五年級數學下冊《因數與倍數》教案

五年級數學下冊《因數與倍數》教案 篇1

教學目標:

1.從操作活動中理解因數和倍數的意義,會判斷一個數是不是另一個數的因數或倍數。

2.培養學生抽象、概括的能力,滲透事物之間相互聯繫、相互依存的辯證唯物主義的觀點。

3.培養學生的合作意識、探索意識,以及熱愛數學學習的情感。

教學重點:理解因數和倍數的含義。

教學過程:

一、創設情境,引入新課

師:人與人之間存在著許多種關係,你們和爸爸(媽媽)的關係是……?

生:父子(父母、母子、母女)關係。

師:我和你們的關係是……?

生:師生關係。

師:對,我是你們的老師,你們是我的學生,我們的關係是師生關係。在數學中,數與數之間也存在著多種關係,這一節課,我們一起探討兩數之間的因數與倍數關係。(板書課題:因數與倍數)

二、認識因數與倍數

師:我們已經認識了哪幾類數?

生:自然數,小數,分數。

師:現在我們來研究自然數中數與數之間的關係。請你們用12個小正方形擺成不同的長方形,並根據擺成的不同情況寫出乘、除算式。

根據學生的匯報板書:

1×12=12 2×6=12 3×4=12

12×1=12 6×2=12 4×3=12

12÷1=12 12÷2=6 12÷3=4

12÷12=1 12÷6=2 12÷4=3

師:在這3組乘、除法算式中,都有什麼共同點?

生:第①組每個式子都有1、12這兩個數。

生:第②組每個式子都有2、6、12這三個數。

生:第③組每個式子都有3、4、12這三個數。

師:(指著第②組)像這樣的乘、除法式子中的三個數之間的關係還有一種說法,你們想知道嗎?請看課本P12。

師:2和6與12的關係還可以怎樣說呢?

生:2和6是12的因數,12是2的倍數,也是6的倍數。

師:也就是說,2和12、6的關係是因數和倍數的關係,這幾組算式中,誰和誰還有因數和倍數的關係?

生:3、4和12有因數和倍數關係,3和4是12的因數,12是3和4的倍數。

生:我認為1和12也有因數和倍數關係。1是12的因數,12是1的倍數。

生:可以說12是12的因數嗎?

生:我認為可以,12×1=12,1和12都是12的因數。

師:說得真好,從上面3組算式中,我們知道1,2,3,4,6,12都是12的因數。

師出示:11÷2=5……1。問:11是2的倍數嗎?為什麼?

生:我認為不是,因為11除以2有餘數。

師:你能舉一個算式,並說說誰是誰的倍數,誰是誰的因數嗎?

生:2×4=8,2和4是8的因數,8是2和4的倍數。

生:40÷2=20,40是2和20的倍數,2和20是40的因數。

師出示:0×3 0×10

0÷3 0÷10

通過剛才的計算,你有什麼發現?

生:我發現0和任何數相乘,都等於0。

生:0除以任何數都等於0。

生:我補充,0不能作為除數。

師:所以在研究因數和倍數時,我們所說的數一般指整數,不包括0。

師生小結:這節課,你們都學會了哪些知識?還有什麼不明白的地方?

生:我有一個疑問,在2×6=12中,2叫因數是指在算式中它的名稱,而2是12的因數指的是2和12的關係,這兩種說法一樣嗎?

師:這個問題提得好!誰能回答他的問題?

生:我覺得好像不一樣,但不知道為什麼?

生:我認為不一樣,在2×6=12中,2叫因數是指在算式中它的名稱,而2是12的因數指的是2和12的關係。

師:說的真好。這節課我們研究因數與倍數的關係中所說的因數不是以前乘法算式中各部分名稱中的“因數”,兩者可不能搞混喔!

三、課堂練習

1.下面每一組數中,誰是誰的倍數,誰是誰的因數。

16和2 4和24 72和8 20和5

2.下面的說法對嗎?說出理由。

(1)48是6的倍數。

(2)在13÷4=3……1中,13是4的倍數。

(3)因為3×6=18,所以18是倍數,3和6是因數。

師:第(3)題有兩種不同的意見,請反對意見的同學說說理由。

生:因為沒有說明18是誰的倍數,所以不對。

師:你認為怎樣說才正確呢?

生:我認為應該這么說:18是3和6的倍數,3和6是18的因數。

師:在說倍數(或因數)時,必須說明誰是誰的倍數(或因數)。不能單獨說誰是倍數(或因數),也就是說:因數和倍數不能單獨存在。

3.在36、4、9、12、3、0這些數中,誰和誰有因數和倍數關係。

4.遊戲。請生任意寫一個60以內的自然數(0除外),聽老師說要求,所寫的數符合要求的請舉手,同桌互相檢查。

①( )是4的倍數

( )是60的因數

( )是5的倍數

( )是36的因數

②請一名學生模仿剛才老師的要求,繼續練習。

③想一想,應該提什麼要求,讓全班同學都能舉手?

生:( )是1的倍數。

師:嘩,全班都舉手了,誰能總結剛才的說法。

生:任何不包括0的自然數都是1的倍數。

五年級數學下冊《因數與倍數》教案 篇2

教學目標:

1、學生掌握找一個數的因數,倍數的方法;

2、學生能了解一個數的因數是有限的,倍數是無限的;

3、能熟練地找一個數的因數和倍數;

4、培養學生的觀察能力。

教學重點:掌握找一個數的因數和倍數的方法。

教學難點:能熟練地找一個數的因數和倍數。

教學過程:

一、引入新課。

1、出示主題圖,讓學生各列一道乘法算式。

2、師:看你能不能讀懂下面的算式?

出示:因為2×6=12

所以2是12的因數,6也是12的因數;

12是2的倍數,12也是6的倍數。

3、師:你能不能用同樣的方法說說另一道算式?

(指名生說一說)

師:你有沒有明白因數和倍數的關係了?

那你還能找出12的其他因數嗎?

4、你能不能寫一個算式來考考同桌?學生寫算式。

師:誰來出一個算式考考全班同學?

5、師:今天我們就來學習因數和倍數。(出示課題:因數 倍數)

齊讀p12的注意。

二、新授:

(一)找因數:

1、出示例1:18的因數有哪幾個?

從12的因數可以看得出,一個數的因數還不止一個,那我們一起找找看18的因數有哪些?

學生嘗試完成:匯報

(18的因數有: 1,2,3,6,9,18)

師:說說看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一對一對找,如1×18=18,2×9=18…)

師:18的因數中,最小的是幾?最大的是幾?我們在寫的時候一般都是從小到大排列的。

2、用這樣的方法,請你再找一找36的因數有那些?

匯報36的因數有: 1,2,3,4,6,9,12,18,36

師:你是怎么找的?

舉錯例(1,2,3,4,6,6,9,12,18,36)

師:這樣寫可以嗎?為什麼?(不可以,因為重複的因數隻要寫一個就可以了,所以不需要寫兩個6)

仔細看看,36的因數中,最小的是幾,最大的是幾?

看來,任何一個數的因數,最小的一定是( ),而最大的一定是( )。

3、你還想找哪個數的因數?(18、5、42……)請你選擇其中的一個在自練本上寫一寫,然後匯報。

4、其實寫一個數的因數除了這樣寫以外,還可以用集合表示:如

18的因數

小結:我們找了這么多數的因數,你覺得怎樣找才不容易漏掉?

