數學重點知識點總結 篇17

20xx年12月17到19號,我區數學課堂大比武活動在祝陽二中舉行,3天的比賽時間裡,18位數學老師為我們展示了18節精彩紛呈的數學課堂。師生之間和諧默契的配合,科學合理的教學流程,良好的教學效果,無不體現著我區國中數學教師較高的專業水平。雖然是賽課,但老師們的課堂少了花架子,實實在在的專注於創設適合學生認知規律的學習背景,新課程的理念已深深的植入我區數學教師的內心,學生為課堂主體得到了很好的落實。3天的聽課,使我收穫很大,先將個人感想總結如下:

3天的教學內容如下:

12月17號:八年級上冊6。1第二課時不等式的基本性質12月18號:八年級上冊6。2第一課時不等式的解和解集12月19號:八年級上冊6。2第二課時一元一次不等式及解法我想以課堂流程為主線,從以下幾個方面進行總結:

一、學習目標:

使用學案的老師都將學習目標放在了學案的第一環節,在講課過程中有3位老師一開始就出示學習目標,有5位老師放在導課之後出示目標,有2位老師放在課堂小結前出示學習目標,有八位老師沒有提及學習目標。出示目標的老師方式也不一樣,有的老師讓學生讀一遍,有的老師自己讀完,有的老師象徵性的突出這一環節,馬上帶過。從效果看,出示目標對提高課堂效益沒有太大意義,尤其是放在課堂的開始出示目標,學生對本節課的數學概念、方法,思想並不熟悉,學生讀過之後就會忘記,學生也不會時刻想著學習目標指導自己學習,時間白白浪費。從設計目標內容看,多數老師設計學習目標科學合理,但也存在一些問題:一是目標表述籠統,如“培養學生自主探索與合作交流的能力”,要細化為:會與同伴交流解題感想。如“提高學生分析問題解決問題的能力,培養學生的學習興趣”,這是教學目標,不是學習目標,那節課不都有這樣的目標,成萬能目標了;二是學習目標中不能出現“培養學生合情推理能力”這樣的目標,誰培養,是老師,老師是主語,其實是教學目標與學習目標混了。

二、課堂導入

參加講課的老師使用了三種導課方式:

1、複習導課。複習等式的基本性質得到不等式的基本性質;複習方程的解得到不等式的解;複習一元一次方程的定義得到一元一次不等式的定義;複習一元一次方程的解法步驟得到一元一次不等式的解法步驟。

2、探究法導課。仿照等式的基本性質2,把不等式的兩邊同乘以或除以同一個數,讓學生個人選擇一些數代入研究,發現有三種情況:不等號方向不變(兩邊同乘以或除以一個正數);不等號變成等號(兩邊同乘以零);不等號方向改變(兩邊同乘以或除以一個負數)。實驗得到了結論。

3、創設情境導課。情景導航中的飛機最多還能裝載多少頂帳篷;麵包車限載7人;高速路限速100邁;至少答對幾道題。貼近生活激發興趣。

第一天6位老師都從回顧等式的基本性質入手,引入不等式的基本性質的探究,為相似知識之間的類比做好鋪墊,導課方式合情合理,效果不錯。

第二天學習不等式的解及解集,教材設計了有關直升飛機運載災物資的情景,有兩位老師使用了這個情景導入新課;汶口一中的范義堅老師以乘坐的麵包車來參加賽課,麵包車的載客量和在行程中看到的限速牌的情景導入新課;李新剛老師設計了購物情景導入新課;十四中的趙培義老師設計了競賽得分的情景導入新課;一位老師沒有設計導課環節,直接給出自學指導,學生自學。

第三天21中的高鳳老師設計了一個關於讀書的情景導入課題,另有3位老師從回顧一元一次方程入手,引入課題;兩位老師沒有設計課堂導入環節,直接出示探究指導,讓學生自主學習新知識。

從效果看,課堂的開始設計情景導入環節,這是師生交流的開始,尤其是賽課,面對的是陌生的學生,設計一個學生熟悉或是感興趣的情景,對於提升學生的學習熱情,拉近師生之間的距離,活躍課堂氣氛,激發學生的求知慾望很有效果。但是在創設情景時,不要形式上的貼近現實,如導課時有教師“如果我們學校捐贈10頂帳篷,這架飛機能一次運走嗎?”,看上去聯繫我們學校了,貼近我們了,豈不知我們學校哪有帳篷,又扯遠了

