高一數學函式知識總結 篇1
一、複合函式定義:設y=f(u)的定義域為A,u=g(x)的值域為B,若AB,則y關於x函式的y=f[g(x)]叫做函式f與g的複合函式,u叫中間量.
二、複合函式定義域問題:(一)例題剖析:
(1)、已知f(x)的定義域,求fg(x)的定義域
思路:設函式f(x)的定義域為D,即xD,所以f的作用範圍為D,又f對g(x)作用,作用範圍不變,所以g(x)D,解得xE,E為fg(x)的定義域。
例1.設函式f(u)的定義域為(0,1),則函式f(lnx)的定義域為_____________。解析:函式f(u)的定義域為(0,1)即u(0,1),所以f的作用範圍為(0,1)又f對lnx作用,作用範圍不變,所以0lnx1解得x(1,e),故函式f(lnx)的定義域為(1,e)
1,則函式ff(x)的定義域為______________。x11解析:先求f的作用範圍,由f(x),知x1
x1例2.若函式f(x)即f的作用範圍為xR|x1,又f對f(x)作用所以f(x)R且f(x)1,即ff(x)中x應滿足x1
f(x)1x1即1,解得x1且x2
1x1故函式ff(x)的定義域為xR|x1且x2(2)、已知fg(x)的定義域,求f(x)的定義域
思路:設fg(x)的定義域為D,即xD,由此得g(x)E,所以f的作用範圍為E,又f對x作用,作用範圍不變,所以xE,E為f(x)的定義域。
例3.已知f(32x)的定義域為x1,2,則函式f(x)的定義域為_________。解析:f(32x)的定義域為1,2,即x1,2,由此得32x1,5所以f的作用範圍為1,5,又f對x作用,作用範圍不變,所以x1,5
即函式f(x)的定義域為1,5
x2例4.已知f(x4)lg2,則函式f(x)的定義域為______________。
x82x2x20解析:先求f的作用範圍,由f(x4)lg2,知2x8x82解得x44,f的作用範圍為(4,),又f對x作用,作用範圍不變,所以
2x(4,),即f(x)的定義域為(4,)
(3)、已知fg(x)的定義域,求fh(x)的定義域
思路:設fg(x)的定義域為D,即xD,由此得g(x)E,f的作用範圍為E,又f對h(x)作用,作用範圍不變,所以h(x)E,解得xF,F為fh(x)的定義域。
例5.若函式f(2x)的定義域為1,1,則f(log2x)的定義域為____________。
解析:f(2)的定義域為1,1,即x1,1,由此得2,2
2xx11f的作用範圍為,2
21又f對log2x作用,所以log2x,2,解得x2即f(log2x)的定義域為
2,4
2,4
評註:函式定義域是自變數x的取值範圍(用集合或區間表示)f對誰作用,則誰的範圍是f的作用範圍,f的作用對象可以變,但f的作用範圍不會變。利用這種理念求此類定義域問題會有“得來全不費功夫”的感覺,值得大家探討。
三、複合函式單調性問題
(1)引理證明已知函式yf(g(x)).若ug(x)在區間(a,b)上是減函式,其值域為(c,d),又函式yf(u)在區間(c,d)上是減函式,那么,原複合函式yf(g(x))在區間(a,b)上是增函式.
證明:在區間(a,b)內任取兩個數x1,x2,使ax1x2b
因為ug(x)在區間(a,b)上是減函式,所以g(x1)g(x2),記u1g(x1),
u2g(x2)即u1u2,且u1,u2(c,d)
因為函式yf(u)在區間(c,d)上是減函式,所以f(u1)f(u2),即
f(g(x1))f(g(x2)),
故函式yf(g(x))在區間(a,b)上是增函式.(2).複合函式單調性的判斷
複合函式的單調性是由兩個函式共同決定。為了記憶方便,我們把它們總結成一個圖表:
yf(u)ug(x)yf(g(x))增增增減減增減減減增以上規律還可總結為:“同向得增,異向得減”或“同增異減”.(3)、複合函式yf(g(x))的單調性判斷步驟:確定函式的定義域;
將複合函式分解成兩個簡單函式:yf(u)與ug(x)。分別確定分解成的兩個函式的單調性;
若兩個函式在對應的區間上的單調性相同(即都是增函式,或都是減函式),則複合後的函式yf(g(x))為增函式;若兩個函式在對應的區間上的單調性相異(即一個是增函式,而另一個是減函式),則複合後的函式yf(g(x))為減函式。
(4)例題演練
例1、求函式ylog1(x2x3)的單調區間,並用單調定義給予證明22解:定義域x2x30x3或x1
單調減區間是(3,)設x1,x2(3,)且x1x2則
y1log1(x12x13)y2log1(x22x23)
2222(x12x13)(x22x23)=(x2x1)(x2x12)
∵x2x13∴x2x10x2x120∴(x12x13)>(x22x23)又底數0∴y2y10即y2y1∴y在(3,)上是減函式2222112同理可證:y在(,1)上是增函式
高一數學函式知識總結 篇2
【(一)、映射、函式、反函式】
1、對應、映射、函式三個概念既有共性又有區別,映射是一種特殊的對應,而函式又是一種特殊的映射.
2、對於函式的概念,應注意如下幾點:
(1)掌握構成函式的三要素,會判斷兩個函式是否為同一函式.
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函式關係式,特別是會求分段函式的解析式.
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的複合函式,其中g(x)為內函式,f(u)為外函式.
3、求函式y=f(x)的反函式的一般步驟:
(1)確定原函式的值域,也就是反函式的定義域;
(2)由y=f(x)的解析式求出x=f-1(y);
(3)將x,y對換,得反函式的習慣表達式y=f-1(x),並註明定義域.
注意①:對於分段函式的反函式,先分別求出在各段上的反函式,然後再合併到一起.
②熟悉的套用,求f-1(x0)的值,合理利用這個結論,可以避免求反函式的過程,從而簡化運算.
【(二)、函式的解析式與定義域】
1、函式及其定義域是不可分割的整體,沒有定義域的函式是不存在的,因此,要正確地寫出函式的解析式,必須是在求出變數間的對應法則的同時,求出函式的.定義域.求函式的定義域一般有三種類型:
(1)有時一個函式來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;
(2)已知一個函式的解析式求其定義域,只要使解析式有意義即可.如:
①分式的分母不得為零;
②偶次方根的被開方數不小於零;
③對數函式的真數必須大於零;
④指數函式和對數函式的底數必須大於零且不等於1;
⑤三角函式中的正切函式y=tanx(x∈R,且k∈Z),餘切函式y=cotx(x∈R,x≠kπ,k∈Z)等.