從最小的自然數1找起,也就是從最小的因數找起,一直找到它的本身,找的過程中一對一對找,寫的時候從小到大寫。

(二)找倍數:

1、我們一起找到了18的因數,那2的倍數你能找出來嗎?

匯報:2、4、6、8、10、16、……

師:為什麼找不完?

你是怎么找到這些倍數的? (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍數最小是幾?最大的你能找到嗎?

2、讓學生完成做一做1、2小題:找3和5的倍數。

匯報 3的倍數有:3,6,9,12

師:這樣寫可以嗎?為什麼?應該怎么改呢?

改寫成:3的倍數有:3,6,9,12,……

你是怎么找的?(用3分別乘以1,2,3,……倍)

5的倍數有:5,10,15,20,……

師:表示一個數的倍數情況,除了用這種文字敘述的方法外,還可以用集合來表示

2的倍數 3的倍數 5的倍數

師:我們知道一個數的因數的個數是有限的,那么一個數的倍數個數是怎么樣的呢?

(一個數的倍數的個數是無限的,最小的倍數是它本身,沒有最大的倍數)

三、課堂小結:

我們一起來回憶一下,這節課我們重點研究了一個什麼問題?你有什麼收穫呢?

四、獨立作業:

完成練習二1~4題

五年級數學下冊《因數與倍數》教案 篇3

一、教學內容

1.因數和倍數

2.2、5、3的倍數的特徵

3.質數和合數

二、教學目標

1.使學生掌握因數、倍數、質數、合數等概念,知道有關概念之間的聯繫和區別。

2.使學生通過自主探索,掌握2、5、3的倍數的特徵。

3.逐步培養學生的數學抽象能力。

三、編排特點

1.精簡概念,減輕學生記憶負擔。

三方面的調整:

A.不再出現“整除”概念,直接從乘法算式引出因數和倍數的概念。

B.不再正式教學“分解質因數”,只作為閱讀性材料進行介紹。

C.公因數、公因數、公倍數、最低公倍數移至“分數的意義和性質”單元,作為約分和通分的知識基礎,更突出其套用性。

2.注意體現數學的抽象性。

數論知識本身具有抽象性。學生到了高年級也應注意培養其抽象思維。

四、具體編排

1.因數和倍數

因數和倍數的概念

過去:用÷=表示能被整除,÷=表示能被整除。

現在:用=直接引出因數和倍數的概念。

(1)用2×6=12給出因數和倍數的概念。

(2)用3×4=12進一步鞏固上述概念。

(3)讓學生利用因數和倍數的概念自主發現12的其他因數。

(4)可引導學生利用一般的乘法算式×=歸納出因數和倍數的概念。

(5)說明本單元的研究範圍。

注意以下幾點:

(1)雖然不出現“整除”一詞,但本質上仍是以整除為基礎,因此,乘法算式中的乘數和積都必須是整數。

(2)因數和倍數是一對相互依存的概念,不能單獨存在。

(3)注意區分乘法各部分名稱中的“因數”和本單元中的“因數”的聯繫和區別。

(4)注意區分“倍數”與前面學過的“倍”的聯繫與區別。

例1(一個數的因數的求法)

(1)可用不同的方法求出18的因數(列出積是18的乘法算式或列出被除數是18的除法算式),但應引導學生有序思考。

(2)用集合圈表示因數,為後面求兩個數的公因數作鋪墊。

一個數的因數的特點

(1)因數是其自身,最小因數是1。

(2)因數個數有限。

(3)此結論通過例1和“做一做”中的特例通過不完全歸納法得出,體現了從具體到一般的思路。

例2(一個數的倍數的求法)

(1)求法:用該數乘任一非0自然數所得的積都是該數的倍數。

(2)用集合圈表示倍數,為後面求兩個數的公倍數作鋪墊。

做一做

與例1結合起來,提供了2、3、5的倍數,為後面探討2、3、5倍數的特徵作準備。

一個數的倍數的特點

(1)最小倍數是其自身,沒有的倍數。

(2)因數個數無限。

(3)此結論通過例1和“做一做”中的特例通過不完全歸納法得出,體現了從具體到一般的思路。

2.2、5、3的倍數的特徵

因為2、5的倍數的特徵在個位數上就體現出來了,而3的倍數涉及到各數位上的數字之和,較為複雜,因此後安排3的倍數的特徵。本部分內容對於熟練掌握約分、通分、分數的四則運算有很重要的作用。

2的倍數的特徵

(1)從生活情境“雙號”引入。

(2)觀察2的倍數的個位數,總結出2的倍數的特徵。

(3)介紹奇數和偶數的概念。

(4)可讓學生隨意找一些數進行驗證,但不要求嚴格的證明。

5的倍數的特徵

(1)編排方式與2的倍數的特徵類似。

(2)可進一步總結既是2的倍數又是5的倍數的特徵,即10的倍數的特徵。

3的倍數的特徵

(1)強調自主探索,讓學生經歷觀察――猜想――猜想――再觀察――再猜想――驗證的過程。

(2)可任意選擇一個數,用正面、反面的例子對結論進一步驗證。

(3)也可對任一3的倍數的各位數調換位置,更深刻地理解3的倍數的特徵。

3.質數和合數

質數和合數的概念

(1)根據20以內各數的因數個數把數分成三類:1、質數、合數。

(2)可任出一個數,讓學生根據概念判斷其為質數還是合數。

例1(找100以內的質數)

(1)方法多樣。可以根據質數的概念逐個判斷,也可用篩法。

(2)把握教學要求:知道100以內的質數,熟悉20以內的質數。

五、教學建議

1.加強對概念間相互關係的梳理,引導學生從本質上理解概念,避免死記硬背。

從因數和倍數的含義去理解其他的相關概念。

2.要注意培養學生的抽象思維能力。

五年級數學下冊《因數與倍數》教案 篇4

[教學目標]:1、理解分數加減法的含義和算理,掌握分數加減法的計算方法,能進行簡單的分數(不含帶分數)加減計算。

理解整數加減法運算定律對於分數仍然適用,並會運用這些運算定律進行一些分數加減法的簡便計算,提高運算能力。

與他人交流各自算法的過程,並能表達自己的想法。

能用分數加減法解決簡單的實際問題,在解決問題的過程中,能選擇合適的方法進行估算,體會分數加減法運算在生活、生產中的套用和價值。

[重點難點]:

1.理解同分母分數相加減的意義。

2.理解同分母分數相加減的算理。

3.掌握同分母分數連加、連減的計算方法,並能正確地計算。

4.能運用運算順序正確進行計算.

5.掌握什麼時候一次通分好,什麼時候分步通分好.

6.理解整數加法的運算定律,在分數中同樣適用。

[教學建議]:

教學同分母分數加減法時,應充分利用教材提供的生活素材引入同墳墓分數相加減的問題,讓學生在自己探索、自主列式、自主計算、自主說理的過程中,歸納總結出同分母分數加減法不會感到陌生和困難。

[課時安排]: (共 課時)

1、同分母分數加、減法……………………………………………………… 課時

2、異分母分數加、減法……………………………………………………… 課時

3、分數加減混合運算………………………………………………………… 課時

4、整數的運算定律推廣到分數………………………………… 課時

5、打電話…………………………………………………………… 課時

第一節同分母分數的加減法

教學內容:人教版國小數學五年級下冊第89—90頁。

教學目標:

知識與技能:讓學生通過探討發現同分母分數加減法的計算法則,並能運用法則正確進行計算。

問題解決與數學思考:培養學生對知識的運用、遷移能力;培養學生的推理、歸納能力,培養學生的合作學習能力。

情感態度和價值觀:通過學習,使學生認識知識間的必然聯繫,培養學生的類推能力和思維靈活性,激發學生的學習興趣。

教學重點:同分母分數加減法的計算法則。

教學難點:理解分數加減法的算理。

教具學具:多媒體課件

教學設計:

一、 複習引入

1、 提問:哪位同學說一說什麼是分數單位?