三、探究新知環節

參加講課的老師非常重視學生的自主學習、合作探究的學習方式,設計了非常生動的探究情景,比較合理的自學指導,指導學生如何小組探究、如何反饋,如何評價。此環節充分體現了我區國中教師對新課改理念的理解,老師們已把傳統的填鴨式教學模式徹底拋棄,新的探究式教學已深入人心。實驗中學的董海濤老師在教授不等式的基本性質時,首先回顧等式的基本性質,然後出示一組不等式,學生類比等式的基本性質得到了不等式的基本性質1,然後董老師大膽讓學生猜想不等式是否還有其他性質,學生類比猜想“不等式的兩邊同時乘以或除以一個不為零的數或整式,不等號的方向不變”這一看似合理但有錯誤的結論。董老師告訴學生,猜想不一定正確,猜想後還需有科學合理的推理、論證才可以判斷它是否正確。(這一步讓學生大膽去猜想非常智慧,為學生自然類比出性質提供了舞台,當然是在學生不能提前看書的基礎上),董老師鼓勵學生想辦法驗證自己的猜想。學生運用代入不同數值的方法發現,同乘正數和負數是不同的,乘以負數,不等號的方向要改變,所以對於乘法,要分類討論,學生得到了不等式2和3。這種設計,符合知識的發展,生成規律,即讓學生自主掌握了知識,又讓學生學會了很重要的解決問題的方法(對比一些老師的讓學生自主學習,那數學的“過程”自然也就淹沒了,學生不經歷這一過程,得到的知識淺多了)。十五中的邱玉榮老師在教授不等式的解法兩個例題時,通過較為簡單的例題1讓學生感知類比方程的解法可以求不等式的解集,邱老師放手讓學生自己試著解例題2,相當多的學生能成功的得到不等式的正確解集,且步驟合理。邱老師讓學生通過板演展示,學生評價等方式完善方法和步驟,達到讓所有學生掌握的目的。這種方式,能讓中等以上的學生通過自主學習,感受到成功的樂趣,也體現了邱老師分層教學的理念。

出現的問題

1、不等式基本性質的探究過程大體分幾種情況:

(1)性質1、2、3一塊得出;

(2)性質1、2、3分別得出;

(3)性質1、2一塊得出,然後探究性質3;

(4)性質1先得出,然後探究性質2、3一塊得出;

通過課堂觀察,第四種情況符合知識發生髮展規律,符合學生認識規律,自然生成,其他均有人為硬性的痕跡,是按照成人的思維來設計,不夠自然流暢。

另外,性質1的探究過程沒有按>0,<0研究,性質2為什麼沒按呢?再就是缺乏對“等於零”的情形的研究,分析不全面。

再有,教師安排學生自學課本和學案,一定時間後讓學生回答性質1、2、3,就算是對性質的探究過程了。讓學生看課本總結性質1、2、3,流於形式,沒有探究的味,假探究,學生看課本總結那不是鼓勵學生背課本、讀原文,自己總結么?教師的引導有如何體現??2、合作交流的時機不當

一上課,出示引例後問“直升飛機最多能裝載多少頂帳篷?”,此問題一出,立即讓學生進行交流討論,是時機嗎?有必要嗎?教師要思考“什麼時候讓學生合作交流?”

