高二數學知識點總結集錦

高二數學知識點總結集錦 篇1

數列定義:

如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。

前n項和公式為:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

以上n均屬於正整數。

解釋說明:

從(1)式可以看出,an是n的一次函式(d≠0)或常數函式(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函式(d≠0)或一次函式(d=0,a1≠0),且常數項為0。

在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項,且為數列的平均數。

且任意兩項am,an的關係為:an=am+(n-m)d

它可以看作等差數列廣義的通項公式。

推論公式:

從等差數列的定義、通項公式,前n項和公式還可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N_且m+n=p+q,則有am+an=ap+aq,Sm-1=(2n-1)an,S2n+1=(2n+1)an+1,Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。

基本公式:

和=(首項+末項)×項數÷2

項數=(末項-首項)÷公差+1

首項=2和÷項數-末項

末項=2和÷項數-首項

末項=首項+(項數-1)×公差

高二數學知識點總結集錦 篇2

1.有向線段的定義

線段的端點A為始點,端點B為終點,這時線段AB具有射線AB的方向.像這樣,具有方向的線段叫做有向線段.記作:.

2.有向線段的三要素:有向線段包含三個要素:始點、方向和長度.

3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個要素:大小和方向.

(2)向量的表示方法:①用兩個大寫的英文字母及前頭表示,有向線段來表示向量時,也稱其為向量.書寫時,則用帶箭頭的小寫字母,,,來表示.

4.向量的長度(模):如果向量=,那么有向線段的長度表示向量的大小,叫做向量的長度(或模),記作||.

5.相等向量:如果兩個向量和的方向相同且長度相等,則稱和相等,記作:=.

6.相反向量:與向量等長且方向相反的向量叫做的相反向量,記作:-.

7.向量平行(共線):如果兩個向量方向相同或相反,則稱這兩個向量平行,向量平行也稱向量共線.向量平行於向量,記作//.規定: //.

8.零向量:長度等於零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由於零向量方向的特殊性,解答問題時,一定要看清題目中是零向量還是非零向量.

9.單位向量:長度等於1的向量叫做單位向量.

10.向量的加法運算:

(1)向量加法的三角形法則

11.向量的減法運算

12、兩向量的和差的模與兩向量模的和差之間的關係

對於任意兩個向量,,都有|||-|||||+||.

13.數乘向量的定義:

實數和向量的乘積是一個向量,這種運算叫做數乘向量,記作.

向量的長度與方向規定為:(1)||=|

(2)當0時,與方向相同;當0時,與方向相反.

(3)當=0時,當=時,=.

14.數乘向量的運算律:(1))= (結合律)

(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

15.平行向量基本定理

如果向量,則//的充分必要條件是,存在唯一的實數,使得=.

如果與不共線,若m=n,則m=n=0.

16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.

=||,即==(,)

17.線段中點的向量表達式

點M是線段AB的中點,O是平面內任意一點,則=(+).

18.平面向量的直角坐標運算:如果=(a1,a2),=(b1,b2),則

+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

19.利用兩點表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).

20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則

=a1=b1且a2=b2.

//a1b2-a2b1=0.特別地,如果b10,b20,則// =.

21.向量的長度公式:若=(a1,a2),則||=.

22.平面上兩點間的距離公式:若A(x1,y1),B(x2,y2),則||=.

23.中點公式

若點A(x1,y1),點B(x2,y2),點M(x,y)是線段AB的中點,則x=,y= .

24.重心公式

在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則

x=,y=

25.(1)兩個向量夾角的取值範圍是[0,p],即0,p.

當=0時,與同向;當=p時,與反向

當= 時,與垂直,記作.

(3)向量的內積定義:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的數量.規定=0.

(4)內積的幾何意義

與的內積的幾何意義是的模與在方向上的正射影的數量,或的模與在 方向上的正射影數量的乘積

當0,90時,0;=90時,

90時,0.

26.向量內積的運算律:

(1)交換率

(2)數乘結合律

(3)分配律

(4)不滿足組合律

27.向量內積滿足乘法公式

29.向量內積的套用:

高二數學知識點總結集錦 篇3

數列

1、數列的定義及數列的通項公式:

① an?f(n),數列是定義域為N

的函式f(n),當n依次取1,2,???時的一列函式值② i。歸納法

若S0?0,則an不分段;若S0?0,則an分段iii。若an?1?pan?q,則可設an?1?m?p(an?m)解得m,得等比數列?an?m?