應注意,一個函式的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集).
(3)已知一個函式的定義域,求另一個函式的定義域,主要考慮定義域的深刻含義即可.
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值範圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.
2、求函式的解析式一般有四種情況
(1)根據某實際問題需建立一種函式關係時,必須引入合適的變數,根據數學的有關知識尋求函式的解析式.
(2)有時題設給出函式特徵,求函式的解析式,可採用待定係數法.比如函式是一次函式,可設f(x)=ax+b(a≠0),其中a,b為待定係數,根據題設條件,列出方程組,求出a,b即可.
(3)若題設給出複合函式f[g(x)]的表達式時,可用換元法求函式f(x)的表達式,這時必須求出g(x)的值域,這相當於求函式的定義域.
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.
【(三)、函式的值域與最值】
1、函式的值域取決於定義域和對應法則,不論採用何種方法求函式值域都應先考慮其定義域,求函式值域常用方法如下:
(1)直接法:亦稱觀察法,對於結構較為簡單的函式,可由函式的解析式套用不等式的性質,直接觀察得出函式的值域.
(2)換元法:運用代數式或三角換元將所給的複雜函式轉化成另一種簡單函式再求值域,若函式解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.
(3)反函式法:利用函式f(x)與其反函式f-1(x)的定義域和值域間的關係,通過求反函式的定義域而得到原函式的值域,形如(a≠0)的函式值域可採用此法求得.
(4)配方法:對於二次函式或二次函式有關的函式的值域問題可考慮用配方法.
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函式的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.
(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用“△≥0”求值域.其題型特徵是解析式中含有根式或分式.
(7)利用函式的單調性求值域:當能確定函式在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函式的值域.
(8)數形結合法求函式的值域:利用函式所表示的幾何意義,藉助於幾何方法或圖象,求出函式的值域,即以數形結合求函式的值域.
2、求函式的最值與值域的區別和聯繫
求函式最值的常用方法和求函式值域的方法基本上是相同的,事實上,如果在函式的值域中存在一個最小(大)數,這個數就是函式的最小(大)值.因此求函式的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.
如函式的值域是(0,16],值是16,無最小值.再如函式的值域是(-∞,-2]∪[2,+∞),但此函式無值和最小值,只有在改變函式定義域後,如x>0時,函式的最小值為2.可見定義域對函式的值域或最值的影響.
3、函式的最值在實際問題中的套用
函式的最值的套用主要體現在用函式知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.
【(四)、函式的奇偶性】
1、函式的奇偶性的定義:對於函式f(x),如果對於函式定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函式f(x)就叫做奇函式(或偶函式).
正確理解奇函式和偶函式的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函式f(x)為奇函式或偶函式的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恆等式.(奇偶性是函式定義域上的整體性質).
2、奇偶函式的定義是判斷函式奇偶性的主要依據。為了便於判斷函式的奇偶性,有時需要將函式化簡或套用定義的等價形式:
注意如下結論的運用:
(1)不論f(x)是奇函式還是偶函式,f(|x|)總是偶函式;
(2)f(x)、g(x)分別是定義域D1、D2上的奇函式,那么在D1∩D2上,f(x)+g(x)是奇函式,f(x)·g(x)是偶函式,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函式的複合函式的奇偶性通常是偶函式;
(4)奇函式的導函式是偶函式,偶函式的導函式是奇函式。
3、有關奇偶性的幾個性質及結論
(1)一個函式為奇函式的充要條件是它的圖象關於原點對稱;一個函式為偶函式的充要條件是它的圖象關於y軸對稱.
(2)如要函式的定義域關於原點對稱且函式值恆為零,那么它既是奇函式又是偶函式.
(3)若奇函式f(x)在x=0處有意義,則f(0)=0成立.
(4)若f(x)是具有奇偶性的區間單調函式,則奇(偶)函式在正負對稱區間上的單調性是相同(反)的。
(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(-x)是偶函式,G(x)=f(x)-f(-x)是奇函式.
(6)奇偶性的推廣
函式y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函式.函式y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函式。
【(五)、函式的單調性】
1、單調函式
對於函式f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或x2),這說明單調性使得自變數間的不等關係和函式值之間的不等關係可以“正逆互推”.
5、複合函式y=f[g(x)]的單調性
若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則複合函式y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱“同增、異減”.
在研究函式的單調性時,常需要先將函式化簡,轉化為討論一些熟知函式的單調性。因此,掌握並熟記一次函式、二次函式、指數函式、對數函式的單調性,將大大縮短我們的判斷過程.
6、證明函式的單調性的方法
(1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或0,則f(x)為增函式;如果f′(x)0)
沿y軸向平移b個單位
y=f(x±a)(a>0)
沿x軸向平移a個單位
y=-f(x)
作關於x軸的對稱圖形
y=f(|x|)
右不動、左右關於y軸對稱
y=|f(x)|
上不動、下沿x軸翻折
y=f-1(x)
作關於直線y=x的對稱圖形
y=f(ax)(a>0)
橫坐標縮短到原來的,縱坐標不變
y=af(x)
縱坐標伸長到原來的|a|倍,橫坐標不變
y=f(-x)
作關於y軸對稱的圖形
【例】定義在實數集上的函式f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.
①求證:f(0)=1;
②求證:y=f(x)是偶函式;
③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函式f(x)是不是周期函式,如果是,找出它的一個周期;如果不是,請說明理由.
思路分析:我們把沒有給出解析式的函式稱之為抽象函式,解決這類問題一般採用賦值法.
解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.
②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函式.
③分別用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=-f(x).
兩邊套用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),
所以f(x)是周期函式,2c就是它的一個周期.
高一數學函式知識總結 篇3
一、複合函式定義:設y=f(u)的定義域為A,u=g(x)的值域為B,若AB,則y關於x函式的y=f[g(x)]叫做函式f與g的複合函式,u叫中間量.