3、有的老師對小組合作只作為一個形式運用,沒有考慮實際價值。如沒有設定探究解決的問題或設定的問題很隨便。一位老師讓學生在數軸上畫不等式x<2的解集時,問學生2在數軸化實點還是虛點,學生集體回答畫虛點,老師又說“同學們討論一下為什麼畫虛點?”這樣的討論有點多餘,因為這是前一節課學生熟練掌握的內容;有的老師在學生合作學習開始前沒有交代好方法和注意事項,小組合作學習開始後不停地補充,這樣就很容易打斷學生的思路。有的老師沒有給足夠的時間合作學習,很短的時間後就讓學生反饋或自己進行總結,這樣就達不到小組合作解決問題的目的。有的老師在反饋小組合作學習的成果時,只選擇組長來說,這樣不能調動所有學生的學習熱情;

四、訓練鞏固環節所有講課的老師都特別重視訓練鞏固,精心設計了形式多樣,緊扣當節課所學知識點,易於掌握重點和突破難點的訓練題組。老師讓學生通過自主練習,暴露出存在的問題,然後通過形式豐富的反饋加以糾正。

這一環節存在的問題有:

1、有的老師設計的題組難度跨度大,沒有充分考慮學生的認知水,講解例題之前最好先做一些基礎性的題目,為例題的順利解決做一個台階;2、教師講評前要仔細審查學生板演的情況

如學生板書“x—5<—3”,把“—”號看做乘號“●”了,但按此乘號“●”做得很好,教師講評時不問青紅皂白,直接批死,造成“冤假錯案”,其實該生是平時學習不錯的優秀生,致使該學生看錯了,而且看錯的原因也是教師的課件不清楚所致。

3、在反饋環節,老師指名課代表、班長、組長等,因為他們大都是優等生,樣本不具有代表性,不能反映出學生存在的問題;學生板演時,老師不敢讓學生暴露錯誤,學生一旦出錯,老師馬上對其訂正,錯誤沒能呈獻給所有學生,具有代表性的錯誤不能有效訂正。讓學生在數軸上表示解集時,應讓學生自己畫數軸,自己標數字,教師一般不要提前畫好數軸,只等學生來完成剩下的任務

4、拓展不當,如拓展“已知x≥m且x為正數,確定實數m的範圍。”,與本節課時內容關聯性不強。

5、在數軸上表示不等式的解集時,有教師在數軸與所標線內塗上陰影,意指陰影部分是解集,與課本不符。

五、課堂小結

在課堂小結環節,老師們大都提出“本節課你有什麼收穫”或“本節課你學到了什麼”這樣的問題,然後讓學生總結,學生大都總結出一節課所學到的知識點,以及在做題中出現的錯誤進行總結。有兩位老師的總結涉及到了當堂課的數學方法和思想。老師們注重了所授知識的概括、歸納及總結,對解決問題的方法,對所學知識的套用及價值的總結有所淡化,也沒有涉及到對學生情感、學習態度和存在問題的總結。

六、學案

講課的18位教師,有16位老師使用了學案,但學案的設計質量參差不齊,有的學案個個環節齊全,重點突出學習指導,訓練題組有創新,當堂檢測設計科學合理。印象最深的是道朗一中的李新剛老師設計的學案,徵得李老師的同意後將他設計的學案附在後面,請大家參考。

學案存在的問題有:

1、1、有的學案沒有標註課題,顯得不完整

2、2、有的老師將學案設計成訓練題,沒有體現上課的過程

3、3、有的老師設計的學案設計成了教案的`形式,出現教學目標、教學過程等詞語,學案設計不規範

4、4、有的學案內容空洞,沒有實用性,老師發給學生學案後,沒有套用。

七、關於達標檢測

18位老師都設計了當堂達標這一環節,達標檢測題進行了精心設計,題型包括選擇、填空、解答與計算,題型豐富。特別是增加了選擇題的比重,中考選擇題分值占50%,老師們著眼中考,從這裡看出我區數學老師豐富的教學經驗。

存在問題:

有的老師設計的題量太多,有一位老師設計了11道題目;有個別老師設計的題目難度偏大;有的老師因課堂時間安排不合理,課堂檢測沒有完成,導致沒有反饋和訂正,有很多老師因前面的環節不緊湊,導致拖堂,有的拖堂達到近10分鐘。

八、課件

講課的18位老師都使用了教學課件,老師的的課件製作的各有特色,能極大地提高課堂效益,多數老師在使用過程中得心應手,說明我區的數學課堂課件的使用已非常普及。

存在問題:

個別老師操作不熟練,不能及時翻頁、跳頁;過早地呈現後面的內容,退不回去了;對比度不強,許多文字、符號看不清。

國中數學重點知識點總結 篇18

一.圓的定義

1.平面上到定點的距離等於定長的所有點組成的圖形叫做圓。

2.平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。

二.圓心

1.定義1中的定點為圓心。

2.定義2中繞的那一端的端點為圓心。

3.圓任意兩條對稱軸的交點為圓心。

4.垂直於圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。

註:圓心一般用字母O表示

5.直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。

6.半徑:連線圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。

7.圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的`二分之一.d=2r或r=二分之d。

8.圓的半徑或直徑決定圓的大小,圓心決定圓的位置。

三.圓的基本性質

1.圓的對稱性

(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。

(2)圓是中心對稱圖形,它的對稱中心是圓心。

(3)圓是旋轉對稱圖形。

2.垂徑定理

(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。

(2)推論:

平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。

平分弧的直徑,垂直平分弧所對的弦。

3.圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。

(1)同弧所對的圓周角相等。

(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。

4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。

5.夾在平行線間的兩條弧相等。

(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。

(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。

(直角三角形的外心就是斜邊的中點。)

6.直線與圓的位置關係。d表示圓心到直線的距離,r表示圓的半徑。

直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。

四.圓和圓

1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。

2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。

3.兩個圓有兩個交點,叫做兩個圓的相交。

4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。

5.兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。

五.正多邊形和圓

1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。

2.正多邊形與圓的關係:

(1)將一個圓n(n≥3)等分(可以藉助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。

(2)這個圓是這個正多邊形的外接圓。

國中數學重點知識點總結 篇19

動點與函式圖象問題常見的四種類型:

1、三角形中的動點問題:動點沿三角形的邊運動,根據問題中的常量與變數之間的關係,判斷函式圖象.

2、四邊形中的動點問題:動點沿四邊形的邊運動,根據問題中的常量與變數之間的關係,判斷函式圖象.

3、圓中的動點問題:動點沿圓周運動,根據問題中的常量與變數之間的關係,判斷函式圖象.

4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據問題中的常量與變數之間的關係,判斷函式圖象.

圖形運動與函式圖象問題常見的三種類型:

1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經過三角形或四邊形,根據問題中的常量與變數之間的關係,進行分段,判斷函式圖象.

2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經過另一個多邊形,根據問題中的常量與變數之間的關係,進行分段,判斷函式圖象.

3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經過一個圓,根據問題中的常量與變數之間的關係,進行分段,判斷函式圖象.

動點問題常見的四種類型:

1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構成的新圖形與原圖形的邊或角的關係.

2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關係.

3、圓中的動點問題:動點沿圓周運動,探究構成的新圖形的邊角等關係.

4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構成的三角形是等腰三角形或與已知圖形相似等問題.

總結反思:

本題是二次函式的綜合題,考查了待定係數法求二次函式的解析式,一次函式的解析式,三角形全等的判定和性質,等腰直角三角形的性質,平行線的性質等,數形結合思想的套用是解題的關鍵.

解答動態性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發掘“動”與“靜”的內在聯繫,尋求變化規律,從變中求不變,從而達到解題目的.

解答函式的圖象問題一般遵循的步驟:

1、根據自變數的取值範圍對函式進行分段.

2、求出每段的解析式.

3、由每段的解析式確定每段圖象的形狀.

對於用圖象描述分段函式的實際問題,要抓住以下幾點:

1、自變數變化而函式值不變化的圖象用水平線段表示.

2、自變數變化函式值也變化的增減變化情況.

3、函式圖象的最低點和最高點.

國中數學重點知識點總結 篇20

時間飛逝,回望開學初的計畫,深感“做事的過程就是結果,努力能帶動效率。”這學期我們數學教研組的工作在三個備課組長及全組數學教師的努力下基本完成了工作任務。

現總結如下:

一、突出研課特色,以公開課為平台,提升教研組教師學習能力通過學校各項活動,我們教師課堂教學水平有很大提高,三個備課組長以學生學段不同,科學合理地進行教學工作,我們強化數學教研組建設,積極發揮教研組備課組的團隊合作力量,走了教研組教學研究特色化,便於提高我們教師教學水平,要求每位教師認真鑽研教材,探討教法,並積極地落實到自己的'教學中。通過骨幹教師帶動青年教師觀課議課評課,提升教師對教學各項能力,並議課中,及時發現一些“共同”問題,緊鑼密鼓地開展研究,並探討解決教學共性問題以及教師教學個人問題,一定程度上有效的提高了教師相互學習能力。

