高考數學複習備考工作總結

高考數學複習備考工作總結 篇1

一學年來,在學校領導、高三年級組的領導下,高三數學備課組按照學年初制定的複習備考計畫加以實施,並適時地加以充實和完善。全組成員,同心協力,廢寢忘食地勤奮工作,並積極進行教學改革,悉心研討和實踐旨在如何最大限度的調動學生複習主動性,充分發揮學生的主體作用的教學模式和措施。經過實驗,效果良好,以往的“學生被動的接受”的狀況得到了改觀,出現了“學生主動參與、主動思考和主動學習”的新局面,學生的創新意識和套用能力得到加強和提高,複習效率和質量也大大提高。使今年我校高考數學成績再上新台階,我校今年高考數學最高分145分,高分人數理科110多人文科48人,取得了較好的成績。成績的取得,源於各方面的因素,現總結如下:

一、系統、紮實、科學、創新的複習備考

1、研討考綱,分析考點,設定梯度。高三備課組組織教師研討高考考試說明,明確各章節知識的考點分布及其要求層次,在複習過程中根據我校大部分學生的基礎和智力都比其它幾所高中差的現狀,狠抓對基礎知識的複習,再結合知識本身的重點、難點,設定好複習題的梯度和難度。做到有的放矢,儘可能減少無效勞動。

2、團結協作,發揮特長。備課組堅持集體備課,精心設計複習教學方案,統一教學目標、要求及複習的大致進度,理清各章節內容的知識網路及其交匯點(因高考常在知識網路交匯點上命題),準確把握各複習內容的重點和難點,疑難問題集體討論,老師們各抒己見,找出最佳解決辦法,充分發揮了備課組的集體智慧。

3、回歸課本,狠抓基礎,開拓創新。備課組以課本知識點為出發點,狠抓對“三基”的落實,並選好一本主幹複習資料和套題,(第一階段用《中華第一考》和《狀元之路測試卷》,第二階段和套題用的是《全品、夯實基礎、短平快》),以自編資料為主,但又不過分依賴複習資料,對資料中過時、過偏、過難的內容,我們進行了大膽捨棄,同時,教師把富有新意、能啟迪思維、體現重要數學思想方法、反映時代氣息的習題及時補充進去,另外,老師自己也改編了一些題,重視單元小綜合,適當自編或改編知識網路交匯點上的題目,這些自編題、自造題的套用,對於培養學生的發散思維,使學生們加深對各部分知識的內在聯繫的認識,因而從中感悟出數學的真諦,最終收到了相當好的效果。

4、拓寬課堂教學渠道,全面提高學生能力。課堂教學是提高教學質量的關鍵環節,因此,在如何提高課堂複習效率和複習質量方面,幾個老師都作了積極的探索和試驗,進行了大膽教學改革。胡景雲老師試驗的自主複習指導法,經過一學年的實驗證明,效果顯著;王從志、楊曉琴、等老師的加大課堂練習容量,以學生練為主,老師的點評為輔的實驗,也取得不同程度的效果。在教學中我們注意發揮教師的主導作用和創新意識,在傳授知識的同時,指導學法,發展智力,培養能力,並適時地滲透重要的數學思想方法。教學中著力體現學生的主體作用,努力提高學生的主動參與意識,激發他們積極思維,挖掘其潛能和非智力因素,使他們養成獨立思考、勇於探索、善於反思、勤於積累、不斷創新的好習慣。大家都認識到,只有把學生的學習積極性充分調動起來了,養成了良好的學習習慣和思維品質,高考複習的質量才有保證。因為內因是決定因素,外因必須通過內因才能起作用。

5、滾動測練、螺旋式上升。高三備課組老師在備課組組長的帶領下,分工輪流做好數學每天限時訓練、每周一練、單元過關測驗、綜合訓練題、模擬考試試題的命題和制卷工作,把好質量關。通過滾動練習、限時訓練和模擬考試使學生逐步增強速度意識、質量意識,提高了學生的運算能力、邏輯思維能力、空間想像能力和綜合運用知識的能力,為高考作了較充分的準備。

6、互聽互學,揚長避短。為提高複習質量,備課組老師之間經常相互聽課。通過聽課,相互學習,取他人之長,補己之短。提高了教學水平和複習效果。

7、勤字為首,真情感化。晚自習下班輔導工作抓得緊,做到常下班、常輔導,不僅輔導本學科知識,還有針對性地找學生談心,勾通了思想,聯絡了感情,也消除他們的心理障礙。王從志、楊曉琴等老師堅持每晚下班輔導至少一節,其他教師也紛紛仿效,不少老師一直輔導到學校要求最後熄燈的十一點為止。高考前還在時時寄語高三學生,指導答題技巧,以及如何調整好心理狀態,做到輕裝上陣。

8、認真反饋,不斷改進。做好本備課組教學情況的收集、反饋工作,各個老師自覺根據各班教學情況進行了學生評教活動,對幫助科任教師改進不足之處,提高教學水平起到了一定的促進作用。

9、培養“尖子”、診治“拐子”。做好單科尖子學生的培養和鼓勵工作,各科任教師根據幾次模擬考試成績確定出各班尖子生名單,及時找他們談心,並加以指導和鼓勵。根據班級的.跟蹤對象,大部分尖子的成績較穩定。同時也主動配合級組、班級抓好臨界生、“拐子”生的輔導工作。