二、複合函式定義域問題:
(一)例題剖析:
(1)、已知f(x)的定義域,求fg(x)的定義域
思路:設函式f(x)的定義域為D,即xD,所以f的作用範圍為D,又f對g(x)作用,作用範圍不變,所以g(x)D,解得xE,E為fg(x)的定義域。
例1.設函式f(u)的定義域為(0,1),則函式f(lnx)的定義域為_____________。解析:函式f(u)的定義域為(0,1)即u(0,1),所以f的作用範圍為(0,1)又f對lnx作用,作用範圍不變,所以0lnx1解得x(1,e),故函式f(lnx)的定義域為(1,e)例2.若函式f(x)1x1,則函式ff(x)的定義域為______________。
1x1解析:先求f的作用範圍,由f(x),知x1
即f的作用範圍為xR|x1,又f對f(x)作用所以f(x)R且f(x)1,即ff(x)中x應滿足x1即1,解得x1且x2
1x1x1f(x)1
故函式ff(x)的定義域為xR|x1且x2(2)、已知fg(x)的定義域,求f(x)的定義域
思路:設fg(x)的定義域為D,即xD,由此得g(x)E,所以f的作用範圍為E,又f對x作用,作用範圍不變,所以xE,E為f(x)的定義域。
例3.已知f(32x)的定義域為x1,2,則函式f(x)的定義域為_________。解析:f(32x)的定義域為1,2,即x1,2,由此得32x1,5所以f的作用範圍為1,5,又f對x作用,作用範圍不變,所以x1,5
即函式f(x)的定義域為1,5
2例4.已知f(x4)lg2x2x8,則函式f(x)的定義域為______________。
解析:先求f的作用範圍,由f(x4)lg2x22x8,知
x22x80
解得x244,f的作用範圍為(4,),又f對x作用,作用範圍不變,所以x(4,),即f(x)的定義域為(4,)
(3)、已知fg(x)的定義域,求fh(x)的定義域
思路:設fg(x)的定義域為D,即xD,由此得g(x)E,f的作用範圍為E,又f對h(x)作用,作用範圍不變,所以h(x)E,解得xF,F為fh(x)的定義域。
例5.若函式f(2x)的定義域為1,1,則f(log2x)的定義域為____________。
1解析:f(2)的定義域為1,1,即x1,1,由此得2,2
2f的作用範圍為
1,22又f對log2x作用,所以log2x,2,解得x2即f(log2x)的定義域為
12,4
2,4
評註:函式定義域是自變數x的取值範圍(用集合或區間表示)f對誰作用,則誰的範圍是f的作用範圍,f的作用對象可以變,但f的作用範圍不會變。利用這種理念求此類定義域問題會有“得來全不費功夫”的感覺,值得大家探討。
(二)同步練習:
21、已知函式f(x)的定義域為[0,1],求函式f(x)的定義域。
答案:[1,1]
2、已知函式f(32x)的定義域為[3,3],求f(x)的定義域。
答案:[3,9]
3、已知函式yf(x2)的定義域為(1,0),求f(|2x1|)的定義域。
(12,0)(1,3)答案:
2
4、設fxlg2xx2,則ff的定義域為
2x2xA.4,00,4B.4,11,4C.2,11,2D.4,22,4
x22,2x20得,f(x)的定義域為x|2x2。故解:選C.由,解得2x222.xx2x4,11,4。故ff的定義域為4,11,4
2x5、已知函式f(x)的定義域為x([解析]由已知,有1ax3,13x,),求g(x)f(ax)f(a0)的定義域。22a221x3,2a212x32112aa2x3232aa.,
x(1)當a1時,定義域為{x|(2)當
32a32};a2a,即0a1時,有a2x32a};
12a2a,
定義域為{x|(3)當
32a32a,即a1時,有1x32a}.12aa2a2,
定義域為{x|2a故當a1時,定義域為{x|xx32a32};
當0a1時,定義域為{x|a}.
[點評]對於含有參數的函式,求其定義域,必須對字母進行討論,要注意思考討論字母的方法。
三、複合函式單調性問題
(1)引理證明已知函式yf(g(x)).若ug(x)在區間(a,b)上是減函式,其值域為(c,d),又函式yf(u)在區間(c,d)上是減函式,那么,原複合函式yf(g(x))在區間(a,b)上是增函式.
證明:在區間(a,b)內任取兩個數x1,x2,使ax1x2b
因為ug(x)在區間(a,b)上是減函式,所以g(x1)g(x2),記u1g(x1),
u2g(x2)即u1u2,且u1,u2(c,d)
因為函式yf(u)在區間(c,d)上是減函式,所以f(u1)f(u2),即f(g(x1))f(g(x2)),
故函式yf(g(x))在區間(a,b)上是增函式.(2).複合函式單調性的判斷
複合函式的單調性是由兩個函式共同決定。為了記憶方便,我們把它們總結成一個圖表:
yf(u)ug(x)yf(g(x))增增增減減增減減減增以上規律還可總結為:“同向得增,異向得減”或“同增異減”.(3)、複合函式yf(g(x))的單調性判斷步驟:確定函式的定義域;
將複合函式分解成兩個簡單函式:yf(u)與ug(x)。分別確定分解成的兩個函式的單調性;
若兩個函式在對應的區間上的單調性相同(即都是增函式,或都是減函式),則複合後的函式yf(g(x))為增函式;若兩個函式在對應的區間上的單調性相異(即一個是增函式,而另一個是減函式),則複合後的函式yf(g(x))為減函式。
(4)例題演練例1、求函式ylog212(x2x3)的單調區間,並用單調定義給予證明2解:定義域x2x30x3或x1
單調減區間是(3,)設x1,x2(3,)且x1x2則
y1log2(x12x13)y2log122(x22x23)122(x12x13)(x22x23)=(x2x1)(x2x12)
2∵x2x13∴x2x10x2x120∴(x12x13)>(x22x23)又底數0∴y2y10即y2y1∴y在(3,)上是減函式22121
同理可證:y在(,1)上是增函式[例]2、討論函式f(x)loga(3x22x1)的單調性.[解]由3x22x10得函式的定義域為
1{x|x1,或x}.
3則當a1時,若x1,∵u3x22x1為增函式,∴f(x)loga(3x22x1)為增函式.
若x13,∵u3x22x1為減函式.
∴f(x)loga(3x22x1)為減函式。
當0a1時,若x1,則f(x)loga(3x22x1)為減函式,若xf(x)loga(3x22x1)為增函式.