生:把“單位1”平均分成若干份,表示其中1分的數叫做分數單位。

2、 教師課件出示一組習題

1) 的分數單位是( ),它有( )個這樣的分數單位。

2) 的分數單位是( ),它有( )個這樣的分數單位。

3、導入。

師:同學們,過生日時高興嗎?(生:高興)哎呦,怎么這么高興,快說給我聽聽,也讓我高興高興。

生1:我又長大了1歲。

生2:可以有很多朋友聚在一起,邊吃邊聊。

生3:我能收到很多禮物。

生4:我可以吃蛋糕。

生5:我可以買一本書。

……

師:同學們這么一說,我也替你們高興,同時我也希望你們天天這么高興!

設計意圖:用現實情境引入學習內容,有利於激發學生的學習興趣,主動探究新知。

師:剛才說到過生日吃蛋糕,下面是小紅過生日時,媽媽特意為她準備的一個大蛋糕(如圖),首先,媽媽把它平均分成8份,小紅吃了3塊(在圖的上邊塗鴻的處寫上“小紅吃了3塊),爸爸吃了1塊(在右邊塗綠色處寫上爸爸“吃了1塊紅),媽媽吃了1塊(在右邊塗黃色處寫上“媽媽吃了1塊”)提問:小紅、爸爸、媽媽各吃了多少個蛋糕?(如圖所示)

生:小紅吃了 個,爸爸吃了 個,媽媽也吃了 個。

師: 表示什麼?

生: 表示把“1”平均分成8份,取其中的1份。

師: 的分數單位是什麼?它有幾個這樣的分數單位?

生: 的分數單位是 ,它有3個這樣的分數單位。

師:根據我給你們的數學信息,你能提出哪些數學問題?

生1:小紅和爸爸一共吃了多少蛋糕?

生2:小紅和媽媽一共吃了多少蛋糕?

生3:爸爸和媽媽一共吃了多少蛋糕?

生4:小紅一家三口一共吃了多少蛋糕?

生5:小紅比爸爸多吃了多少蛋糕?

生6:還剩下多少蛋糕?

生7:一共吃的比剩下的多多少?

師:剛才同學們提出了這么多數學問題,非常好!這些問題能不能自己解決呢?

學生異口同聲的說:能!

師:那趕快動手吧!

設計意圖:讓學生自己思考,自己探索,體現了學生學習的主體作用,學生在小組內交流,學生之間畫像學習、互相探討,從中解決一些困惑,實現“兵教兵,兵強兵”,提高課堂效率。

二、 放手探究,發現規律

學生開始自己解答以上問題,教師巡視。

學生做完後,小組內進行交流。

三、 收集信息,總結規律

師:在解答問題的過程中你還有什麼疑問?

生:沒有。

師:你們沒有,我可有幾個問題要請教你們,我的問題是求小紅和爸爸一共吃了多少蛋糕,你是怎樣列算式的?

生: +

師:為什麼用加法計算?

生:因為是求小紅和爸爸一共吃了多少個蛋糕。

生:求小紅和爸爸一共吃了多少個蛋糕,也就是把小紅吃的和爸爸吃的合併起來,所以用加法計算。

師:說得好。這是套用率什麼的意義來列的計算?

生:整數加法的意義。

師:誰還記得整數加法的意義?

生:把兩個數合併成一個數的運算。

師:整數加法的意義對於分數加法同樣適用。

師:謝謝你們幫我解答了第一個問題。我的第二個問題:從圖上我們知道小紅和爸爸一共吃了 個蛋糕,假設我告訴你們爸爸吃了 個蛋糕,如何求小紅吃了多少個蛋糕?

生: - = (個)

師:為什麼用減法來計算?

生:知道了小紅和爸爸一共吃了 個蛋糕,也就是知道了小紅和爸爸吃的蛋糕的和,又知道了爸爸吃了 個蛋糕,也就是告訴了其中的一個加數,求另一個加數應該用減法來計算。

師:分析的真好。這就是根據前面學習過的整數減法的意義,它對於分數減法也同樣適用。

師:我的最後一個問題:為什麼 + = ?

生: 是3個 , 是1個 ,3個 加上1個 就是4個 , 是1個 ,也就是 。

隨學生的回答:教師板書: + = =

3個 1個 4個

師:還有不同的想法嗎?

生:我認為小紅吃了3塊,爸爸吃了1塊,一共吃了4塊,也就是8塊中的4塊,所以是 個。

隨著學生的回答教師板書:

+ = = =

師: 也就是這個蛋糕的幾分之幾?

生:二分之一。

師:凡是用分數表示計算結果的,如果不是最簡分數的,一定要月份化成最簡分數。

師:會計算分數加減法的計算題了嗎?

生異口同聲的說:會了。

設計意圖:引導學生自己歸納、補充、完善同墳墓分數加減法的計算方法,以反方面培養學生的歸納概括能力,使學生在掌握所學知識的同時獲得成功的體驗,另一方面從學生總結規律中發現學生的思維漏洞,便於及時補救,幫助學生夯實基礎知識。

師:同學們,你們看上面的分數有什麼特點?

生:分母相同。

師:這就叫做同墳墓的分數。今天學習的是同分母分數的加減法。(板書課題)。

聯繫剛才做的題,誰能用一句話概括出同分母分數加減法的計算方法?也可以小組討論,小組長把小組討論的結果記錄下來。

師:下面請一個小組的代表說一說你們小組的結論。

隨著學生的回答:教師板書:分母不變,只把分子相加或想減。

師:哪個小組還有補充?

生:前面加上一句:“同分母分數相加減”,這樣就完整了。

生:結果不是最簡分數的要化成最簡分數。

師:這就是同分母分數加減法的計算法則。請同學們讀一遍,在讀的過程中,你認為哪些詞最關鍵?還有什麼疑問?

生:老師,為什麼分母不變?

師:你的問題提的很好!誰能來解答?

生:分母不變,是因為分數單位沒有變。

四、 鞏固練習,反饋矯正

師:下面我們就根據剛才學的法則來做幾個練習題,好嗎?同時比一比,哪些同學做得好,掌握的紮實!

完成教材第90頁做一做。

學成做完後小組檢查,讓出錯的學生說明錯誤原因。

設計意圖:做練習題的目的是讓學生更進一步理解法則,並靈活、熟練地運用法則。

板書設計:

同分母分數加、減法

例1

同分母分數相加、減,分母不變,只把分子相加減。計算結果要約分。

第2節 異分母分數加、減法

第1課時(新授課)

教學內容

人教版國小數學五年下冊第94-95頁

教學目標

1.知識和技能

引導學生利用轉化的思想和方法探索異分母分數加、減法的計算方法,並能正確地進行計算,培養學生檢驗的學習習慣。

2.問題解決與數學思考

培養學生積極動腦、自主探索的精神,提高學生運用所學知識解決簡單實際問題的能力。

3.情感、態度價值觀

感受數學與生活的密切聯繫,激發學生對數學學習的興趣和套用數學的意識。

教具學具

多媒體課件、實物投影

教學重難點

運用轉化思想探索異分母分數加減法的計算方法,正確進行計算。

教學過程

一、談話激趣,導入新課

1.談話激趣:同學們,我們的城市現正在創建衛生城市,每個居民都要為建設文明、衛生的城市貢獻自己的力量,那我們能做些什麼呢?