二、備課組濃厚的高考研究氣氛

隨著高考改革力度的加大,高考更加突出對各種數學能力與素質、潛能的考查,因此,要提高高考成績,必須走教科研之路。

1、集體研討,團結攻堅。高三備課組教師和其他有豐富高考指導經驗的教師結成對子。充分發揮非高三任課教師的其他成員的作用,先後請他們參加了若干次高三數學備課組活動,重點對近幾年來的高考試題進行了深入的研究和探討。並為我們獻計獻策,使我們的高考備考少走了彎路,複習更具有針對性。

2、中心開花,備課組每周組織一次集研活動,設定中心問題,每個教師暢所欲言,然後各個擊破。由於高考是高三全年的攻堅戰,因此備課組的活動始終圍繞高考備考這箇中心進行。我們分階段研討中心問題如下:

1)如何處理好複習課中教師講解與學生練習的時間比例及矛盾。

2)複習課中如何激發學生的興趣和挖掘學生的潛能?

3)今年高考重點、熱點預測和研討。

4)如何精選高考複習題,它應遵循什麼原則?

5)如何命制高考模擬題,它的選題原則是什麼?

6)如何上好第二輪專題複習課。

7)如何克服高三學生常犯的“眼高手低”的壞毛病?

8)強化訓練階段,如何滲透和強化各種數學思想和方法?

9)高考套用題數學模型的建立的探討;

3、促使學生突變,創設突變機遇。我們認為:學生在第二、三階段是數學成績提高的良好階段,教師在這兩階段的課堂教學是幫助學生“歸納提高”的導航。因此,我們認真做好第二、三階段複習的研討工作,王從志、楊曉琴老師分別承擔了的第二、三階段高考複習研討觀摩課,準備充分,具有觀摩性和示範性,為學生知識歸類提高設定了明確的航標。

4、採集信息,科學巧幹。備課組注意採集各地高考備考及高考命題方面信息,通過去偽存真,及時加工,科學地複習提高,為高考贏得時間,也做到有的放矢。這方面吳家強、陳雲、楊斌等老師做了大量的工作。

總之,因為有上級領導、學校行政、教務處、數學組、高三年級組的正確領導,有全備課組老師的勤奮工作,還有其他老師的大力支持和學生的奮力拚搏,才使我校今年數學高考成績再上新台階,再創新輝煌。

儘管今年我們取得了較好的成績,積累了一些成功經驗,但仍有許多不足和遺憾:

1、各班學生成績參差不齊,這給我們在教學上帶來一定的困難,例如,到底應該以哪一層學生為主攻對象更合適、更科學?因為現在錄取率這么高,怕甩掉了不該甩的學生,同時若只照顧優生,差生也有意見,真是左右為難。

2、各班之間的發展還不夠平衡,各班的成績差距較大;

3、各科之間的協調還不夠,治“拐”力度不夠。如有些學生數學成績上了重點線,但其它科卻沒有上,或者是其它科上了重點線,而數學又沒有上。

4、對尖子生的培養措施和力度還不夠。

5、對差生的學習積極性還沒有完全調動起來,對其非智力因素挖掘得不夠,練習還不夠到位,沒有形成應有的能力,故這部分學生的高考成績不夠理想。

6、老師有時講得過多,包得過多的教法還需進一步改進。

高考數學複習備考工作總結 篇2

一.知識歸納:

1.集合的有關概念。

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N.

2.子集、交集、並集、補集、空集、全集等概念。

1)子集:若對x∈A都有x∈B,則A B(或A B);

2)真子集:A B且存在x0∈B但x0 A;記為A B(或,且 )

3)交集:A∩B={x| x∈A且x∈B}

4)並集:A∪B={x| x∈A或x∈B}

5)補集:CUA={x| x A但x∈U}

注意:①? A,若A≠?,則? A ;

②若, ,則 ;

③若且 ,則A=B(等集)

3.弄清集合與元素、集合與集合的關係,掌握有關的術語和符號,特別要注意以下的符號:(1) 與、?的區別;(2) 與 的區別;(3) 與 的區別。

4.有關子集的幾個等價關係

①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;

④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。

5.交、並集運算的性質

①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;

③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;

6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

高考數學複習備考工作總結 篇3

基本事件的定義:

一次試驗連同其中可能出現的每一個結果稱為一個基本事件。

等可能基本事件:

若在一次試驗中,每個基本事件發生的可能性都相同,則稱這些基本事件為等可能基本事件。

古典概型:

如果一個隨機試驗滿足:(1)試驗中所有可能出現的基本事件只有有限個;

(2)每個基本事件的發生都是等可能的;

那么,我們稱這個隨機試驗的機率模型為古典概型。

古典概型的機率:

如果一次試驗的等可能事件有n個,考試技巧,那么,每個等可能基本事件發生的機率都是;如果某個事件A包含了其中m個等可能基本事件,那么事件A發生的機率為。

古典概型解題步驟:

(1)閱讀題目,蒐集信息;

(2)判斷是否是等可能事件,並用字母表示事件;

(3)求出基本事件總數n和事件A所包含的結果數m;

(4)用公式求出機率並下結論。

求古典概型的機率的關鍵:

求古典概型的機率的關鍵是如何確定基本事件總數及事件A包含的基本事件的個數。

高考數學複習備考工作總結 篇4

一、排列組合篇

1. 掌握分類計數原理與分步計數原理,並能用它們分析和解決一些簡單的套用問題。

2. 理解排列的意義,掌握排列數計算公式,並能用它解決一些簡單的套用問題。

3. 理解組合的意義,掌握組合數計算公式和組合數的性質,並能用它們解決一些簡單的套用問題。

4. 掌握二項式定理和二項展開式的性質,並能用它們計算和證明一些簡單的問題。

5. 了解隨機事件的發生存在著規律性和隨機事件機率的意義。

6. 了解等可能性事件的機率的意義,會用排列組合的基本公式計算一些等可能性事件的機率。

7. 了解互斥事件、相互獨立事件的意義,會用互斥事件的機率加法公式與相互獨立事件的機率乘法公式計算一些事件的機率。

8. 會計算事件在n次獨立重複試驗中恰好發生k次的機率.