13,則
例3、.已知y=loga(2-a)在[0,1]上是x的減函式,求a的取值範圍.解:∵a>0且a≠1
當a>1時,函式t=2-a>0是減函式
由y=loga(2-a)在[0,1]上x的減函式,知y=logat是增函式,∴a>1
由x[0,1]時,2-a2-a>0,得a<2,∴1<a<2
當0例4、已知函式f(x2)ax2(a3)xa2(a為負整數)的圖象經過點
(m2,0),mR,設g(x)f[f(x)],F(x)pg(x)f(x).問是否存在實數p(p0)使得
F(x)在區間(,f(2)]上是減函式,且在區間(f(2),0)上是減函式?並證明你的結論。
[解析]由已知f(m2)0,得am2(a3)ma20,其中mR,a0.∴0即3a22a90,解得
1273a1273.
∵a為負整數,∴a1.
∴f(x2)x4x3(x2)21,
2242即f(x)x21.g(x)f[f(x)](x1)1x2x,
∴F(x)pg(x)f(x)px4(2p1)x21.
假設存在實數p(p0),使得F(x)滿足條件,設x1x2,
22)[p(x12x2)2p1].∴F(x1)F(x2)(x12x2∵f(2)3,當x1,x2(,3)時,F(x)為減函式,
220,p(x12x2)2p10.∴F(x1)F(x2)0,∴x12x2218,∵x13,x23,∴x12x22)2p116p1,∴p(x12x2∴16p10.①
當x1,x2(3,0)時,F(x)增函式,∴F(x1)F(x2)0.
220,∴p(x12x2)2p116p1,∵x12x2∴16p10.由①、②可知p116②
,故存在p116.
(5)同步練習:
1.函式y=logA.(-∞,1)C.(-∞,
3212(x2-3x+2)的單調遞減區間是
B.(2,+∞)D.(
32),+∞)
解析:先求函式定義域為(-o,1)∪(2,+∞),令t(x)=x2+3x+2,函式t(x)
在(-∞,1)上單調遞減,在(2,+∞)上單調遞增,根據複合函式同增異減的原則,函式y=log12(x2-3x+2)在(2,+∞)上單調遞減.
答案:B
2找出下列函式的單調區間.
(1)yax(2)y223x2(a1);.
x22x3答案:(1)在(,]上是增函式,在[,)上是減函式。
2233(2)單調增區間是[1,1],減區間是[1,3]。
3、討論yloga(a1),(a0,且a0)的單調性。
答案:a1,時(0,)為增函式,1a0時,(,0)為增函式。4.求函式y=log13x(x2-5x+4)的定義域、值域和單調區間.
解:由(x)=x2-5x+4>0,解得x>4或x<1,所以x∈(-∞,1)∪(4,+∞),當x∈(-∞,1)∪(4,+∞),{|=x2-5x+4}=R,所以函式的值域是R.因
++
為函式y=log13(x2-5x+4)是由y=log13(x)與(x)=x2-5x+4複合而成,函
52數y=log13(x)在其定義域上是單調遞減的,函式(x)=x2-5x+4在(-∞,
)
上為減函式,在[
52,+∞]上為增函式.考慮到函式的定義域及複合函式單調性,y=log13(x2-5x+4)的增區間是定義域內使y=log13(x)為減函式、(x)=x2-5x+4也
為減函式的區間,即(-∞,1);y=log1(x2-5x+4)的減區間是定義域內使y=log313(x)為減函式、(x)=x2-5x+4為增函式的區間,即(4,+∞).
變式練習一、選擇題
1.函式f(x)=log
A.(1,+∞)C.(-∞,2)
12(x-1)的定義域是
B.(2,+∞)
2]D.(1,解析:要保證真數大於0,還要保證偶次根式下的式子大於等於0,
x-1>0所以log(x-1)120解得1<x≤2.
答案:D2.函式y=log
12(x2-3x+2)的單調遞減區間是
B.(2,+∞)D.(
32A.(-∞,1)C.(-∞,
32),+∞)
解析:先求函式定義域為(-o,1)∪(2,+∞),令t(x)=x2+3x+2,函式t(x)在(-∞,1)上單調遞減,在(2,+∞)上單調遞增,根據複合函式同增異減的原則,函式y=log12(x2-3x+2)在(2,+∞)上單調遞減.
答案:B
3.若2lg(x-2y)=lgx+lgy,則
A.4
yx的值為B.1或D.
1414
C.1或4
yx錯解:由2lg(x-2y)=lgx+lgy,得(x-2y)2=xy,解得x=4y或x=y,則有
14=或
xy=1.
答案:選B
正解:上述解法忽略了真數大於0這個條件,即x-2y>0,所以x>2y.所以x=y舍掉.只有x=4y.答案:D
4.若定義在區間(-1,0)內的函式f(x)=log的取值範圍為
A.(0,C.(
12122a(x+1)滿足f(x)>0,則a
)
B.(0,1)D.(0,+∞)
,+∞)
解析:因為x∈(-1,0),所以x+1∈(0,1).當f(x)>0時,根據圖象只有0<
2a<l,解得0<a<答案:A
12(根據本節思維過程中第四條提到的性質).
5.函式y=lg(
21-x-1)的圖象關於
1+x1-xA.y軸對稱C.原點對稱
21-x
B.x軸對稱D.直線y=x對稱
1+x1-x解析:y=lg(
-1)=lg,所以為奇函式.形如y=lg或y=lg1+x1-x的函式都為奇函式.答案:C二、填空題
已知y=loga(2-ax)在[0,1]上是x的減函式,則a的取值範圍是__________.解析:a>0且a≠1(x)=2-ax是減函式,要使y=loga(2-ax)是減函式,則a>1,又2-ax>0a<答案:a∈(1,2)
7.函式f(x)的圖象與g(x)=(的單調遞減區間為______.
解析:因為f(x)與g(x)互為反函式,所以f(x)=log則f(2x-x2)=log132x(0<x<1)a<2,所以a∈(1,2).
13)的圖象關於直線y=x對稱,則f(2x-x2)
13(2x-x2),令(x)=2x-x2>0,解得0<x<2.
(x)=2x-x2在(0,1)上單調遞增,則f[(x)]在(0,1)上單調遞減;(x)=2x-x2在(1,2)上單調遞減,則f[(x)]在[1,2)上單調遞增.所以f(2x-x2)的單調遞減區間為(0,1).答案:(0,1)
8.已知定義域為R的偶函式f(x)在[0,+∞]上是增函式,且f(則不等式f(log4x)>0的解集是______.解析:因為f(x)是偶函式,所以f(-
1212)=0,
)=f(
12)=0.又f(x)在[0,+∞]
12上是增函式,所以f(x)在(-∞,0)上是減函式.所以f(log4x)>0log4x>
9
或log4x<-
12.