2.引入新課:我們要從身邊的小事做起,不隨便扔垃圾。我們應該怎樣處理生活垃圾呢?一般情況我們把垃圾分為四類(課件出示例1的垃圾分布圖),其中紙張和廢金屬可以回收再利用,從而節約能源,減少環境污染。

二、探索新知

1.學習異分母分數加法

(1)採集信息

問:從這個表上,你了解到了哪些信息?

(指名兩三名學生回答)

(2)處理信息

問:根據這些信息,你能提出哪些數學問題?怎樣列式?能說說計算過程嗎?還能提出什麼問題?

(學生口答,教師根據需要在黑板上板書)

(3)探索方法

解決問題:紙張和廢金屬等占生活垃圾的幾分之幾?

①要求學生獨立思考列式計算。

②觀察比較:這個算式和我們以前學習的分數加法有什麼不同?

(板書課題:異分母分數加、減法)

③思考方法:你能想辦法把它變成我們學過的知識進行計算嗎?

④小組內討論怎樣變成學過的知識

⑤學生展示匯報,教師有選擇地板書。

學生的方法可能會有化成小數計算、畫圖計算、先通分在計算等方法。

(4)教師總結

同學們說的方法都是要先把單位統一,然後再相加。具體請看——(課件動態演示通分的過程。)

(5)自主選擇二次探究,方法擇優

請同學們選擇你喜歡的方法計算,看誰算的又對又快!

+ = + = + =

引導擇優:你們都是用什麼方法計算的?為什麼不用化成小數的方法、畫圖的方法?能不能找到一個都通用的方法?

提問小結:誰能說說異分母分數加法怎樣計算?

2.自主學習異分母分數減法

(1)教師啟發引導:我們已經解決了紙張和廢金屬等占生活垃圾的幾分之幾。你能計算出危險垃圾多還是食物殘渣多?多的占生活垃圾的幾分之幾?

(2)學生獨立解答,同桌交流。

(3)集體訂正,指名說說計算過程。

3.教師引導學生總結

計算異分母分數加減法時,我們首先應該怎么做?再怎么計算?

三、深化套用

1.剛才我們提出的問題只解決了兩個,剩下的問題中選擇一個你最感興趣的問題來解答嗎?

學生選擇問題,獨立解答問題後交流訂正。

2.完成書第95頁做一做第1、2題。

3.深化套用:練習二十四第2、3題

四、課堂小結

通過這節課的學習,你有什麼收穫?

第2節 異分母分數加、減法

第2課時(練習課)

教學內容

人教版國小數學五年下冊第96-97頁

教學目標

1.知識和技能

(1)使學生進一步掌握異分母分數加減法的計算方法,進一步提高計算能力、增強數感,培養良好計算習慣。

(2)在解決實際問題的過程中,進一步提高學生提出問題、解決問題的能力,發展數學套用意識。

2.問題解決與數學思考

在鞏固異分母分數加減法基本計算方法的基礎上,進一步探索一些特殊的異分母分數加減法計算的方法,培養學生根據數據特點,靈活選擇算法的意識與能力。

3.情感、態度價值觀

在練習過程中,培養學生的觀察推理能力,進一步激發學生學習興趣, 使學生在學習活動中進一步感受數學學習過程的探索性,獲得成功的樂趣和體驗。

教具學具

實物投影

教學重難點

1.根據數據特點,靈活選擇算法的意識與能力。

2.培養學生的觀察、分析、推理等能力,發展他們的套用意識與能力。

教學過程

一、基本練習

1.口答:我們在計算異分母分數加、減法的式題時採用了什麼方法?(通分),將異分母分數轉化成了同分母分數。(板書)

2.揭示課題:異分母分數加減法練習(板書課題)

二、重點練習

1.練習二十四第1題:學生獨立計算後,指名生說說怎樣計算的,強調計算法則。

2.練習二十四第5 題。

學生先獨立完成後集體訂正,請學生說一說每道題是怎么想的?

3.練習二十四第6 題。

(1)算一算: - = - = - = - = - = - =

(2)想一想:算式中的兩個分數有什麼特點?你能發現什麼規律,寫下來。

(3)試一試:用你發現的規律直接寫出下面各題的答案。

- = - = - =

(4)比一比,誰算得又對又快:練習二十四第6題

4.練習二十四第7 題。

請學生先根據已有信息提出不同的數學問題,然後再解答

三、拓展練習

1.練習二十四第9題

讓學生先讀題,弄懂題意後再動手填寫。講評時,請學生說一說“發現了什麼?”。

2. 練習二十四第10題

(1)學生利用課前完成:調查填好表中相關數據,然後製成條形統計圖,提出問題並解答.

(2)課堂展示交流調查製作分析及解答過程。

四、獨立練習

練習二十四第4題

五、課堂總結

通過本節課的練習,我們進一步鞏固了異分母分數加、減法的計算方法。同時,我們還探索發現了異分母分數加、減法中的一些特殊情況的計算規律,這個規律是:當兩個分數的分子為1 ,分母互質時,它們的結果是用這兩個分母的和(差)作分子,用兩個分母的乘積作分母。以後,我們在計算這樣的題目時,就可以直接得出結果了。

第3節 分數加減混合運算

第1課時(新授課)

教學內容

人教版國小數學五年下冊第98-99頁

教學目標

1.知識和技能

使學生知道分數加減混合運算順序和整數加減混合運算順序相同。

2.問題解決與數學思考

結合具體情境,使學生經歷提出問題、解決問題的過程,培養學生髮現問題的能力,提高套用知識的能力。

3.情感、態度價值觀

在運用已有知識解決問題、學習新知的活動中,體驗學習數學的價值,培養學生學習數學的自信心、交流意識及合作的能力。

教具學具

多媒體課件

教學重難點

重點:掌握分數加減混合運算的運算順序和計算方法。

難點:運用分數加減混合運算解決實際問題。

教學過程

一、創設情境,引入新課

1.創設情境:同學們喜歡旅遊嗎?今天,老師帶同學們一起去雲夢森林公園參觀。

(課件播放森林公園的美麗景色及雲夢森林公園地貌情況對比統計表。)

2.引入新課

雲夢森林公園地貌情況對比

地貌類型 占公園面積的幾分之幾

喬木林

灌木林

草地

問:從表中你能獲得哪些數學信息?根據這些數學信息,你能提出哪些數學問題?

二、合作探究,學習新知

1.根據學生提出的數學問題,選擇“森林部分比草地部分多幾分之幾”這一問題

(1)學生獨立,再在組內交流。

(2)小組匯報算法:

(3)思考:這兩種算法有什麼不同?你更喜歡哪種算法?

(4)總結:分數加減混合運算順序與整數加減混合運算順序相同;三個分數是異分母分數,先一次通分比較簡便。

2.課件出示下表:

森林和裸露地面降水量轉化情況對比表

地貌類型 儲存為地下水 地表水 其他

森林

裸露地面

(1)問:從表中你能發現哪些數學信息?看到這些信息,你有什麼感想?你能幫老師解決這個問題嗎?