二、立體幾何篇

高考立體幾何試題一般共有4道(選擇、填空題3道, 解答題1道), 總計總分27分左右,考查的知識點在20個以內。 選擇填空題考核立幾中的計算型問題, 而解答題著重考查立幾中的邏輯推理型問題, 當然, 二者均應以正確的空間想像為前提。 隨著新的課程改革的進一步實施,立體幾何考題正朝著“多一點思考,少一點計算”的發展。從歷年的考題變化看, 以簡單幾何體為載體的線面位置關係的論證,角與距離的探求是常考常新的熱門話題。

知識整合

1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反覆遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總複習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想像能力。

2. 判定兩個平面平行的方法:

(1)根據定義--證明兩平面沒有公共點;

(2)判定定理--證明一個平面內的兩條相交直線都平行於另一個平面;

(3)證明兩平面同垂直於一條直線。

3.兩個平面平行的主要性質:

(1)由定義知:“兩平行平面沒有公共點”。

(2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行於另一個平面。

(3)兩個平面平行的性質定理:”如果兩個平行平面同時和第三個平面相交,那

么它們的交線平行“。

(4)一條直線垂直於兩個平行平面中的一個平面,它也垂直於另一個平面。

(5)夾在兩個平行平面間的平行線段相等。

(6)經過平面外一點只有一個平面和已知平面平行。

以上性質(2)、(3)、(5)、(6)在課文中雖未直接列為”性質定理“,但在解題過程中均可直接作為性質定理引用。

解答題分步驟解答可多得分

1. 合理安排,保持清醒。數學考試在下午,建議中午休息半小時左右,睡不著閉閉眼睛也好,儘量放鬆。然後帶齊用具,提前半小時到考場。

2. 通覽全卷,摸透題情。剛拿到試卷,一般較緊張,不宜匆忙作答,應從頭到尾通覽全卷,儘量從卷面上獲取更多的信息,摸透題情。這樣能提醒自己先易後難,也可防止漏做題。

3 .解答題規範有序。一般來說,試題中容易題和中檔題占全卷的80%以上,是考生得分的主要來源。對於解答題中的容易題和中檔題,要注意解題的規範化,關鍵步驟不能丟,如三種語言(文字語言、符號語言、圖形語言)的表達要規範,邏輯推理要嚴謹,計算過程要完整,注意算理算法,套用題建模與還原過程要清晰,合理安排卷面結構……對於解答題中的難題,得滿分很困難,可以採用“分段得分”的策略,因為高考(微博)閱卷是“分段評分”。比如可將難題劃分為一個個子問題或一系列的步驟,先解決問題的一部分,能解決到什麼程度就解決到什麼程度,獲取一定的分數。有些題目有好幾問,前面的小問你解答不出,但後面的小問如果根據前面的結論你能夠解答出來,這時候不妨引用前面的結論先解答後面的,這樣跳步解答也可以得分。

三、數列問題篇

數列是高中數學的重要內容,又是學習高等數學的基礎。高考對本章的考查比較全面,等差數列,等比數列的考查每年都不會遺漏。有關數列的試題經常是綜合題,經常把數列知識和指數函式、對數函式和不等式的知識綜合起來,試題也常把等差數列、等比數列,求極限和數學歸納法綜合在一起。探索性問題是高考的熱點,常在數列解答題中出現。本章中還蘊含著豐富的數學思想,在主觀題中著重考查函式與方程、轉化與化歸、分類討論等重要思想,以及配方法、換元法、待定係數法等基本數學方法。

近幾年來,高考關於數列方面的命題主要有以下三個方面;(1)數列本身的有關知識,其中有等差數列與等比數列的概念、性質、通項公式及求和公式。(2)數列與其它知識的結合,其中有數列與函式、方程、不等式、三角、幾何的結合。(3)數列的套用問題,其中主要是以增長率問題為主。試題的難度有三個層次,小題大都以基礎題為主,解答題大都以基礎題和中檔題為主,只有個別地方用數列與幾何的綜合與函式、不等式的綜合作為最後一題難度較大。

知識整合

1. 在掌握等差數列、等比數列的定義、性質、通項公式、前n項和公式的基礎上,系統掌握解等差數列與等比數列綜合題的規律,深化數學思想方法在解題實踐中的指導作用,靈活地運用數列知識和方法解決數學和實際生活中的有關問題;

2. 在解決綜合題和探索性問題實踐中加深對基礎知識、基本技能和基本數學思想方法的認識,溝通各類知識的聯繫,形成更完整的知識網路,提高分析問題和解決問題的能力,進一步培養學生閱讀理解和創新能力,綜合運用數學思想方法分析問題與解決問題的能力。

3. 培養學生善於分析題意,富於聯想,以適應新的背景,新的設問方式,提高學生用函式的思想、方程的思想研究數列問題的自覺性、培養學生主動探索的精神和科學理性的思維方法.