?Sn?f(an)

iv。若Sn?f(an),先求a

1?得到關於an?1和an的遞推關係式

S?f(a)n?1?n?1?Sn?2an?1

例如:Sn?2an?1先求a1,再構造方程組:??(下減上)an?1?2an?1?2an

?Sn?1?2an?1?1

2、等差數列:

①定義:a

n?1?an=d(常數),證明數列是等差數列的重要工具。 ②通項d?0時,an為關於n的一次函式;

d>0時,an為單調遞增數列;db>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行於x軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

(1)柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

(2)錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

(3)台體①表面積:S=S側+S上底S下底②側面積:S側=

(4)球體:①表面積:S=;②體積:V=

4、位置關係的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

(1)異面直線所成角的求法:平移法:平移直線,構造三角形;

(2)直線與平面所成的角:直線與射影所成的角

四、導數:導數的意義-導數公式-導數套用(極值最值問題、曲線切線問題)

1、導數的定義:在點處的導數記作.

2、導數的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函式的導數公式:①;②;③;

⑤;⑥;⑦;⑧。

4.、導數的四則運算法則:

5、導數的套用:

(1)利用導數判斷函式的單調性:設函式在某個區間內可導,如果,那么為增函式;如果,那么為減函式;

注意:如果已知為減函式求字母取值範圍,那么不等式恆成立。

(2)求極值的'步驟:

①求導數;

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那么函式在這個根處取得極大值;如果左負右正,那么函式在這個根處取得極小值;

(3)求可導函式值與最小值的步驟:

ⅰ求的根;ⅱ把根與區間端點函式值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

註:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

3、邏輯聯結詞:

(1)且(and):命題形式pq;pqpqpqp

(2)或(or):命題形式pq;真真真真假

(3)非(not):命題形式p.真假假真假

假真假真真

假假假假真

“或命題”的真假特點是“一真即真,要假全假”;

“且命題”的真假特點是“一假即假,要真全真”;

“非命題”的真假特點是“一真一假”

4、充要條件

由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:

短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,並用符號表示。含有全體量詞的命題,叫做全稱命題。

短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,並用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數學知識點總結集錦 篇4

一、不等式的性質

1.兩個實數a與b之間的大小關係

2.不等式的性質

(4) (乘法單調性)

3.絕對值不等式的性質

(2)如果a>0,那么

(3)|ab|=|a||b|.

(5)|a|-|b|≤|a±b|≤|a|+|b|.

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|.

二、不等式的證明

1.不等式證明的依據

(2)不等式的性質(略)

(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,若且唯若a=b時取“=”號)

2.不等式的證明方法

(1)比較法:要證明a>b(a<b),只要證明a-b>0(a-b<0),這種證明不等式的方法叫做比較法.

用比較法證明不等式的步驟是:作差——變形——判斷符號.

(2)綜合法:從已知條件出發,依據不等式的性質和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

(3)分析法:從欲證的不等式出發,逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

證明不等式除以上三種基本方法外,還有反證法、數學歸納法等.

三、解不等式

1.解不等式問題的分類

(1)解一元一次不等式.

(2)解一元二次不等式.

(3)可以化為一元一次或一元二次不等式的不等式.

①解一元高次不等式;

②解分式不等式;

③解無理不等式;

④解指數不等式;

⑤解對數不等式;

⑥解帶絕對值的不等式;

⑦解不等式組.

2.解不等式時應特別注意下列幾點:

(1)正確套用不等式的基本性質.

(2)正確套用冪函式、指數函式和對數函式的增、減性.

(3)注意代數式中未知數的取值範圍.

3.不等式的同解性

(5)|f(x)|<g(x)與-g(x)<f(x)<g(x)同解.(g(x)>0)

(6)|f(x)|>g(x)①與f(x)>g(x)或f(x)<-g(x)(其中g(x)≥0)同解;②與g(x)<0同解.

(9)當a>1時,af(x)>ag(x)與f(x)>g(x)同解,當0<a<1時,af(x)>ag(x)與f(x)<g(x)同

高二數學知識點總結集錦 篇5

一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件.

二、函式(30課時,12個)1.映射;2.函式;3.函式的單調性;4.反函式;5.互為反函式的函式圖象間的關係;6.指數概念的擴充;7.有理指數冪的運算;8.指數函式;9.對數;10.對數的運算性質;11.對數函式.12.函式的套用舉例.