二、多種培訓及教學研修,提升教研組教師素養學校創造機會提高教師的業務學習能力。選派優秀教師積極參加外出跟崗培訓,回來後上好匯報課,實現資源共享。聯繫溫州市送教下鄉活動,縣常規培訓活動,市縣中考複習說明培訓,多個角度,多個平台,進行了教師業務和素養培訓,效果顯著。

三、豐富活動,提高數學教研組綜合能力整合教學活動,展開備課組特點的個性行動研究,在教研中,我們階段交流活動,解決研究過程遇到的問題。九年級進行二輪專題複習研究,由王大團老師做公開課,並在課題組員和全體數學組展開研討,提高了二輪專題複習研究的有效性。七八年級對如何處理培優和教學相宜聯繫,平時更針對性的,更有效的進行教學整合,使培優和教學雙贏。這學期各年段積極組織學生參加生活中的數學的初賽與複賽,並獲得多個一、二、三等獎獎項,成果喜人。

四、發揮備課組長領導力,加強集體備課通過教研組平台,要求備課組長細化、最佳化備課組各項常規工作,發揮教師的積極性,有計畫地開展教研組下達各項數學教學活動。以教研組為單位進行教學研究,發揮備課組的優勢,把教研組作為一個有力的團體,打團隊仗,讓每一位教師在團隊中發揮自己的潛能,凝聚智慧,創造智慧。

五、教研工作的不足之處教研組內教師多,改變提升教研組教師教學水平,還是有很大距離,改變教師教學方式和教學觀念也有困難,教研組教師平均年齡較大,在專業上開始進入了疲倦期,如何激發老師們的工作激情,快速度過工作倦怠期,進入新一輪工作激情期,這是我們教研組面臨的一個問題。經驗型的老教師過多,也給我們帶來了很大工作壓力,從教研活動的公開課到試卷命題等等,活動熱情和投入嚴重不足,每次活動的執行力都會阻礙重重,因此各備課組長壓力極大。

最後,感謝大家這幾年在工作上的大力支持,我們教研組的工作,是見證大家的共同成長,讓我們收穫各自的精彩,同時也成就我們作為數學大組的集體榮譽!再次,感謝有你們!

價方式,讓學生的個性得到自由健康的發展,從而形成肯定的自我意識。

3、加強教學研究,充分發揮教科研活動對常規教學的輔助功能。一是把集體備課、聽課、評課落到實處,加強教師間的交流與合作,真正實現腦力資源的共享。二是加強學習,參加各級新課程培訓和遠程教育培訓等各種學習活動,進一步更新教育理念。堅持閱讀每期《中史參》、《歷史教學》和《歷史研究》等權威學術期刊,了解最新史學動態,並將這些思路和方法及時運用到教學中去,大大提高了教育思想水平和教學水平。三是撰寫了《對新課標下歷史課堂教學的認識》、《如何發揮中學歷史教學的素質教育功能》等教學和學習心得。針對教輔市場良莠不齊的現狀,我用一年時間編寫了一套教輔用書,由黃河出版社發行,得到同行的廣泛好評。

4、擔任班主任工作期間,我建立了一套行之有效的管理方法,教育學生樹立遠大理想,培養學生集體觀念和合作進取意識,用發展的眼光看待學生,以平常心態對待後進生,對學生曉之以理、動之以情,因勢利導,變消極因素為積極因素,從而使學生形成了積極的人生態度,樹立了正確的人生價值觀。

三、一蓑煙雨任平生——繼續我的執著與勤奮。

一分春華,一分秋實。付出心血與汗水,也收穫著充實和沉甸甸的情感,我所教班級的學生,學習興趣濃厚,成績突出。教學之路仍在腳下延伸,作為教學之路上的蹉跎前行者,不求夏花之燦爛,但求秋葉之靜美。在以後的工作中,我將保持自己的勤奮和執著,把自己的工作做的更好。