四、導數套用篇

專題綜述

導數是微積分的初步知識,是研究函式,解決實際問題的有力工具。在高中階段對於導數的學習,主要是以下幾個方面:

1. 導數的常規問題:

(1)刻畫函式(比初等方法精確細微);

(2)同幾何中切線聯繫(導數方法可用於研究平面曲線的切線);

(3)套用問題(初等方法往往技巧性要求較高,而導數方法顯得簡便)等關於 次多項式的導數問題屬於較難類型。

2. 關於函式特徵,最值問題較多,所以有必要專項討論,導數法求最值要比初等方法快捷簡便。

3. 導數與解析幾何或函式圖象的混合問題是一種重要類型,也是高考(微博)中考察綜合能力的一個方向,應引起注意。

知識整合

1. 導數概念的理解。

2. 利用導數判別可導函式的極值的方法及求一些實際問題的最大值與最小值。複合函式的求導法則是微積分中的重點與難點內容。課本中先通過實例,引出複合函式的求導法則,接下來對法則進行了證明。

3. 要能正確求導,必須做到以下兩點:

(1)熟練掌握各基本初等函式的求導公式以及和、差、積、商的求導法則,複合函式的求導法則。

(2)對於一個複合函式,一定要理清中間的複合關係,弄清各分解函式中應對哪個變數求導。

五、解析幾何(圓錐曲線)

高考解析幾何剖析:

1、很多高考問題都是以平面上的點、直線、曲線(如圓、橢圓、拋物線、雙曲線)這三大類幾何元素為基礎構成的圖形的問題;

2、演繹規則就是代數的演繹規則,或者說就是列方程、解方程的規則。

有了以上兩點認識,我們可以毫不猶豫地下這么一個結論,那就是解決高考解析幾何問題無外乎做兩項工作:

1、幾何問題代數化。

2、用代數規則對代數化後的問題進行處理。

高考數學複習備考工作總結 篇5

軌跡方程的求解

符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.

軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

【軌跡方程】就是與幾何軌跡對應的代數描述。

一、求動點的軌跡方程的基本步驟

⒈建立適當的坐標系,設出動點M的坐標;

⒉寫出點M的集合;

⒊列出方程=0;

⒋化簡方程為最簡形式;

⒌檢驗。

二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。

⒈直譯法:直接將條件翻譯成等式,整理化簡後即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

⒊相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然後代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。

⒋參數法:當動點坐標x、y之間的直接關係難以找到時,往往先尋找x、y與某一變數t的關係,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。

⒌交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

.直譯法:求動點軌跡方程的一般步驟

①建系——建立適當的坐標系;

②設點——設軌跡上的任一點P(x,y);

③列式——列出動點p所滿足的關係式;

④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關於X,Y的方程式,並化簡;

⑤證明——證明所求方程即為符合條件的動點軌跡方程。

排列組合公式

排列組合公式/排列組合計算公式

排列P------和順序有關

組合C-------不牽涉到順序的問題

排列分順序,組合不分

例如把5本不同的書分給3個人,有幾種分法."排列"

把5本書分給3個人,有幾種分法"組合"

1.排列及計算公式

從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示.

p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).

2.組合及計算公式

從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號

c(n,m)表示.

c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);

3.其他排列與組合公式

從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!.

n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為

n!/(n1!.n2!.....nk!).

k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).

排列(Pnm(n為下標,m為上標))

Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(註:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n

組合(Cnm(n為下標,m為上標))

Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m

公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如9!=9.8.7.6.5.4.3.2.1

從N倒數r個,表達式應該為n.(n-1).(n-2)..(n-r+1);

因為從n到(n-r+1)個數為n-(n-r+1)=r

舉例:

Q1:有從1到9總計9個號碼球,請問,可以組成多少個三位數?

A1:123和213是兩個不同的排列數。即對排列順序有要求的,既屬於“排列P”計算範疇。

上問題中,任何一個號碼只能用一次,顯然不會出現988,997之類的組合,我們可以這么看,百位數有9種可能,十位數則應該有9-1種可能,個位數則應該只有9-1-1種可能,最終共有9.8.7個三位數。計算公式=P(3,9)=9.8.7,(從9倒數3個的乘積)

Q2:有從1到9總計9個號碼球,請問,如果三個一組,代表“三國聯盟”,可以組合成多少個“三國聯盟”?

A2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬於“組合C”計算範疇。

上問題中,將所有的包括排列數的個數去除掉屬於重複的個數即為最終組合數C(3,9)=9.8.7/3.2.1

排列、組合的概念和公式典型例題分析

例1設有3名學生和4個課外小組.

(1)每名學生都只參加一個課外小組;

(2)每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加.各有多少種不同方法?

(1)由於每名學生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數,因此共有種不同方法.

(2)由於每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加,因此共有種不同方法.

點評由於要讓3名學生逐個選擇課外小組,故兩問都用乘法原理進行計算.

例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?

解依題意,符合要求的排法可分為第一個排、中的某一個,共3類,每一類中不同排法可採用畫“樹圖”的方式逐一排出:

∴符合題意的不同排法共有9種.

點評按照分“類”的思路,本題套用了加法原理.為把握不同排法的規律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數問題的一種數學模型.

例3判斷下列問題是排列問題還是組合問題?並計算出結果.

(1)高三年級學生會有11人:

①每兩人互通一封信,共通了多少封信?

②每兩人互握了一次手,共握了多少次手?

(2)高二年級數學課外小組共10人:

①從中選一名正組長和一名副組長,共有多少種不同的選法?