三、數列(12課時,5個)1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式.

四、三角函式(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函式;4,單位圓中的三角函式線;5.同角三角函式的基本關係式;6.正弦、餘弦的誘導公式’7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函式、餘弦函式的圖象和性質;10.周期函式;11.函式的奇偶性;12.函式的圖象;13.正切函式的圖象和性質;14.已知三角函式值求角;15.正弦定理;16餘弦定理;17斜三角形解法舉例.

五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移.

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數方程.

八、圓錐曲線(18課時,7個)1橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質.九、(B)直線、平面、簡單何體(36課時,28個)1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5,直線和平面垂直的判與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關係;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.稜錐;27.正多面體;28.球.

十、排列、組合、二項式定理(18課時,8個)1.分類計數原理與分步計數原理.2.排列;3.排列數公式’4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質.

十一、機率(12課時,5個)1.隨機事件的機率;2.等可能事件的機率;3.互斥事件有一個發生的機率;4.相互獨立事件同時發生的機率;5.獨立重複試驗.選修Ⅱ(24個)

十二、機率與統計(14課時,6個)1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.常態分配;6.線性回歸.

十三、極限(12課時,6個)1.數學歸納法;2.數學歸納法套用舉例;3.數列的極限;4.函式的極限;5.極限的四則運算;6.函式的連續性.

十四、導數(18課時,8個)1.導數的概念;2.導數的幾何意義;3.幾種常見函式的導數;4.兩個函式的和、差、積、商的導數;5.複合函式的導數;6.基本導數公式;7.利用導數研究函式的單調性和極值;8函式的最大值和最小值.

十五、複數(4課時,4個)1.複數的概念;2.複數的加法和減法;3.複數的乘法和除法答案補充高中數學有130個知識點,從前一份試卷要考查90個知識點,覆蓋率達70%左右,而且把這一項作為衡量試捲成功與否的標準之一.這一傳統近年被打破,取而代之的是關注思維,突出能力,重視思想方法和思維能力的考查.現在的我們學數學比前人幸福啊!!相信對你的學習會有幫助的,祝你成功!答案補充一試全國高中數學聯賽的一試競賽大綱,完全按照全日制中學《數學教學大綱》中所規定的教學要求和內容,即高考所規定的知識範圍和方法,在方法的要求上略有提高,其中機率和微積分初步不考。二試1、平面幾何基本要求:掌握國中數學競賽大綱所確定的所有內容。補充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點距離之和最小的點--費馬點。到三角形三頂點距離的平方和最小的點,重心。三角形內到三邊距離之積最大的點,重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積最大。在周長一定的簡單閉曲線的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運動:反射、平移、旋轉。複數方法、向量方法。平面凸集、凸包及套用。答案補充第二數學歸納法。遞歸,一階、二階遞歸,特徵方程法。函式疊代,求n次疊代,簡單的函式方程。n個變元的平均不等式,柯西不等式,排序不等式及套用。複數的指數形式,歐拉公式,棣莫佛定理,單位根,單位根的套用。圓排列,有重複的排列與組合,簡單的組合恆等式。一元n次方程(多項式)根的個數,根與係數的關係,實係數方程虛根成對定理。簡單的初等數論問題,除國中大綱中所包括的內容外,還應包括無窮遞降法,同餘,歐幾里得除法,非負最小完全剩餘類,高斯函式,費馬小定理,歐拉函式,孫子定理,格點及其性質。3、立體幾何多面角,多面角的性質。三面角、直三面角的基本性質。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標方程,直線束及其套用。二元一次不等式表示的區域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

高二數學知識點總結集錦 篇6

排列組合

排列P------和順序有關

組合C-------不牽涉到順序的問題

排列分順序,組合不分

例如把5本不同的書分給3個人,有幾種分法."排列"

把5本書分給3個人,有幾種分法"組合"

1.排列及計算公式

從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).

2.組合及計算公式

從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!_!);c(n,m)=c(n,n-m);

3.其他排列與組合公式

從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!.

n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為

n!/(n1!_2!_.._k!).

k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).