12解得x>2或0<x<
.
12答案:x>2或0<x<三、解答題9.求函式y=log13
(x2-5x+4)的定義域、值域和單調區間.
解:由(x)=x2-5x+4>0,解得x>4或x<1,所以x∈(-∞,1)∪(4,+∞),當x∈(-∞,1)∪(4,+∞),{|=x2-5x+4}=R,所以函式的值域是R
++
.因為函式y=log1(x2-5x+4)是由y=log313(x)與(x)=x2-5x+4複合而成,
52函式y=log13(x)在其定義域上是單調遞減的,函式(x)=x2-5x+4在(-∞,
)
上為減函式,在[
52,+∞]上為增函式.考慮到函式的定義域及複合函式單調性,y=log13(x2-5x+4)的增區間是定義域內使y=log13(x)為減函式、(x)=x2-5x+4也
為減函式的區間,即(-∞,1);y=log1(x2-5x+4)的減區間是定義域內使y=log313(x)為減函式、(x)=x2-5x+4為增函式的區間,即(4,+∞).10.設函式f(x)=
23x+5+lg3-2x3+2x,
(1)求函式f(x)的定義域;
(2)判斷函式f(x)的單調性,並給出證明;
(3)已知函式f(x)的反函式f1(x),問函式y=f1(x)的圖象與x軸有交點嗎?
--
若有,求出交點坐標;若無交點,說明理由.解:(1)由3x+5≠0且<
323-2x3+2x>0,解得x≠-
53且-
32<x<
32.取交集得-
32<x
.
2(2)令(x)=
3-2x3+2x=-1+
3x+56,隨著x增大,函式值減小,所以在定義域內是減函式;
3+2x隨著x增大,函式值減小,所以在定義域內是減函式.
又y=lgx在定義域內是增函式,根據複合單調性可知,y=lg(x)=
23x+53-2x3+2x是減函式,所以f
+lg3-2x3+2x是減函式.
(3)因為直接求f(x)的反函式非常複雜且不易求出,於是利用函式與其反函式之間定義域與值域的關係求解.
設函式f(x)的反函式f1(x)與工軸的交點為(x0,0).根據函式與反函式之間定義
-
域與值域的關係可知,f(x)與y軸的交點是(0,x0),將(0,x0)代入f(x),解得x0=
一.指數函式與對數函式
.同底的指數函式yax與對數函式ylogax互為反函式;
(二)主要方法:
1.解決與對數函式有關的問題,要特別重視定義域;
2.指數函式、對數函式的單調性決定於底數大於1還是小於1,要注意對底數的討論;3.比較幾個數的大小的常用方法有:①以0和1為橋樑;②利用函式的單調性;③作差.(三)例題分析:
2例1.(1)若aba1,則logbxyz(2)若23525.所以函式y=f1(x)的圖象與x軸有交點,交點為(
-
25,0)。
ba,logba,logab從小到大依次為;
z都是正數,,且x,則2x,y,3y,5z從小到大依次為;
(3)設x0,且ab1(a0,b0),則a與b的大小關係是
(A)ba1(B)ab1(C)1ba(D)1ab
2解:(1)由aba1得
baa,故logbbxyz(2)令235t,則t1,xalgtlogba1logab.
lg2,ylgtlg3,zlgtlg5,
∴2x3y2lgtlg23lgtlg3lgt(lg9lg8)lg2lg30,∴2x3y;
同理可得:2x5z0,∴2x5z,∴3y2x5z.(3)取x1,知選(B).例2.已知函式f(x)ax(a1),
x1求證:(1)函式f(x)在(1,)上為增函式;(2)方程f(x)0沒有負數根.
x2證明:(1)設1x1x2,則f(x1)f(x2)aax1x12x11x2ax2x22x21
ax1x1ax12x11x22x21ax23(x1x2)(x11)(x21),
∵1x1x2,∴x110,x210,x1x20,∴
3(x1x2)(x11)(x21)0;
∵1x1x2,且a1,∴ax1ax2,∴aax1x20,
∴f(x1)f(x2)0,即f(x1)f(x2),∴函式f(x)在(1,)上為增函式;(2)假設x0是方程f(x)0的負數根,且x01,則a即ax0x0x02x010,
2x0x013(x01)x013x011,①3x013,∴
3x0112,而由a1知ax0當1x00時,0x011,∴∴①式不成立;
當x01時,x010,∴
3x011,
0,∴
3x0111,而ax00,
∴①式不成立.
綜上所述,方程f(x)0沒有負數根.
例3.已知函式f(x)loga(ax1)(a0且a1).求證:(1)函式f(x)的圖象在y軸的一側;
(2)函式f(x)圖象上任意兩點連線的斜率都大於0.
證明:(1)由a10得:a1,
∴當a1時,x0,即函式f(x)的定義域為(0,),此時函式f(x)的圖象在y軸的右側;
當0a1時,x0,即函式f(x)的定義域為(,0),此時函式f(x)的圖象在y軸的左側.
∴函式f(x)的圖象在y軸的一側;
(2)設A(x1,y1)、B(x2,y2)是函式f(x)圖象上任意兩點,且x1x2,則直線AB的斜率ky1y2x1x2x1x2,y1y2loga(a1)loga(ax1x1x21)logax2aa11,
當a1時,由(1)知0x1x2,∴1a∴0aax1x2ax2,∴0a1ax11,
111,∴y1y20,又x1x20,∴k0;
x1當0a1時,由(1)知x1x20,∴a∴
ax1x2ax21,∴ax11ax210,
1,∴y1y20,又x1x20,∴k0.1∴函式f(x)圖象上任意兩點連線的斜率都大於0.
a1
高一數學函式知識總結 篇4
元素與集合的關係有“屬於”與“不屬於”兩種。
集合與集合之間的關係
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個≠符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。
高一數學函式知識總結 篇5
1.函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函式.記作:y=f(x),x∈A.其中,x叫做自變數,x的取值範圍A叫做函式的定義域;與x的值相對應的y值叫做函式值,函式值的集合{f(x)|x∈A}叫做函式的值域.