②從中選2名參加省數學競賽,有多少種不同的選法?

(3)有2,3,5,7,11,13,17,19八個質數:

①從中任取兩個數求它們的商可以有多少種不同的商?

②從中任取兩個求它的積,可以得到多少個不同的積?

(4)有8盆花:

①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?

②從中選出2盆放在教室有多少種不同的選法?

分析(1)

①由於每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關是排列;

②由於每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關,所以是組合問題.其他類似分析.

(1)

①是排列問題,共用了封信;

②是組合問題,共需握手(次).

(2)

①是排列問題,共有(種)不同的選法;

②是組合問題,共有種不同的選法.

(3)

①是排列問題,共有種不同的商;

②是組合問題,共有種不同的積.

(4)

①是排列問題,共有種不同的選法;

②是組合問題,共有種不同的選法.

例4證明.

證明左式

右式.

∴等式成立.

點評這是一個排列數等式的證明問題,選用階乘之商的形式,並利用階乘的性質,可使變形過程得以簡化.

例5化簡.

解法一原式

解法二原式

點評解法一選用了組合數公式的階乘形式,並利用階乘的性質;解法二選用了組合數的兩個性質,都使變形過程得以簡化.

例6解方程:(1);(2).

解(1)原方程

解得.

(2)原方程可變為

∴原方程可化為.

即,解得

三角函式公式

銳角三角函式公式

sin α=∠α的對邊 / 斜邊

cos α=∠α的鄰邊 / 斜邊

tan α=∠α的對邊 / ∠α的鄰邊

cot α=∠α的鄰邊 / ∠α的對邊

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

tan2A=(2tanA)/(1-tanA^2)

(註:SinA^2 是sinA的平方 sin2(A) )

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推導

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

輔助角公式

Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

sint=B/(A^2+B^2)^(1/2)

cost=A/(A^2+B^2)^(1/2)

tant=B/A

Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

降冪公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推導公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=2sina(1-sin2a)+(1-2sin2a)sina

=3sina-4sin3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos2a-1)cosa-2(1-sin2a)cosa

=4cos3a-3cosa

sin3a=3sina-4sin3a

=4sina(3/4-sin2a)

=4sina[(√3/2)2-sin2a]

=4sina(sin260°-sin2a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos3a-3cosa

=4cosa(cos2a-3/4)

=4cosa[cos2a-(√3/2)2]

=4cosa(cos2a-cos230°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述兩式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

sin^2(a/2)=(1-cos(a))/2

cos^2(a/2)=(1+cos(a))/2

tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

三角和

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

兩角和差

cos(α+β)=cosα·cosβ-sinα·sinβ

cos(α-β)=cosα·cosβ+sinα·sinβ

sin(α±β)=sinα·cosβ±cosα·sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

和差化積

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

高考數學複習備考工作總結 篇6

一、高考數學中有函式、數列、三角函式、平面向量、不等式、立體幾何等九大章節

主要是考函式和導數,因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函式的性質,包括函式的單調性、奇偶性;第二是函式的解答題,重點考察的是二次函式和高次函式,分函式和它的一些分布問題,但是這個分布重點還包含兩個分析。

二、平面向量和三角函式

對於這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函式的圖像和性質,這裡重點掌握正弦函式和餘弦函式的性質;第三,正弦定理和餘弦定理來解三角形,這方面難度並不大。

三、數列

數列這個板塊,重點考兩個方面:一個通項;一個是求和。

四、空間向量和立體幾何

在裡面重點考察兩個方面:一個是證明;一個是計算。

五、機率和統計

機率和統計主要屬於數學套用問題的範疇,需要掌握幾個方面:……等可能的機率;……事件;獨立事件和獨立重複事件發生的機率。

六、解析幾何

這部分內容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關係,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。

七、壓軸題

同學們在最後的備考複習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。

高考數學直線方程知識點:什麼是直線方程

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交於一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。

高考數學複習備考工作總結 篇7

易錯點1 遺忘空集致誤

錯因分析:由於空集是任何非空集合的真子集,因此,對於集合B高三經典糾錯筆記:數學A,就有B=A,φ≠B高三經典糾錯筆記:數學A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導致解題結果錯誤。尤其是在解含有參數的集合問題時,更要充分注意當參數在某個範圍內取值時所給的集合可能是空集這種情況。空集是一個特殊的集合,由於思維定式的原因,考生往往會在解題中遺忘了這個集合,導致解題錯誤或是解題不全面。

易錯點2 忽視集合元素的三性致誤

錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。在解題時也可以先確定字母參數的範圍後,再具體解決問題。

易錯點3 四種命題的結構不明致誤

錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這裡面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結構以及它們之間的等價關係。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數”的否定應該是“a,b不都是偶數”,而不應該是“a ,b都是奇數”。

易錯點4 充分必要條件顛倒致誤

錯因分析:對於兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充要條件的概念作出準確的判斷。

易錯點5 邏輯聯結詞理解不準致誤

錯因分析:在判斷含邏輯聯結詞的命題時很容易因為理解不準確而出現錯誤,在這裡我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。 函式與導數

易錯點6 求函式定義域忽視細節致誤

錯因分析:函式的定義域是使函式有意義的自變數的取值範圍,因此要求定義域就要根據函式解析式把各種情況下的自變數的限制條件找出來,列成不等式組,不等式組的解集就是該函式的定義域。在求一般函式定義域時要注意下面幾點:

(1)分母不為0;