排列(Pnm(n為下標,m為上標))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(註:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n

組合(Cnm(n為下標,m為上標))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m

20xx-07-0813:30

公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如9!=9________

從N倒數r個,表達式應該為n_n-1)_n-2)..(n-r+1);

因為從n到(n-r+1)個數為n-(n-r+1)=r

高二數學知識點總結集錦 篇7

圓柱、圓錐、圓台和球的表面積

(1)圓柱、圓錐、圓台和多面體一樣都是可以平面展開的。

①圓柱、圓錐、圓台的側面展開圖,是求其側面積的基本依據。

圓柱的側面展開圖,是由底面圖的周長和母線長組成的一個矩形。

②圓錐和側面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為

③圓台的側面展開圖是一個由兩條母線長和上、下底面周長組成的扇環,其扇環的圓心角為

這個公式有利於空間幾何體和其側面展開圖的互化

顯然,當r=0時,這個公式就是圓錐側面展開圖扇形的圓心角公式,所以,圓錐側面展開圖扇形的圓心角公式是圓台相關角的特例。

(2)圓柱、圓錐和圓台的側面公式為

S側=π(r+R)l

當r=R時,S側=2πRl,即圓柱的側面積公式。

當r=0時,S側=rRl,即圓錐的面積公式。

要重視,側面積間的這種關係。

(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、台的方法完全不同。

推導出來,要用“微積分”等高等數學的知識,課本上不能算是一種證明。

求不規則圓形的度量屬性的常用方法是“細分——求和——取極限”,這種方法,在學完“微積分”的相關內容後,不證自明,這裡從略。

畫圓柱、圓錐、圓台和球的直觀圖的方法——正等測

(1)正等測畫直觀圖的要求:

①畫正等測的X、Y、Z三個軸時,z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。

②在投影圖上取線段長度的方法是:在三軸上或平行於三軸的線段都取實長。

這裡與斜二測畫直觀圖的方法不同,要注意它們的區別。

(2)正等測圓柱、圓錐、圓台的直觀圖的區別主要是水平放置的平面圖形。

用正等測畫水平放置的平面圓形時,將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實長。

關於幾何體表面內兩點間的最短距離問題

柱、錐、台的表面都可以平面展開,這些幾何體表面內兩點間最短距離,就是其平面內展開圖內兩點間的線段長。

由於球面不能平面展開,所以求球面內兩點間的球面距離是一個全新的方法,這個最短距離是過這兩點大圓的劣弧長。

高二數學知識點總結集錦 篇8

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補集;4.交集;5.並集;6.邏輯連結詞;7.四種命題;8.充要條件。

二、函式(30課時,12個)

1.映射;2.函式;3.函式的單調性;4.反函式;5.互為反函式的函式圖象間的關係;6.指數概念的擴充;7.有理指數冪的運算;8.指數函式;9.對數;10.對數的運算性質;11.對數函式.12.函式的套用舉例。

三、數列(12課時,5個)

1.數列;2.等差數列及其通項公式;3.等差數列前n項和公式;4.等比數列及其通頂公式;5.等比數列前n項和公式。

四、三角函式(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函式;4.單位圓中的三角函式線;5.同角三角函式的基本關係式;6.正弦、餘弦的誘導公式;7.兩角和與差的正弦、餘弦、正切;8.二倍角的正弦、餘弦、正切;9.正弦函式、餘弦函式的圖象和性質;10.周期函式;11.函式的奇偶性;12.函式的圖象;13.正切函式的圖象和性質;14.已知三角函式值求角;15.正弦定理;16.餘弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實數與向量的積;4.平面向量的坐標表示;5.線段的定比分點;6.平面向量的數量積;7.平面兩點間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質;3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點斜式和兩點式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點到直線的距離;7.用二元一次不等式表示平面區域;8.簡單線性規劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標準方程和一般方程;12.圓的參數方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標準方程;2.橢圓的簡單幾何性質;3.橢圓的參數方程;4.雙曲線及其標準方程;5.雙曲線的簡單幾何性質;6.拋物線及其標準方程;7.拋物線的簡單幾何性質。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質;2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質;5.直線和平面垂直的判定與性質;6.三垂線定理及其逆定理;7.兩個平面的位置關係;8.空間向量及其加法、減法與數乘;9.空間向量的坐標表示;10.空間向量的數量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質;16.平面的法向量;17.點到平面的距離;18.直線和平面所成的角;19.向量在平面內的射影;20.平面與平面平行的性質;21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質;24.多面體;25.稜柱;26.稜錐;27.正多面體;28.球。

十、排列、組合、二項式定理(18課時,8個)

1.分類計數原理與分步計數原理;2.排列;3.排列數公式;4.組合;5.組合數公式;6.組合數的兩個性質;7.二項式定理;8.二項展開式的性質。

十一、機率(12課時,5個)