注意:2如果只給出解析式y=f(x),而沒有指明它的定義域,則函式的定義域即是指能使這個式子有意義的實數的集合;3函式的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函式式有意義的實數x的集合稱為函式的定義域,求函式的定義域時列不等式組的主要依據是:(1)分式的分母不等於零;(2)偶次方根的被開方數不小於零;(3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1.(5)如果函式是由一些基本函式通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零(6)實際問題中的函式的定義域還要保證實際問題有意義.
構成函式的三要素:定義域、對應關係和值域
再注意:(1)構成函式三個要素是定義域、對應關係和值域.由於值域是由定義域和對應關係決定的,所以,如果兩個函式的定義域和對應關係完全一致,即稱這兩個函式相等(或為同一函式)(2)兩個函式相等若且唯若它們的定義域和對應關係完全一致,而與表示自變數和函式值的字母無關。相同函式的判斷方法:①表達式相同;②定義域一致(兩點必須同時具備)
值域補充
(1)、函式的值域取決於定義域和對應法則,不論採取什麼方法求函式的值域都應先考慮其定義域.(2).應熟悉掌握一次函式、二次函式、指數、對數函式及各三角函式的值域,它是求解複雜函式值域的基礎。
3.函式圖象知識歸納
(1)定義:在平面直角坐標系中,以函式y=f(x),(x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的集合C,叫做函式y=f(x),(x∈A)的圖象.
C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.即記為C={P(x,y)|y=f(x),x∈A}
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。
(2)畫法
A、描點法:根據函式解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最後用平滑的曲線將這些點連線起來.
B、圖象變換法(請參考必修4三角函式)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函式的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。
高一數學函式知識總結 篇6
【(一)、映射、函式、反函式】
1、對應、映射、函式三個概念既有共性又有區別,映射是一種特殊的對應,而函式又是一種特殊的映射。
2、對於函式的概念,應注意如下幾點:
(1)掌握構成函式的三要素,會判斷兩個函式是否為同一函式。
(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函式關係式,特別是會求分段函式的解析式。
(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的複合函式,其中g(x)為內函式,f(u)為外函式。
3、求函式y=f(x)的反函式的一般步驟:
(1)確定原函式的值域,也就是反函式的定義域;
(2)由y=f(x)的解析式求出x=f—1(y);
(3)將x,y對換,得反函式的習慣表達式y=f—1(x),並註明定義域。
注意①:對於分段函式的反函式,先分別求出在各段上的反函式,然後再合併到一起。
②熟悉的套用,求f—1(x0)的值,合理利用這個結論,可以避免求反函式的過程,從而簡化運算。
【(二)、函式的解析式與定義域】
1、函式及其定義域是不可分割的整體,沒有定義域的函式是不存在的,因此,要正確地寫出函式的解析式,必須是在求出變數間的對應法則的同時,求出函式的定義域。求函式的定義域一般有三種類型:
(1)有時一個函式來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;
(2)已知一個函式的解析式求其定義域,只要使解析式有意義即可。如:
①分式的分母不得為零;
②偶次方根的被開方數不小於零;
③對數函式的真數必須大於零;
④指數函式和對數函式的底數必須大於零且不等於1;
⑤三角函式中的正切函式y=tanx(x∈R,且k∈Z),餘切函式y=cotx(x∈R,x≠kπ,k∈Z)等。
應注意,一個函式的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集)。
(3)已知一個函式的定義域,求另一個函式的定義域,主要考慮定義域的深刻含義即可。
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值範圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。
2、求函式的解析式一般有四種情況
(1)根據某實際問題需建立一種函式關係時,必須引入合適的變數,根據數學的有關知識尋求函式的解析式。
(2)有時題設給出函式特徵,求函式的解析式,可採用待定係數法。比如函式是一次函式,可設f(x)=ax+b(a≠0),其中a,b為待定係數,根據題設條件,列出方程組,求出a,b即可。
(3)若題設給出複合函式f[g(x)]的表達式時,可用換元法求函式f(x)的表達式,這時必須求出g(x)的值域,這相當於求函式的定義域。
(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。
【(三)、函式的值域與最值】
1、函式的值域取決於定義域和對應法則,不論採用何種方法求函式值域都應先考慮其定義域,求函式值域常用方法如下:
(1)直接法:亦稱觀察法,對於結構較為簡單的函式,可由函式的解析式套用不等式的性質,直接觀察得出函式的值域。
(2)換元法:運用代數式或三角換元將所給的複雜函式轉化成另一種簡單函式再求值域,若函式解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。
(3)反函式法:利用函式f(x)與其反函式f—1(x)的定義域和值域間的關係,通過求反函式的定義域而得到原函式的值域,形如(a≠0)的函式值域可採用此法求得。
(4)配方法:對於二次函式或二次函式有關的函式的值域問題可考慮用配方法。
(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函式的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。
(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用“△≥0”求值域。其題型特徵是解析式中含有根式或分式。
(7)利用函式的單調性求值域:當能確定函式在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函式的值域。
(8)數形結合法求函式的值域:利用函式所表示的幾何意義,藉助於幾何方法或圖象,求出函式的值域,即以數形結合求函式的值域。
2、求函式的最值與值域的區別和聯繫
求函式最值的常用方法和求函式值域的方法基本上是相同的,事實上,如果在函式的值域中存在一個最小(大)數,這個數就是函式的最小(大)值。因此求函式的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。
如函式的值域是(0,16],值是16,無最小值。再如函式的值域是(—∞,—2]∪[2,+∞),但此函式無值和最小值,只有在改變函式定義域後,如x>0時,函式的最小值為2。可見定義域對函式的值域或最值的影響。
3、函式的最值在實際問題中的套用
函式的最值的套用主要體現在用函式知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值。
【(四)、函式的奇偶性】
1、函式的奇偶性的定義:對於函式f(x),如果對於函式定義域內的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函式f(x)就叫做奇函式(或偶函式)。
正確理解奇函式和偶函式的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函式f(x)為奇函式或偶函式的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恆等式。(奇偶性是函式定義域上的整體性質)。
2、奇偶函式的定義是判斷函式奇偶性的主要依據。為了便於判斷函式的奇偶性,有時需要將函式化簡或套用定義的等價形式:
注意如下結論的運用:
(1)不論f(x)是奇函式還是偶函式,f(|x|)總是偶函式;
(2)f(x)、g(x)分別是定義域D1、D2上的奇函式,那么在D1∩D2上,f(x)+g(x)是奇函式,f(x)·g(x)是偶函式,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
(3)奇偶函式的複合函式的奇偶性通常是偶函式;
(4)奇函式的導函式是偶函式,偶函式的導函式是奇函式。
3、有關奇偶性的幾個性質及結論
(1)一個函式為奇函式的充要條件是它的圖象關於原點對稱;一個函式為偶函式的充要條件是它的圖象關於y軸對稱。
(2)如要函式的定義域關於原點對稱且函式值恆為零,那么它既是奇函式又是偶函式。
(3)若奇函式f(x)在x=0處有意義,則f(0)=0成立。
(4)若f(x)是具有奇偶性的區間單調函式,則奇(偶)函式在正負對稱區間上的單調性是相同(反)的。