(2)學生獨立解答。

(3)展示學生不同的解法:

三、鞏固運用,實踐創新

1.計算小能手評比

書P99 做一做第1題:比一比,看誰算得又對又快。

2.李明用1m長的鐵絲做了一個三角形,量得三角形的一邊是 m,另一邊是 m,第三條邊有多長?它是一個什麼樣的三角形?

3.給 、 、 排排隊,誰能用這三個分數編出一道加減混合的計算題?試試看你能編幾道題,把它寫下來,選擇其中的兩道算一算。

四、課堂小結

通過這節課學習,你有什麼收穫?

第3節 分數加減混合運算

第2課時(練習課)

教學內容

人教版國小數學五年下冊第101-102頁練習二十五第1、3、4、6、9、10題

教學目標

1.知識和技能

進一步理解分數加減混合運算順序和整數加減混合運算順序相同。

2.問題解決與數學思考

結合具體情境,使學生經歷提出問題、解決問題的過程,培養學生髮現問題的能力,提高套用知識的能力。

3.情感、態度價值觀

在運用已有知識解決問題、學習新知的活動中,體驗學習數學的價值,培養學生學習數學的自信心、交流意識及合作的能力。

教具學具

多媒體課件

教學重難點

重點:掌握分數加減混合運算的運算順序和計算方法。

難點:運用分數加減混合運算解決實際問題。

教學過程

一、基本練習

1.出示練習二十五說一說各題的運算順序。

2.揭示課題:分數加減混合運算(練習)

二、重點練習

1.練習二十五第1題

(1)學生獨立計算

(2)展示匯報,說一說計算過中要注意什麼。

2.練習二十五第3、4題

(1)第3題 學生獨立完成後,集體訂正說一說怎樣想的。

(2)第4題

3.練習二十五第6題

①讓學生在作業本上用分數表示自己每天各項活動時間占一天的幾分之幾。

②自己提問並解答後與同桌交流。

③學生匯報展示,教師指導點評。

三、套用拓展

1. 練習二十五第9題

把6個同樣大小的蘋果分給8個孩子,可以怎么分,每個人分得這些蘋果的幾分之幾?

(1)學生獨立思考後,說一說怎樣想的。

(2)強調:無論把多少個蘋果分給8個孩子,求每個人分得這些蘋果的幾分之幾就是“把這些蘋果看成一個整體平均分成8份,每人分得其中的一份,就是八分之一”。

2. 練習二十五第10題

(1)學生獨立思考在草稿本上演算,書上填寫。

(2)同桌交流思考過程。

(3)匯報展示明確思考切入點。

3.練習二十五思考題:有趣的七巧板

學生合作探究,展示匯報明確思考過程。

四、課堂總結

今天練習了什麼?你有什麼收穫?在進行分數加減混合運算時,你要注意什麼?

第4節 整數加法運算定律推廣到分數加法

教學內容

人教版國小數學五年下冊第99-100頁

教學目標

1.知識和技能

使學生經歷整數加法運算定律推廣到分數加法這一過程,理解整數加法運算定律對分數加法同樣適用。

2.問題解決與數學思考

通過學習,使學生能比較熟練地運用加法運算定律進行一些分數的簡便計算。

3.情感、態度價值觀

通過學習,提高學生的知識類推能力,培養學生自覺地進行簡算的意識,提高思維的邏輯性和靈活性。

教具學具

多媒體課件

教學重難點

重點:分數加減法的運算順,套用加法的運算定律使一些分數加法計算簡便。

難點:根據分數的特點靈活地選擇計算的方法。

教學過程

一、複習準備

1.回憶:整數加法運算定律有哪幾個?怎樣用字母表示?

板書: 加法交換律 a + b = b + a

加法結合律(a + b) + c = a + (b + c)

2.下面各等式套用了什麼運算定律?

25+36=36+25 (17+28)+72=17+(28+72)

6.2+2.3=2.3+6.2 (0.5+1.6)+8.4=0.5+(1.6+8.4)

揭示課題:加法交換律和結合律適用於整數和小數,是否也適用於分數加法呢?這節課我們就一起來研究。(板書課題)

二、學習新課

1.出示:下面每組算式的左右兩邊有什麼關係?

+ + ( + )+ +( + )

教師指明:整數的加法的運算定律既適用於整數和小數,對分數加法同樣適用。

2.學習分數的簡便運算。

(1)出示:

加法交換律 a + b = b + a 加法結合律(a + b) + c = a + (b + c)

問:當上面式中的字母換成分數時,這個定律還適用嗎?

(2)出示例2

+ + ( + )+ +( + )

問:仔細觀察題目,你能很快寫出答案嗎?你是怎么算的?

(3)提問:

①兩組算式的特點各是什麼?(兩組算式中,左右兩邊的加數相同,第一組中加數交換了位置,第二組中改變了加的順序。)

②這一特點與整數加法的什麼運算性質相同?(加法交換律、加法結合律。)

(4)結論:整數加法的交換律和結合律對分數加法同樣適用。

(5)計算: + + +

觀察:這些分數的分母和分子有什麼特點?

思考:怎樣可以使計算簡便?

學生口述,教師板書: + + +

=( + )+( + )

= +1

=1

交流:這道題哪裡套用了加法交換律?哪裡套用加法結合律?最後結果要注意什麼問題?

總結:套用整數加法的運算定律可以把分母相同的分數先加起來,或湊成整數再計算,這樣會比較簡便。

3.教學例3

(1)學生根據步驟圖自己學習。

(2)反饋交流,明確思路。

三、鞏固反饋

1.完成書P99做一做第2題

學生獨立完成後,具體說一說哪一步如何套用加法運算定律的進行簡算的。

2. 完成書P100- P101練習二十五第5、7題

學生獨立完成後,說一說每道題思考的依據。

3. 套用提高:書P101練習二十五第8題

(1)學生獨立思考後同桌交流。

(2)學生匯報展示觀察思考過程。

四、課堂總結

這節課有什麼收穫?

五年級數學下冊《因數與倍數》教案 篇5

一、教學內容

同分母分數加減法

異分母分數加減法

分數加減混合運算以及整數加法的運算定律推廣到分數

二、教學目標

1.理解分數加減法的算理,掌握分數加減法的計算方法,並能正確地計算出結果。

2.理解整數加法的運算定律對分數加法仍然適用,並會運用這些運算定律進行一些分數加法的簡便運算,進一步提高簡算能力。

3.體會分數加減運算在生活、生產中的廣泛套用。

三、編排特點

1.結合學生經驗中非常熟悉的素材,學習分數加減法。

為使學生理解“分數單位相同才能相加減”的算理,教材以學生的日常生活為背景,引導學生在身臨其境的情況下學習分數加減法計算。

第1小節例1、例2中,利用一家三口分吃一塊大餅和小朋友喝礦泉水的情境,引入同分母分數加減法的學習。例3中,以觀看少兒節目為背景,學習同分母分數連加連減的學習。

第2節中,以處理當今影響環境的重要因素生活垃圾為背景,學習異分母分數的加減法。

這樣選材,符合“計算教學應注意與學生的現實生活相聯繫,讓學生感受到通過計算可以解決一些實際問題”的課改理念,既具有濃郁的生活氣息,又具有強烈的時代特徵。它降低了學生理解分數加減計算算理的難度,利於學生較順利地掌握分數加減計算的基本方法。

2.淡化分數加減法意義的教學。

根據《標準》“結合具體情境,體會四則運算的意義”的要求,教材淡化了分數加減法意義的教學,利用類推說出分數加減的含義。

例(1)中,由小精靈明明發問:“想想整數加法的含義,你能說出分數加法的含義嗎?”