1.隨機事件的機率;2.等可能事件的機率;3.互斥事件有一個發生的機率;4.相互獨立事件同時發生的機率;5.獨立重複試驗。

選修Ⅱ(24個)

十二、機率與統計(14課時,6個)

1.離散型隨機變數的分布列;2.離散型隨機變數的期望值和方差;3.抽樣方法;4.總體分布的估計;5.常態分配;6.線性回歸。

十三、極限(12課時,6個)

1.數學歸納法;2.數學歸納法套用舉例;3.數列的極限;4.函式的極限;5.極限的四則運算;6.函式的連續性。

十四、導數(18課時,8個)

1.導數的概念;2.導數的幾何意義;3.幾種常見函式的導數;4.兩個函式的和、差、積、商的導數;5.複合函式的導數;6.基本導數公式;7.利用導數研究函式的單調性和極值;8.函式的最大值和最小值。

十五、複數(4課時,4個)

1.複數的概念;2.複數的加法和減法;3.複數的乘法和除法;4.複數的一元二次方程和二項方程的解法。

高二數學知識點總結集錦 篇9

一、直線與圓:

1、直線的傾斜角的範圍是

在平面直角坐標系中,對於一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα。

過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、,①∥,;②。

直線與直線的位置關係:

(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標準方程:。⑵圓的一般方程:

注意能將標準方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線。

8、直線與圓的位置關係,通常轉化為圓心距與半徑的關係,或者利用垂徑定理,構造直角三角形解決弦長問題。①相離②相切③相交

9、解決直線與圓的關係問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a0)的圖象與零點的關係

三二分法

對於在區間[a,b]上連續不斷且f(a)·f(b)<0的函式y=f(x),通過不斷地把函式f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

1、函式的零點不是點:

函式y=f(x)的零點就是方程f(x)=0的實數根,也就是函式y=f(x)的圖象與x軸交點的橫坐標,所以函式的零點是一個數,而不是一個點.在寫函式零點時,所寫的一定是一個數字,而不是一個坐標。

2、對函式零點存在的判斷中,必須強調:

(1)、f(x)在[a,b]上連續;

(2)、f(a)·f(b)<0;

(3)、在(a,b)記憶體在零點。

這是零點存在的一個充分條件,但不必要。

3、對於定義域內連續不斷的函式,其相鄰兩個零點之間的所有函式值保持同號。

利用函式零點的存在性定理判斷零點所在的區間時,首先看函式y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函式y=f(x)在區間(a,b)內必有零點。

四判斷函式零點個數的常用方法

1、解方程法:

令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

2、零點存在性定理法:

利用定理不僅要判斷函式在區間[a,b]上是連續不斷的曲線,且f(a)·f(b)<0,還必須結合函式的圖象與性質(如單調性、奇偶性、周期性、對稱性)才能確定函式有多少個零點。

3、數形結合法:

轉化為兩個函式的圖象的交點個數問題.先畫出兩個函式的圖象,看其交點的個數,其中交點的個數,就是函式零點的個數。

已知函式有零點(方程有根)求參數取值常用的方法

1、直接法:

直接根據題設條件構建關於參數的不等式,再通過解不等式確定參數範圍。

2、分離參數法:

先將參數分離,轉化成求函式值域問題加以解決。

3、數形結合法:

先對解析式變形,在同一平面直角坐標系中,畫出函式的圖象,然後數形結合求解。

高二數學知識點總結集錦 篇10

等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

面積公式

若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

S=ab/2。

且由等腰直角三角形性質可知:底邊c上的高h=c/2,則三角面積可表示為:

S=ch/2=c2/4。

等腰直角三角形是一種特殊的三角形,具有所有三角形的性質:穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

反正弦函式的導數:正弦函式y=sinx在[-π/2,π/2]上的反函式,叫做反正弦函式。記作arcsinx,表示一個正弦值為x的角,該角的範圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。

反函式求導方法

若F(X),G(X)互為反函式,

則:F'(X)_'(X)=1

E.G.:y=arcsin_siny

y'_'=1(arcsinx)'_siny)'=1

y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)

其餘依此類推

高二數學知識點總結集錦 篇11

1、直線的傾斜角的概念:當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當直線l與x軸平行或重合時,規定α=0°.