(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(—x)是偶函式,G(x)=f(x)—f(—x)是奇函式。
(6)奇偶性的推廣
函式y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函式。函式y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函式。
【(五)、函式的單調性】
1、單調函式
對於函式f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函式或減函式統稱為單調函式。
對於函式單調性的定義的理解,要注意以下三點:
(1)單調性是與“區間”緊密相關的概念。一個函式在不同的區間上可以有不同的單調性。
(2)單調性是函式在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替。
(3)單調區間是定義域的子集,討論單調性必須在定義域範圍內。
(4)注意定義的兩種等價形式:
設x1、x2∈[a,b],那么:
①在[a、b]上是增函式;
在[a、b]上是減函式。
②在[a、b]上是增函式。
在[a、b]上是減函式。
需要指出的是:①的幾何意義是:增(減)函式圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大於(或小於)零。
(5)由於定義都是充要性命題,因此由f(x)是增(減)函式,且(或x1>x2),這說明單調性使得自變數間的不等關係和函式值之間的不等關係可以“正逆互推”。
5、複合函式y=f[g(x)]的單調性
若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則複合函式y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減。簡稱“同增、異減”。
在研究函式的單調性時,常需要先將函式化簡,轉化為討論一些熟知函式的單調性。因此,掌握並熟記一次函式、二次函式、指數函式、對數函式的單調性,將大大縮短我們的判斷過程。
6、證明函式的單調性的方法
(1)依定義進行證明。其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據定義,得出結論。
(2)設函式y=f(x)在某區間內可導。
如果f′(x)>0,則f(x)為增函式;如果f′(x)<0,則f(x)為減函式。
【(六)、函式的圖象】
函式的圖象是函式的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識。
求作圖象的函式表達式
與f(x)的關係
由f(x)的圖象需經過的變換
y=f(x)±b(b>0)
沿y軸向平移b個單位
y=f(x±a)(a>0)
沿x軸向平移a個單位
y=—f(x)
作關於x軸的對稱圖形
y=f(|x|)
右不動、左右關於y軸對稱
y=|f(x)|
上不動、下沿x軸翻折
y=f—1(x)
作關於直線y=x的對稱圖形
y=f(ax)(a>0)
橫坐標縮短到原來的,縱坐標不變
y=af(x)
縱坐標伸長到原來的|a|倍,橫坐標不變
y=f(—x)
作關於y軸對稱的圖形
【例】定義在實數集上的函式f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。
①求證:f(0)=1;
②求證:y=f(x)是偶函式;
③若存在常數c,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問函式f(x)是不是周期函式,如果是,找出它的一個周期;如果不是,請說明理由。
思路分析:我們把沒有給出解析式的函式稱之為抽象函式,解決這類問題一般採用賦值法。
解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。
②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函式。
③分別用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=—f(x)。
兩邊套用中的結論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),
所以f(x)是周期函式,2c就是它的一個周期。
高一數學函式知識總結 篇7
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度.因此,傾斜角的取值範圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.
當時,;當時,;當時,不存在.
②過兩點的直線的斜率公式:
注意下面四點:(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到.
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0°時,k=0,直線的方程是y=y1.
當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1.
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:直線兩點,
④截矩式:
其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為.
⑤一般式:(A,B不全為0)
注意:各式的適用範圍特殊的方程如:
平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);
(5)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)垂直直線系
垂直於已知直線(是不全為0的常數)的直線系:(C為常數)
(三)過定點的直線系
(ⅰ)斜率為k的直線系:,直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為
(為參數),其中直線不在直線系中.
(6)兩直線平行與垂直
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.
(7)兩條直線的交點
相交
交點坐標即方程組的一組解.
方程組無解;方程組有無數解與重合
(8)兩點間距離公式:設是平面直角坐標系中的兩個點
(9)點到直線距離公式:一點到直線的距離
(10)兩平行直線距離公式
在任一直線上任取一點,再轉化為點到直線的距離進行求解.
高一數學函式知識總結 篇8
集合的運算
運算類型交 集並 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函式非奇非偶函式
函式圖象都過定點(0,1)函式圖象都過定點(0,1)
注意:利用函式的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數若且唯若 ;
(3)對於指數函式 ,總有 ;
二、對數函式
(一)對數
1.對數的概念:
一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
= N = b
底數
指數 對數
(二)對數的運算性質
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恆等式
(二)對數函式
1、對數函式的概念:函式 ,且 叫做對數函式,其中 是自變數,函式的定義域是(0,+∞).
注意:○1 對數函式的定義與指數函式類似,都是形式定義,注意辨別。如: , 都不是對數函式,而只能稱其為對數型函式.
○2 對數函式對底數的限制: ,且 .
2、對數函式的性質:
a>102},{x|x-3>2},{(x,y)|y=x2+1}
③語言描述法:例:{不是直角三角形的三角形}
例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}
強調:描述法表示集合應注意集合的代表元素
A={(x,y)|y=x2+3x+2}與B={y|y=x2+3x+2}不同。集合A中是數組元素(x,y),集合B中只有元素y。
3、集合的三個特性
(1)無序性
指集合中的元素排列沒有順序,如集合A={1,2},集合B={2,1},則集合A=B。
例題:集合A={1,2},B={a,b},若A=B,求a、b的值。
解:,A=B
注意:該題有兩組解。
(2)互異性
指集合中的元素不能重複,A={2,2}只能表示為{2}
(3)確定性
集合的確定性是指組成集合的元素的性質必須明確,不允許有模稜兩可、含混不清的情況。
高一數學函式知識總結 篇9
一、授人以魚,不如授人以漁
古人云:“授人以魚,不如授人以漁。”也就是說,教師不僅要教學生學會,而且更重要的是要學生會學,這是二十一世紀現代素質教育的要求。這就需要教師要更新觀念,改變教法,把學生看作學習的主人,培養他們自覺閱讀,提出問題,釋疑歸納的能力。逐步培養和提高學生的自學能力,思考問題、解決問題的能力,使他們能終身受益。
1.在課前預習中培養學生的自學能力。
課前預習是教學中的一個重要的環節,從教學實踐來看,學生在課前做不做預習,學習的效果和課堂的氣氛都不一樣。為了抓好這一環節,我常要求學生在預習中做好以下幾點,促使他們去看書,去動腦,逐步培養他們的預習能力。
1、本小節主要講了哪些基本概念,有哪些注意點?