(2)偶次被開放式非負;

3)真數大於0;

(4)0的0次冪沒有意義。

函式的定義域是非空的數集,在解決函式定義域時不要忘記了這點。對於複合函式,要注意外層函式的定義域是由內層函式的值域決定的。

易錯點7 帶有絕對值的函式單調性判斷錯誤

錯因分析:帶有絕對值的函式實質上就是分段函式,對於分段函式的單調性,有兩種基本的判斷方法:

一是在各個段上根據函式的解析式所表示的函式的單調性求出單調區間,最後對各個段上的單調區間進行整合;

二是畫出這個分段函式的圖象,結合函式圖象、性質進行直觀的判斷。研究函式問題離不開函式圖象,函式圖象反應了函式的所有性質,在研究函式問題時要時時刻刻想到函式的圖象,學會從函式圖象上去分析問題,尋找解決問題的方案。對於函式的幾個不同的單調遞增(減)區間,千萬記住不要使用並集,只要指明這幾個區間是該函式的單調遞增(減)區間即可。

易錯點8 求函式奇偶性的常見錯誤

錯因分析:求函式奇偶性的常見錯誤有求錯函式定義域或是忽視函式定義域,對函式具有奇偶性的前提條件不清,對分段函式奇偶性判斷方法不當等。判斷函式的奇偶性,首先要考慮函式的定義域,一個函式具備奇偶性的必要條件是這個函式的定義域區間關於原點對稱,如果不具備這個條件,函式一定是非奇非偶的函式。在定義域區間關於原點對稱的前提下,再根據奇偶函式的定義進行判斷,在用定義進行判斷時要注意自變數在定義域區間內的任意性。

易錯點9 抽象函式中推理不嚴密緻誤

錯因分析:很多抽象函式問題都是以抽象出某一類函式的共同“特徵”而設計出來的,在解決問題時,可以通過類比這類函式中一些具體函式的性質去解決抽象函式的性質。解答抽象函式問題要注意特殊賦值法的套用,通過特殊賦值可以找到函式的不變性質,這個不變性質往往是進一步解決問題的突破口。抽象函式性質的證明是一種代數推理,和幾何推理證明一樣,要注意推理的嚴謹性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規範。

易錯點10 函式零點定理使用不當致誤

錯因分析:如果函式y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,並且有f(a)f(b)<0,那么,函式y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也是方程f(c)=0的根,這個結論我們一般稱之為函式的零點定理。函式的零點有“變號零點”和“不變號零點”,對於“不變號零點”,函式的零點定理是“無能為力”的,在解決函式的零點時要注意這個問題。

易錯點11 混淆兩類切線致誤

錯因分析:曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此求解曲線的切線問題時,首先要區分是什麼類型的切線。

易錯點12 混淆導數與單調性的關係致誤

錯因分析:對於一個函式在某個區間上是增函式,如果認為函式的導函式在此區間上恆大於0,就會出錯。研究函式的單調性與其導函式的關係時一定要注意:一個函式的導函式在某個區間上單調遞增(減)的充要條件是這個函式的導函式在此區間上恆大(小)於等於0,且導函式在此區間的任意子區間上都不恆為零。

易錯點13 導數與極值關係不清致誤

錯因分析:在使用導數求函式極值時,很容易出現的錯誤就是求出使導函式等於0的點,而沒有對這些點左右兩側導函式的符號進行判斷,誤以為使導函式等於0的點就是函式的極值點。出現這些錯誤的原因是對導數與極值關係不清。可導函式在一個點處的導函式值為零隻是這個函式在此點處取到極值的必要條件,在此提醒廣大考生在使用導數求函式極值時一定要注意對極值點進行檢驗。

易錯點14 用錯基本公式致誤

錯因分析:等差數列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數列的首項為a1、公比為q,則其通項公式an=a1pn-1,當公比q≠1時,前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當公比q=1時,前n項和公式Sn=na1。在數列的基礎性試題中,等差數列、等比數列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。 易錯點15 an,Sn關係不清致誤

高考數學複習備考工作總結 篇8

1.數列的定義

按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函式值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.

(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數列的分類

(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

(2)按照項與項之間的大小關係或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

3.數列的通項公式

數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函式關係不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4。

高考數學複習備考工作總結 篇9

一、高考數學中有函式、數列、三角函式、平面向量、不等式、立體幾何等九大章節

主要是考函式和導數,因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函式的性質,包括函式的單調性、奇偶性;第二是函式的解答題,重點考察的是二次函式和高次函式,分函式和它的一些分布問題,但是這個分布重點還包含兩個分析。

二、平面向量和三角函式

對於這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函式的圖像和性質,這裡重點掌握正弦函式和餘弦函式的性質;第三,正弦定理和餘弦定理來解三角形,這方面難度並不大。

三、數列

數列這個板塊,重點考兩個方面:一個通項;一個是求和。

四、空間向量和立體幾何

在裡面重點考察兩個方面:一個是證明;一個是計算。

五、機率和統計

機率和統計主要屬於數學套用問題的範疇,需要掌握幾個方面:……等可能的機率;……事件;獨立事件和獨立重複事件發生的機率。

六、解析幾何

這部分內容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關係,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。

七、壓軸題

同學們在最後的備考複習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。

高考數學複習備考工作總結 篇10

圓與圓的位置關係的判斷方法

一、設兩個圓的半徑為R和r,圓心距為d。

則有以下五種關係:

1、d>R+r兩圓外離;兩圓的圓心距離之和大於兩圓的半徑之和。

2、d=R+r兩圓外切;兩圓的圓心距離之和等於兩圓的半徑之和。

3、d=R—r兩圓內切;兩圓的圓心距離之和等於兩圓的半徑之差。

4、d<r—rp=""兩圓內含;兩圓的圓心距離之和小於兩圓的半徑之差。

5、d<r+rp=""兩園相交;兩圓的圓心距離之和小於兩圓的半徑之和。

二、圓和圓的位置關係,還可用有無公共點來判斷:

1、無公共點,一圓在另一圓之外叫外離,在之內叫內含。

2、有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切。

3、有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

高考數學複習備考工作總結 篇11

(一)導數第一定義

設函式y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有增量△x(x0+△x也在該鄰域內)時,相應地函式取得增量△y=f(x0+△x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函式y=f(x)在點x0處可導,並稱這個極限值為函式y=f(x)在點x0處的導數記為f'(x0),即導數第一定義

(二)導數第二定義

設函式y=f(x)在點x0的某個領域內有定義,當自變數x在x0處有變化△x(x-x0也在該鄰域內)時,相應地函式變化△y=f(x)-f(x0);如果△y與△x之比當△x→0時極限存在,則稱函式y=f(x)在點x0處可導,並稱這個極限值為函式y=f(x)在點x0處的導數記為f'(x0),即導數第二定義

(三)導函式與導數

如果函式y=f(x)在開區間I內每一點都可導,就稱函式f(x)在區間I內可導。這時函式y=f(x)對於區間I內的每一個確定的x值,都對應著一個確定的導數,這就構成一個新的函式,稱這個函式為原來函式y=f(x)的導函式,記作y',f'(x),dy/dx,df(x)/dx。導函式簡稱導數。

(四)單調性及其套用

1.利用導數研究多項式函式單調性的一般步驟

(1)求f¢(x)

(2)確定f¢(x)在(a,b)內符號(3)若f¢(x)>0在(a,b)上恆成立,則f(x)在(a,b)上是增函式;若f¢(x)0的解集與定義域的交集的對應區間為增區間;f¢(x)<0的解集與定義域的交集的對應區間為減區間

高考數學複習備考工作總結 篇12

1、直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°

2、直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

高考數學複習備考工作總結 篇13

表達式:(a+b)(a-b)=a^2-b^2,兩個數的和與這兩個數差的積,等於這兩個數的平方差,這個公式就叫做乘法的平方差公式

公式運用

可用於某些分母含有根號的分式:

1/(3-4倍根號2)化簡:

1×(3+4倍根號2)/(3-4倍根號2)^2;=(3+4倍根號2)/(9-32)=(3+4倍根號2)/-23

[解方程]

x^2-y^2=1991

[思路分析]

利用平方差公式求解

[解題過程]

x^2-y^2=1991

(x+y)(x-y)=1991

因為1991可以分成1×1991,11×181

所以如果x+y=1991,x-y=1,解得x=996,y=995

如果x+y=181,x-y=11,x=96,y=85同時也可以是負數

所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995

或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85

有時應注意加減的過程。

高考數學複習備考工作總結 篇14

1.數列的定義

按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.

(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.

(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….

(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的'數,是一個函式值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.

(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.

2.數列的分類

(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.

(2)按照項與項之間的大小關係或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.

3.數列的通項公式

數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,

這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函式關係不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4,…,

由公式寫出的後續項就不一樣了,因此,通項公式的歸納不僅要看它的前幾項,更要依據數列的構成規律,多觀察分析,真正找到數列的內在規律,由數列前幾項寫出其通項公式,沒有通用的方法可循.

再強調對於數列通項公式的理解注意以下幾點:

(1)數列的通項公式實際上是一個以正整數集N.或它的有限子集{1,2,…,n}為定義域的函式的表達式.

(2)如果知道了數列的通項公式,那么依次用1,2,3,…去替代公式中的n就可以求出這個數列的各項;同時,用數列的通項公式也可判斷某數是否是某數列中的一項,如果是的話,是第幾項.

(3)如所有的函式關係不一定都有解析式一樣,並不是所有的數列都有通項公式.

如2的不足近似值,精確到1,0.1,0.01,0.001,0.0001,…所構成的數列1,1.4,1.41,1.414,1.4142,…就沒有通項公式.

(4)有的數列的通項公式,形式上不一定是的,正如舉例中的:

(5)有些數列,只給出它的前幾項,並沒有給出它的構成規律,那么僅由前面幾項歸納出的數列通項公式並不.

高考數學複習備考工作總結 篇15

等式的性質:①不等式的性質可分為不等式基本性質和不等式運算性質兩部分。

不等式基本性質有:

(1)a>bb

(2)a>b,b>ca>c(傳遞性)

(3)a>ba+c>b+c(c∈R)

(4)c>0時,a>bac>bc

cbac

運算性質有:

(1)a>b,c>da+c>b+d。

(2)a>b>0,c>d>0ac>bd。

(3)a>b>0an>bn(n∈N,n>1)。

(4)a>b>0>(n∈N,n>1)。

應注意,上述性質中,條件與結論的邏輯關係有兩種:和即推出關係和等價關係。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和套用不等式性質。

②關於不等式的性質的考察,主要有以下三類問題:

(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。

(2)利用不等式的性質及實數的性質,函式性質,判斷實數值的大小。

(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關係。

高考數學複習備考工作總結 篇16

求函式奇偶性的常見錯誤

錯因分析:求函式奇偶性的常見錯誤有求錯函式定義域或是忽視函式定義域,對函式具有奇偶性的前提條件不清,對分段函式奇偶性判斷方法不當等。判斷函式的奇偶性,首先要考慮函式的定義域,一個函式具備奇偶性的必要條件是這個函式的定義域區間關於原點對稱,如果不具備這個條件,函式一定是非奇非偶的函式。在定義域區間關於原點對稱的前提下,再根據奇偶函式的定義進行判斷,在用定義進行判斷時要注意自變數在定義域區間內的任意性。

抽象函式中推理不嚴密緻誤

錯因分析:很多抽象函式問題都是以抽象出某一類函式的共同“特徵”而設計出來的,在解決問題時,可以通過類比這類函式中一些具體函式的性質去解決抽象函式的性質。解答抽象函式問題要注意特殊賦值法的套用,通過特殊賦值可以找到函式的不變性質,這個不變性質往往是進一步解決問題的突破口。抽象函式性質的證明是一種代數推理,和幾何推理證明一樣,要注意推理的嚴謹性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規範。

函式零點定理使用不當致誤

錯因分析:如果函式y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,並且有f(a)f(b)B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果AB,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充要條件的概念作出準確的判斷。

求函式定義域忽視細節致誤

錯因分析:函式的定義域是使函式有意義的自變數的取值範圍,因此要求定義域就要根據函式解析式把各種情況下的自變數的限制條件找出來,列成不等式組,不等式組的解集就是該函式的定義域。在求一般函式定義域時要注意下面幾點:(1)分母不為0;(2)偶次被開放式非負;(3)真數大於0;(4)0的0次冪沒有意義。函式的定義域是非空的數集,在解決函式定義域時不要忘記了這點。對於複合函式,要注意外層函式的定義域是由內層函式的值域決定的。

帶有絕對值的函式單調性判斷錯誤

錯因分析:帶有絕對值的函式實質上就是分段函式,對於分段函式的單調性,有兩種基本的判斷方法:一是在各個段上根據函式的解析式所表示的函式的單調性求出單調區間,最後對各個段上的單調區間進行整合;二是畫出這個分段函式的圖象,結合函式圖象、性質進行直觀的判斷。研究函式問題離不開函式圖象,函式圖象反應了函式的所有性質,在研究函式問題時要時時刻刻想到函式的圖象,學會從函式圖象上去分析問題,尋找解決問題的方案。對於函式的幾個不同的單調遞增(減)區間,千萬記住不要使用並集,只要指明這幾個區間是該函式的單調遞增(減)區間即可。

高考數學複習備考工作總結 篇17

向量的向量積

定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。

向量的向量積性質:

∣a×b∣是以a和b為邊的平行四邊形面積。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量積運算律

a×b=—b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c。

註:向量沒有除法,“向量AB/向量CD”是沒有意義的。

高考數學複習備考工作總結 篇18

掌握每一個公式定理

做課本的例題,課本的例題的思路比較簡單,其知識點也是單一不會交叉的,如果課本上的例題你拿出來都會做了,說明你已經具備了一定的理解力。

做課後練習題,前面的題是和課本例題一個級別的,如果課本上所有的題都會做了,那么基礎夯實可以告一段落。

進行專題訓練提高數學成績

1、做高中數學題的時候千萬不能怕難題!有很多人數學分數提不動,很大一部分原因是他們的畏懼心理。有的人看到圓錐曲線和導數,看到稍微長一點的複雜一點的敘述,甚至看到21、22就已經開始退卻了。這部分的分數,如果你不去努力,永遠都不會掙到的,所以第一個建議,就是大膽的去做。前面虧欠數學這門學科太多,就算讓它打腫了又怎樣,後面一點一點的強大起來,總有那么一天你去打它的臉。

2、錯題本怎么用。和記筆記一樣,整理錯題不是謄寫不是照抄,而是摘抄。你只顧著去採擷問題,就失去了理解和挑選題目的過程,筆記同理,如果老師說什麼記什麼,那只能說明你這節課根本沒聽,真正有效率的人,是會把知識簡化,把書本讀薄的。先學學你能思考到答案的哪一步,學著去偷分。當然,因人而異,如果你覺得還有哪些題需要整理也可以記下來。

3、如何學好高中數學

1)先看筆記後做作業。有的高中學生感到。老師講過的,自己已經聽得明明白白了。但是,為什麼自己一做題就困難重重了呢?其原因在於,學生對教師所講的內容的理解,還沒能達到教師所要求的層次。因此,每天在做作業之前,一定要把課本的有關內容和當天的課堂筆記先看一看。能否堅持如此,常常是好學生與差學生的最大區別。尤其練習題不太配套時,作業中往往沒有老師剛剛講過的題目類型,因此不能對比消化。如果自己又不注意對此落實,天長日久,就會造成極大損失。

2)做題之後加強反思。學生一定要明確,現在正坐著的題,一定不是考試的題目。而是要運用現在正做著的題目的解題思路與方法。因此,要把自己做過的每道題加以反思。總結一下自己的收穫。要總結出,這是一道什麼內容的題,用的是什麼方法。做到知識成片,問題成串,日久天長,構建起一個內容與方法的科學的網路系統。

3)主動複習總結提高。進行章節總結是非常重要的。國中時是教師替學生做總結,做得細緻,深刻,完整。高中是自己給自己做總結,老師不但不給做,而且是講到哪,考到哪,不留複習時間,也沒有明確指出做總結的時間。