2、傾斜角α的取值範圍:0°≤α0時,λa與a同方向;

當λ1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ0)或反方向(λb>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行於x軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

(1)柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

(2)錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

(3)台體①表面積:S=S側+S上底S下底②側面積:S側=

(4)球體:①表面積:S=;②體積:V=

4、位置關係的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

(1)異面直線所成角的求法:平移法:平移直線,構造三角形;

(2)直線與平面所成的角:直線與射影所成的角

四、導數:導數的意義-導數公式-導數套用(極值最值問題、曲線切線問題)

1、導數的定義:在點處的導數記作.

2、導數的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函式的導數公式:①;②;③;

⑤;⑥;⑦;⑧。

4.、導數的四則運算法則:

5、導數的套用:

(1)利用導數判斷函式的單調性:設函式在某個區間內可導,如果,那么為增函式;如果,那么為減函式;

注意:如果已知為減函式求字母取值範圍,那么不等式恆成立。

(2)求極值的步驟:

①求導數;

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那么函式在這個根處取得極大值;如果左負右正,那么函式在這個根處取得極小值;

(3)求可導函式值與最小值的步驟:

ⅰ求的根;ⅱ把根與區間端點函式值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

註:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

3、邏輯聯結詞:

(1)且(and):命題形式pq;pqpqpqp

(2)或(or):命題形式pq;真真真真假

(3)非(not):命題形式p.真假假真假

假真假真真

假假假假真

“或命題”的真假特點是“一真即真,要假全假”;

“且命題”的真假特點是“一假即假,要真全真”;

“非命題”的真假特點是“一真一假”

4、充要條件

由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:

短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,並用符號表示。含有全體量詞的命題,叫做全稱命題。

短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,並用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數學知識點總結集錦 篇12

第一:高考數學中有函式、數列、三角函式、平面向量、不等式、立體幾何等九大章節。

主要是考函式和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函式的性質,包括函式的單調性、奇偶性;第二是函式的解答題,重點考察的是二次函式和高次函式,分函式和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

第二:平面向量和三角函式。

重點考察三個方面:

一個是劃減與求值。

第一,重點掌握公式,重點掌握五組基本公式。

第二,是三角函式的圖像和性質,這裡重點掌握正弦函式和餘弦函式的性質。

第三,正弦定理和餘弦定理來解三角形。難度比較小。

第三:數列。

數列這個板塊,重點考兩個方面:一個通項;一個是求和。

第四:空間向量和立體幾何。

在裡面重點考察兩個方面:一個是證明;一個是計算。

第五:機率和統計。

這一板塊主要是屬於數學套用問題的範疇,當然應該掌握下面幾個方面:

第一……等可能的機率。

第二………事件。

第三是獨立事件,還有獨立重複事件發生的機率。

第六:解析幾何。

這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當然這一類題,我總結下面五類常考的題型,包括第一類所講的直線和曲線的位置關係,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這裡我相等的是,這道題儘管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。

第七:押軸題。

考生在備考複習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,採取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

高二數學知識點總結集錦 篇13

第一章:解三角形。掌握正弦餘弦公式及其變式和推論和三角面積公式即可。

第二章:數列。考試必考。等差等比數列的通項公式、前n項和及一些性質。這一章屬於學起來很容易,但做題卻不會做的類型。考試題中,一般都是要求通項公式、前n項和,所以拿到題目之後要帶有目的的去推導。

第三章:不等式。這一章一般用線性規劃的形式來考察。這種題一般是和實際問題聯繫的,所以要會讀題,從題中找不等式,畫出線性規劃圖。然後再根據實際問題的限制要求求最值。

選修中的簡單邏輯用語、圓錐曲線和導數:邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是後者,四種命題的真假性關係,邏輯連線詞,及否命題和命題的否定的區別,考試一般會用選擇題考這一知識點,難度不大;圓錐曲線一般作為考試的壓軸題出現。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達式難度就不大。後面兩到三問難打一般會很大,而且較費時間。所以不建議做。

這一章屬於學的比較難,考試也比較難,但是考試要求不高的內容;導數,導數公式、運算法則、用導數求極值和最值的方法。一般會考察用導數求最值,會用導數公式就難度不大。

高二數學知識點總結集錦 篇14

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量為0

AB-AC=CB. 即“共同起點,指向被減”

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

3、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當λ>0時,λa與a同方向;

當λ1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ0)或反方向(λb>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區別開口方向;②定義:|PF|=d焦點F(,0),準線x=-;③焦半徑;焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行於x軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

(1)柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

(2)錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

(3)台體①表面積:S=S側+S上底S下底②側面積:S側=

(4)球體:①表面積:S=;②體積:V=

4、位置關係的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

(1)異面直線所成角的求法:平移法:平移直線,構造三角形;

(2)直線與平面所成的角:直線與射影所成的角

四、導數:導數的意義-導數公式-導數套用(極值最值問題、曲線切線問題)

1、導數的定義:在點處的導數記作.