例2中,由小精靈聰聰發問:“分數減法的含義與整數減法的含義有什麼關係?”

引導學生由整數加、減法的含義類推出分數加、減法的含義;

3.引導學生在探究中概括分數加減法的計算方法。

教材引導學生在自主探究中,逐步地總結出分數計算的一般方法。

第1節中,例1、例2教學完後,引導學生探究:“觀察例1和例2,你能發現什麼共同點?”讓學生在探究、交流中總結出同分母分數加、減法的一般方法。

第2節中,例1教學完後,引導學生探究:“你能說說異分母分數加減法怎么計算嗎?”又一次讓學生通過探究、討論,概括出異分母分數加減法的一般方法。

4.在計算教學中突出“鼓勵算法多樣化”的課改理念。

第1節中例3的教學,如何計算分數連加、連減的問題,教材提供了兩種不同的算法後提問:“你喜歡哪一種方法?”、“還有其他算法嗎?”

第3節例1的教學,教材提供了兩種不同的分數加減混合運算的算法後,提問:“你喜歡哪種方法?”“我們的方法有什麼不同呢?”

讓學生在比較中體會算法的多樣性與合理性,懂得應選擇較簡捷的方法進行計算。

5.編排體現數學文化的閱讀材料。

《標準》提出,“數學是人類的一種文化,它的內容、思想、方法和語言是現代文明的重要組成部分。”結合本單元學習內容,教材編排了兩個閱讀材料:

第112頁的“你知道嗎?”,通過閱讀這段材料,使學生了解一些關於分數四則計算的發展史,了解我們的祖先在這一方面的睿智與成果,體會用不同的符號來表示分數對分數計算產生的重大影響,從而進一步體會用簡明的符號來表示數的重要性。

第116頁的“生活中的數學”。通過閱讀這份材料,不但擴大了學生的視野,而且使學生看到分數在五線譜中的靈活套用,體會數學與音樂、與人類精神生活的密切聯繫。

四、具體編排

標題

例題安排

第1節

同分母分數加減法

例1

同分母分數加法的含義及計算方法

例2

同分母分數減法的含義及計算方法,總結分數加減法的計算方法

例3

連加、連減

第2節

異分母分數加減法

例1

(1)異分母分數加法

(2)異分母分數減法

第3節

分數加減法混合運算

例1

(1)不帶括弧的分數加減法混合運算

(2)帶括弧的分數加減法混合運算

例2

整數加法的運算定律推廣到分數

1.同分母分數加、減法

本節包括三方面的內容:

分數加、減法的含義

同分母分數加減法的計算方法

連加、連減

同分母分數加、減法,三上已學過一些簡單的(分母不超過10),但當時採用直觀的方法進行教學,沒有引導總結一般的計算方法。本冊第四單元,系統學習了分數的意義和性質,建立起了“分數單位”的概念。

本小節系統學習分數加減法的含義,理解分數加減法的算理,總結出同分母分數加、減法的一般計算方法。

本節教材共安排3道例題。

例1(教學同分母分數加法)

由一家三口分吃大餅引入。

利用整數加法的含義列出算式,利用已有的分數加法知識進行計算。

給出規範的書寫過程,其中,計算熟練後可省略。

利用直觀圖,清楚地看到就是。由此引出結果的表達要求:計算的結果,能約分的要約成最簡分數。

引導學生由整數加法的含義推出分數加法的含義。

例2(教學同分母分數減法)編排同例1。

由小朋友倒礦泉水引入。

利用已有的分數減法知識進行計算,說出算理。

引導學生由整數加法的含義推出分數減法的含義。

同分母分數加減法的一般方法

結合例1、例2,引導學生在合作中概括同分母分數加減法的一般方法。

教學建議:

在教學例1、例2時,要注意突出相同單位的數相加、減,也就是分數單位相同的分數才能相加減。

注意分數單位的複習。

例3(教學連加連減)

以兒童喜愛的少兒節目播放時間為背景引入連加、連減。

連加呈現了多種算法,通過“你喜歡哪一種方法?”讓學生在對比中體會用三個分數直接相加,計算更簡便。

連減讓學生自主完成,連減兩種思路都可以。

教學時,應說明“分子是0的分數等於0”。如把“1--”改成“1--”,啟發學生聯繫分數與除法的關係,想出0除以任何正整數都得0,所以“分子是0的分數等於0”。

2.異分母分數加、減法

本小節只安排一個例題,含兩個小題。第(1)題是異分母分數加法,第(2)題是異分母分數減法。

從數學與環保關係的角度入手,引出例題的教學。

例1(1)(教學異分母分數加法)

用扇形統計圖給出了幾種垃圾在生活垃圾中的占有量。通過計算廢金屬和紙張占生活垃圾的幾分之幾,引出異分母分數加法。

直接提出“你能用學過的知識解決嗎”,引導學生探索:如何將未知轉化為已知。

通過小組研討活動,使學生明確:分母不同的分數,要先通分才能相加。

利用直觀圖,幫助學生理解算理。

例1(2)(教學異分母分數減法)

通過比較危險垃圾和食物殘渣的多少,引出異分母分數的減法。

利用類推,不再出直觀圖,讓學生自主把握計算的關鍵--通分,填出通分後的兩個分數,並算出最後結果。

練習二十二

第10題

是探索規律、激發興趣的練習。是由“楊輝三角”改編來的。(如下圖)

1

11

121

1331

14641

15101051

................................................

練習時,可先介紹“楊輝三角”,讓學生算一算每一橫行各數的和(1,2,4,8,16......)概括出和的規律,然後將其中的“1”都換成,看看這個規律還存在嗎?換成呢?

第12題

此題可引導學生操作學具來解決。如學生可能會這樣操作:先將4個蘋果,平均分給8個孩子,每人得4÷8=(個),再將剩下的2個蘋果,平均分給8個孩子,每人得2÷8=(個)。所以,每個孩子可分得+=(個)。這實際上是埃及分數(分子是1的分數)的一個有趣性質“任何一個真分數都可以表示為有限個分母不同的埃及分數的和”的套用。

教學建議:

重點要放手讓學生探索如何將異分母分數轉化為同分母分數來計算。

注意加強通過的單項練習。

3.分數加減法混合運算

本節包括兩部分內容。

分數加減法混合運算

整數加法運算定律推廣到分數加法

教材安排兩個例題。

例1(教學分數加減法混合運算)

第(1)題,不帶括弧的分數加減法混合計算。

第(2)題,是帶括弧的分數加減法混合計算。

教材以“雲夢森林公園地貌情況”與“森林和裸露地面降水量轉化情況對比”為背景,引入兩種類型的分數加減法混合運算。

例1(1)

由解決“森林部分比草地部分多幾分之幾”,引入不帶括弧的異分母分數加減混合運算。

說明不帶括弧的分數加減法混合運算的順序。

呈現了不同的方法,對比兩種不同的算法,引導學生思考:“你喜歡哪種方法?”讓學生在交流中體會根據數據特點選擇合理算法的優勢,逐步培養最佳化的思想方法。

例1(2)

由解決“裸露地面儲存的地下水占降水量的幾分之幾”,引出連減和帶括弧的異分母分數加減混合運算。

通過對比兩種不同的方法,明確帶括弧的加減混合運算的順序。

最後由“你能說說分數加減混合運算的順序嗎?”讓學生自主歸納出分數加減混合運算的順序。

教學建議

這部分內容教學時要培養認真書寫的良好習慣。

分數加減法混合計算的步驟在兩步以上,學生在按步寫出每一次計算的過程時,應嚴格要求按教科書中呈現的格式書寫,等號一律對齊,分數線在同一條直線上。

同時提醒學生,最後的結果要化成最簡分數。

例2(整數加法運算定律推廣到分數加法)

採用不完全歸納法讓學生歸納。

教材給出通過兩組算式,讓學生觀察、計算,找出每組算式的關係,得出整數加法的交換律、結合律對分數加法同樣適用的結論。

加法的交換律、結合律可推廣到若干個數相加

為了充分發揮運算定律對於運算的依據作用,在“做一做”中安排了4個數相加的練習:+++,通過這類練習,讓學生體會運算定律並不限制加數的個數,合理、靈活地運用它,會使計算十分的簡便。

五、教學建議

1.引導學生認識分數加減法與整數加減法的內在聯繫。

分數加減法的含義與整數加減法的含義是完全相同的。它們的計算方法從表面上看截然不同,但實質上有一個共同的特點,就是“相同單位的數才能相加減”。從這個意義上來講,不論是整數還是分數的加減法,都要統一單位後才能進行。當分數的單位統一後,分數的加減運算也就歸結為整數的加減了。如,第2節中的例1(1):

上述過程中,先將異分母分數轉化為同分母分數,然後用整數加法的方法將分子相加,即相同單位的數相加,得出最後的和。

因此,教學時,應有意識地引導學生認識分數加減法與整數加減法之間的聯繫,緊緊扣住學生經驗中“相同單位的數才能相加減”的算理,逐步概括出分數加減的一般計算方法。

2.注重對算理的分析,以算理引入算法。

抽象概括出分數加減法的一般計算方法,是本單元教學的重點。要搞好這一過程的教學,必須處理好算理與算法,單純記憶與發展思維之間的關係。教學時,應通過觀察、思考、說理、交流等活動,讓學生經歷用算理引入算法的重要過程。使學生明白:①計算同分母分數加、減法時,“分母不變”是因為分母相同,也就是分數單位相同,所以只用分子進行加、減;②計算異分母分數加、減法時,只要將異分母分數轉化為同分母分數就可以了。這樣教學,不但使學生明白算理是算法的靈魂,而且避免了機械用法、單純記憶的弊端,達到“明理馭法”的目的。

3.處理好獨立探究與合作交流的關係,不可偏廢任何一種方式。

本單元的學習內容,是在三年級上冊簡單的同分母分數加減計算的基礎上發展的,教學時,應充分考慮學生已有的認知經驗,首先提供給每一位學生獨立探究的時間和空間。在學生探究得比較成熟時,具備了和同伴交流的“資本”和“底氣”時,再組織他們進行合作交流。如教學第1節例1計算、例2計算、例3計算時,應讓每一位學生自主思考、計算,然後再交流計算的過程和想法;又如教學第2節例1(1)計算(2)計算時,首先應讓每一位學生思考:用學過的知識解決,行嗎?試一試。在學生充分嘗試、探究的基礎上再組織交流。交流時,重點放在“相同單位的數才能相加,怎樣表述相加的過程”這一核心問題上,使交流達到“互通有無、取長補短、心領意會”的目的。

4.用好有關數學文化的閱讀材料,適當補充涉及分數運算的史料。

五年級的學生已有一定的生活經驗,對數學的神秘感有了更強的好奇心。因此,結合分數加減的學習內容適當補充一些數學史料,可使學生的好奇轉化為探究欲,促其學習數學興趣的提高,並逐步形成良好的探究習慣。因此,教學時,應重視教材提供的兩個涉及數學文化的閱讀材料的學習。在此基礎上,再補充一些相關的學習材料。如:埃及分數(分子為1的分數)的特點和性質:“任何真分數都可以表示為有限個分母不同的埃及分數的和”,練習二十二中,第12題的結果就是埃及分數的有趣性質和在實際中的套用。又如“1可以表示為項數很多的埃及分數的和。”如:

1=1(為不等於0的自然數)

=(1-)++++...++

=

五年級數學下冊《因數與倍數》教案 篇6

(一)教學目標

1. 知道分數是怎樣產生的,理解分數的意義,明確分數與除法的關係。

2. 認識真分數和假分數,知道帶分數是一部分假分數的另一種書寫形式,能把假分數化成帶分數或整數。

3. 理解和掌握分數的基本性質,會比較分數的大小。

4. 理解公因數與最大公因數、公倍數與最低公倍數,能找出兩個數的最大公因數與最低公倍數,能比較熟練地進行約分和通分。

5. 會進行分數與小數的互化。

(二)教材說明和教學建議

教材說明

1. 本單元內容的結構及其地位作用。

本單元是學生系統學習分數的開始。內容包括:分數的意義、分數與除法的關係,真分數與假分數,分數的基本性質,最大公因數與約分,最低公倍數與通分以及分數與小數的互化。

學生在三年級上學期的學習中,已藉助操作、直觀,初步認識了分數(基本是真分數),知道了分數各部分的名稱,會讀、寫簡單的分數,會比較分子是1的分數,以及同分母分數的大小。還學習了簡單的同分母分數加、減法。在本學期,又學習了因數、倍數等概念,掌握了2、3、5的倍數的特徵。這些,都是本單元學習的重要基礎。

通過本單元的學習,將引導學生在已有的基礎上,由感性認識上升到理性認識,概括出分數的意義,比較完整地從分數的產生,從分數與除法的關係等方面加深對分數意義的理解,進而學習並理解與分數有關的基本概念,掌握必要的約分、通分以及分數與小數互化的技能。

這些知識在後面系統學習分數四則運算及其套用時都要用到。因此,學好本單元的內容是順利掌握分數四則運算並學會套用分數知識解決一系列實際問題的必要基礎。

本單元的內容分為六節,各節的內容的編排體系及其內在聯繫如下圖所示。

五下 分數的意義和性質

從上面的圖示,不難看出六節教材的內容所具有的內在邏輯聯繫。

首先,第1節分數的意義和第3節分數的基本性質,是整個單元教學內容的主幹,也是本單元教學的重點。第2節真分數與假分數是分數意義即分數概念的引申;第4節約分、第5節通分則是分數基本性質的運用。最後一節溝通了分數與小數在表現形式上的相互聯繫,得出了分數與小數的互化方法。整個單元的內容,大體上顯現出由概念到性質,再到方法、技能的遞進發展關係。

其次,在第1節里,分數的意義是學習的重點。在前面學習的基礎上,這裡引入了兩個新的概念,即單位“1”與分數單位。至於分數的產生、分數與除法的關係,則是從分數的現實來源和數學內部來源兩方面來幫助學生深化對分數的認識。