2、導數的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函式的導數公式:①;②;③;

⑤;⑥;⑦;⑧。

4.、導數的四則運算法則:

5、導數的套用:

(1)利用導數判斷函式的單調性:設函式在某個區間內可導,如果,那么為增函式;如果,那么為減函式;

注意:如果已知為減函式求字母取值範圍,那么不等式恆成立。

(2)求極值的步驟:

①求導數;

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那么函式在這個根處取得極大值;如果左負右正,那么函式在這個根處取得極小值;

(3)求可導函式值與最小值的步驟:

ⅰ求的根;ⅱ把根與區間端點函式值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

註:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

3、邏輯聯結詞:

(1)且(and):命題形式pq;pqpqpqp

(2)或(or):命題形式pq;真真真真假

(3)非(not):命題形式p.真假假真假

假真假真真

假假假假真

“或命題”的真假特點是“一真即真,要假全假”;

“且命題”的真假特點是“一假即假,要真全真”;

“非命題”的真假特點是“一真一假”

4、充要條件

由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:

短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,並用符號表示。含有全體量詞的命題,叫做全稱命題。

短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,並用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數學知識點總結集錦 篇15

(1)必然事件:在條件S下,一定會發生的事件,叫相對於條件S的必然事件;

(2)不可能事件:在條件S下,一定不會發生的事件,叫相對於條件S的不可能事件;

(3)確定事件:必然事件和不可能事件統稱為相對於條件S的確定事件;

(4)隨機事件:在條件S下可能發生也可能不發生的事件,叫相對於條件S的隨機事件;

(5)頻數與頻率:在相同的條件S下重複n次試驗,觀察某一事件A是否出現,稱n次試驗中事件A出現的次數nA為事件A出現的頻數;稱事件A出現的比例fn(A)=nnA為事件A出現的機率:對於給定的隨機事件A,如果隨著試驗次數的增加,事件A發生的頻率fn(A)穩定在某個常數上,把這個常數記作P(A),稱為事件A的機率;

(6)頻率與機率的區別與聯繫:隨機事件的頻率,指此事件發生的次數nA與試驗總次數n的比值nnA,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。我們把這個常數叫做隨機事件的機率,機率從數量上反映了隨機事件發生的可能性的大小。頻率在大量重複試驗的前提下可以近似地作為這個事件的機率。

高二數學知識點總結集錦 篇16

一、直線與圓:

1、直線的傾斜角的範圍是在平面直角坐標系中,對於一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

3、直線方程:

(1)點斜式:直線過點斜率為,則直線方程為

(2)斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關係:

(1)平行A1/A2=B1/B2注意檢驗

(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標準方程:圓的一般方程:注意能將標準方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關係,通常轉化為圓心距與半徑的關係,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交

9、解決直線與圓的關係問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a0時,λa與a同方向;

當λ1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)·b=λ(a·b)=(a·λb)。

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:① 如果實數λ≠0且λa=λb,那么a=b。② 如果a≠0且λa=μa,那么λ=μ。

4、向量的的數量積

定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數量積的坐標表示:a·b=x·x'+y·y'。

向量的數量積的運算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數量積的性質

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

高二數學知識點總結集錦 篇17

導數:導數的意義-導數公式-導數套用(極值最值問題、曲線切線問題)

1、導數的定義:在點處的導數記作.

2.導數的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函式的導數公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導數的四則運算法則:

5.導數的套用:

(1)利用導數判斷函式的單調性:設函式在某個區間內可導,如果,那么為增函式;如果,那么為減函式;

注意:如果已知為減函式求字母取值範圍,那么不等式恆成立。

(2)求極值的步驟:

①求導數;

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那么函式在這個根處取得極大值;如果左負右正,那么函式在這個根處取得極小值;

(3)求可導函式值與最小值的步驟:

ⅰ求的根;ⅱ把根與區間端點函式值比較,的為值,最小的是最小值。