在第2節里,先通過三道例題,引入真分數、假分數、帶分數三個概念,再通過例4,解決把假分數化成帶分數或整數的問題。

在第3節里,先通過例1,得出分數基本性質,然後通過例2,在運用的過程中加以鞏固。

在第4、5節里,先引入公因數與最大公因數,公倍數與最低公倍數的概念,再討論求最大公因數、最低公倍數的方法,然後在此基礎上,引入約分、通分的概念和方法。

顯然,在第2、3、4、5節內部,同樣顯現出由概念到方法的邏輯關係。

2. 本單元教材的編寫特點。

與原教材相比,本單元教材的主要改進有以下幾點。

(1)多側面地展現了分數的來源。

在國小數學裡,認識分數是小學生數概念的一次重要擴展。考慮到分數概念比較重要,又比較抽象,有必要通過揭示產生分數的現實背景,來幫助學生形成分數概念,理解它的含義。

從現實的角度來看,數是用來表示量的。5隻兔、5個人,這些量的共同特徵,可以用自然數5來表示。也就是說自然數是一個量(兔、人)與另一個作為單位的量(1隻兔、1個人)的比。

現實世界中存在的量,除了上面例舉的,由一些單位量合成的,可以用自然數表示多少的量之外,還存在著許多可以分割的,無法用自然數表示的量。例如,用一根作為單位長的木棒(米尺)去量一條線段AB的長,量了3次還有一段PB剩餘。

五下 分數的意義和性質

這時,運用自然數就只能粗略地說,這條線段長3米多一點。要更精確一些,就必須把度量單位等分成更小的單位,來度量餘下的那條線段。比如把1米一分為四,則每等份叫做“四分之一”米,記做1/4米。這就引入了形如1/n(n為大於1的自然數)的分數。假如使用度量單位14米去量圖中剩下的一條線段PB,量了3次恰巧量盡,那么PB的長就是“3個1/4”,記作3/4米,這樣就又引入了形如m/n(n為大於1的自然數,m為自然數)的分數。歷史上,分數正是為了比較精確地測量這類可以分割的量而引入的。

從數學的角度來看,分數的引入是為了解決在整數集合里除法不是總能實施的矛盾。比如,2÷3在整數範圍內不能計算,引入分數就能記作2÷3=2/3。當然,這種抽象的表示方法也有它的實際意義。例如把2塊餅平均分給3個人,每人分得2/3塊餅。

在本單元的第1節里,教材首先從歷史的角度,從現實生活中等分量的需要出發,生動形象地展示了分數的現實來源。

在引出分數概念之後,教材又通過分蛋糕、分月餅的實例,抽象出分數與除法的關係,使學生初步感悟,有了分數,就能解決整數除法除不盡的矛盾。這實際上是從數學內部發展的角度,揭示了分數的來源。

這就為拓寬學生的認識,加深對分數的理解,提供了較為豐富的教學素材。

(2)約數、倍數的有關知識與分數的相關知識結合起來教學。

我們知道,在國小數學中,約數、倍數的有關知識的學習,主要是為學習分數服務的。但在以往的教材中,兩者各自獨立成章,學完後,學生還不知道學了公因數、公倍數與最大公因數、最低公倍數有什麼用,只能對一組組整數單純地練習求它們的最大公因數或最低公倍數。而且,這些知識集中在一個單元里,概念多,而且抽象,不利於分散難點,逐步消化,也不利於認識的螺旋上升。

現在,把公因數、最大公因數的內容安排在討論約分之前教學;把公倍數、最低公倍數的內容安排在引進通分之前學習。從而將兩部分知識緊密結合起來,學了就用,既能減少單純的枯燥練習,節省教學時間,又有利於整除性知識的教學改革。為了配合這一改革,約分與通分不再合成一節,而是公因數、最大公因數與約分編為一節,公倍數、最低公倍數與通分編為一節。

(3)關注數學的抽象過程,從現實問題情境引出數學問題,得出數學知識。

在本單元中,無論是公因數與最大公因數、公倍數與最低公倍數的引入,還是約分、通分的給出,教材都創設了適當的現實問題情境,進而在解決實際問題中,抽象出數學的概念,得出數學的方法。這些數學知識,還有利於培養學生的數學套用意識和解決實際問題的能力。

(4)部分內容作了適當的精簡處理或編排調整。

本單元中,比較重要的內容精簡處理與編排調整,在前面揭示單元內容結構與聯繫的圖示中,已有所顯示。這裡,再擇要作些說明。

其一,分數大小比較,不在第1節中單列一段,而是充分利用前面學習分數初步認識時打下的基礎,把有關內容與通分結合在一起學習。這樣既進一步簡化了第1節的內容,也有利於發揮學習的正向遷移作用。

其二,刪去了原來第2節中把整數或帶分數化成假分數的內容。這是因為根據課程標準,今後的分數運算中將不含帶分數,所以無須再掌握把整數或帶分數化成假分數的技能。考慮到把假分數化成帶分數,容易看出這個假分數的大小在哪兩個整數之間,從而有利於數感的形成;把能化成整數的假分數化成整數,是化簡某些計算結果的需要。所以,把假分數化成帶分數或整數的內容,仍然保留,但也作了簡化,合在一個例題中予以解決。

教學建議

1. 充分利用教材資源,用好直觀手段。

如前介紹,本單元教材在加強數學與現實世界的聯繫上作了不少努力,同時,教材還運用了多種形式的直觀圖示,數形集合,展現了數學概念的幾何意義。從而為教師與學生提供了較為豐富的學習資源。教學時,應充分利用這些資源,以發揮形象思維和生活體驗對於抽象思維的支持作用。

本單元的特點之一就是概念較多,且比較抽象。而國小高年級學生的思維特點是他們的抽象邏輯思維在很大程度上還需要直觀形象思維的支撐。因此,在引入新的數學概念時,適當加大思維的形象性,化抽象為具體、為直觀,對於順利開展教學來說,是十分必要的。所謂化抽象為具體,就是通過具體的現實情境,調動學生相關生活經驗來幫助理解。所謂化抽象為直觀,就是運用適當的圖形、圖示來說明數學概念的含義,這是國小數學最常用的也是最主要的直觀教學手段。

2. 及時抽象,在適當的抽象水平上,建構數學概念的意義。

為了搞好本單元的教學,在加強直觀教學的同時,還要重視及時抽象,不能聽任學生的認識停留在直觀水平上。否則,同樣會妨礙學生對所學知識的理解和套用。例如:比較1/3與1/2的大小,有學生回答,不一定誰大誰小,要看他們分的那個圓,哪個大,由此得出1/3可能比1/2大,也可能比1/2小,還可能和1/2相等。造成這種錯誤認識的主要原因,就在於過分依賴直觀,而沒有及時抽象。因此,在充分展開直觀教學,讓學生獲得足夠的感性認識基礎上,要不失時機地引導學生由實例、圖示加以概括,建構概念的意義。

3. 揭示知識與方法的內在聯繫,在理解的基礎上掌握方法。

在本單元中,約分與通分、假分數化為帶分數或整數、分數與小數的互化的方法,都是必須掌握的。這些方法看似頭緒較多,但若歸結為基礎知識,就是揭示相關知識與方法的聯繫,就比較容易在理解的基礎上掌握方法。以約分與通分為例,它們都是分數基本性質的套用。儘管約分時分子、分母同除以一個適當的數,通分時分子、分母同乘一個適當的數,但它們都是依據分數的基本性質,使分數的大小保持不變。因此,教學時不宜就方法論方法,而應凸顯得出方法的過程,使學生明白操作方法背後的算理。這樣就能依靠理解掌握方法,而不是依賴記憶學會操作。

4. 這部分內容可以用20課時進行教學。