2、本小節還有哪些定理、性質及公式,它們是如何得到的,你看過之後能否複述一遍?
3、對照課本上的例題,你能否回答課本中的練習
4、通過預習,你有哪些疑問,把它寫在“數學摘抄本”上,而且從來沒有要求學生應該記什麼不應該記什麼,而是讓學生自己評價什麼有用,什麼沒用(對於個體而言)
少數學生的問題具有一定的代表性,也有一定的靈活性。這些要求剛開始實施時,還有一定困難,有些學生還不夠自覺,通過一個階段的實踐,絕大多數學生能養成良好的習慣。另外,在課前預習時,我有時要求學生在學習過程中進行角色轉移,站在教師的角度想問題,這叫換位思考法。在學習每一個問題,每項學習內容時,先讓學生問問自己,假如我是老師,我是否弄明白了?怎樣才能給別人講清楚?這樣,學生就會產生一種學習的內驅力,對每一個概念,每一個問題主動鑽研,積極思考,自覺地把自己放在了主動學習的位置。
2.在課堂教學中培養學生的自學能力。課堂是教學活動的主陣地,也是學生獲取知識和能力的主要渠道。作為數學教師改變以往的“一言堂”“滿堂灌”的教學方式顯得至關重要,而應採用組織引導,設定問題和問題情境,控制以及解答疑問的方法,形成以學生為中心的生動活潑的學習局面,激發學生的創造激情,從而培養學生的解決問題的能力。
在尊重學生主體性的同時,我也考慮到學生之間的個體差異,要因材施教,發掘出每個學生的學習潛能,儘量做到基礎分流,彈性管理。在教學中我採用分類教學,分層指導的方法,使每一位同學都能夠穩步地前進。調動他們的學習積極性。對於問題我沒有急於告訴學生答案,讓他們在交流中掌握知識,在討論中提高能力。儘量讓學生髮現問題,儘量讓學生質疑問題,儘量讓學生標新立異。
在課堂教學中,我的一個主要的教學特徵就是:給學生足夠的時間,這時間包括學生的思考時間、演算時間、討論時間和深入探究問題的時間,在我的課堂上可以看到更多的是學生正在積極的思考、熱烈的討論、親自動腦,親自動手,不等不靠,不會將問題結果完全寄託於老師的傳授,而是在積極主動的探索。當然數學教學過程作為師生雙邊活動過程,學生的探索要依靠教師的啟發和引導。在教學過程中,我也從來沒有放棄對於學生的指導,尤其在講授新課時,我將教材組成一定的嘗試層次,創造探索活動的環境和條件。讓學生通過觀察歸納,從特殊去探索一般,通過類比、聯想,從舊知去探索新知,收到較好的效果。
3.在課後作業,反饋練習中培養學生自學能力。
課後作業和反饋練習、測試是檢查學生學習效果的重要手段。抓好這一環節的教學,也有利於複習和鞏固舊課,還鍛鍊了學生的自學能力。在學完一節、一課、一單元後,讓學生動手“列選單”,歸納總結,要求學生儘量自己獨立完成,以便正確反饋教學效果,通過一系列的實踐活動,把每個學生的學習積極性都調動起來,成為教學活動的參與者和組織者。學生自學能力的培養不是靠一朝一夕,要長期堅持的,三年來就是靠著這扎紮實實的教學,扎紮實實的學習才使我所教的兩個班級的學生在自學能力上得到了長足的進步。科學安排,課前、課堂、課後三者結合,留給學生充分的自學機會。真正把學生推向主動地位,使其變成學習的主人,我想這是每一位教育工作者所夢寐以求的結果吧。
二、數學教育創新
大家都知道中學數學的教學內容為初等數學的基礎知識,這些基礎知識源遠流長。不可能再有什麼知識層面的創新了。更不可能要求學生髮明創造什麼新的初等數學的結論。因此,我個人認為數學教育創新應該著眼於學生建構新的認知過程,用數學的語言就是“認知建模”。而這過程的創新應該體現在以下三個方面:
1.勤于思考:
創新的前題是理解。我們知道,數學離不開概念,由概念又引伸出性質,這些性質往往以定理或公式呈現出來。對定理、公式少不了要進行邏輯推理論證,形成這些論證的理路需要思維過程。為此,我們首先必須讓學生對學習的對象有所理解。因為數學知識的獲得主要依賴緊張思維活動後的理解,只有透徹的理解才能溶入其認知結構。這就需要拼棄過去那種單靠記往教師在課堂上傳授的數學結論,然後套用這些結論或機械地模仿某種模式去解題的壞習慣。而要做到理解,就需要勤于思考。對知識和方法要多問幾個為什麼?如:為什麼要形成這個概念?為什麼要導出這個性質?這個性質、定理、公式有什麼功能?如何套用?勤于思考的表現還在於對認知過程的不斷反思、回顧,不斷總結挫折的教訓和成功的經驗。避免墨守成規,勇於創新。
2.善於提問:
學生在數學課堂中通過觀察、感知學習的對象以後,要學會分析,要有自己的見解,不要人云亦云,要善於挖掘自己尚不清楚的問題,多角度,全方位地探究,並提出質疑。作為一個中學生,不見得也毋須什麼問題都能自己解決。我們倡導的只是能對學習的對象提出多角度的問題,尤其是善於提出新穎的具有獨特見解的問題。我認為會提問是創新的一個重要標誌。
3.解決問題:
學數學離不開解題,解題是在掌握所學知識和方法的'基礎上進行運用。解題可以訓練技巧,磨鍊意志。在解題過程中,首先應判斷解題的大方向,大致有什麼思路,在引導學生解題的探索過程中,要注意聯想,要學會用不同的立意、不同的知識、不同的方法去思考,並善於在解題全過程監控自己的行為:是否走彎路?是否走入死胡同?有沒有出錯?需要及時調整,排除障礙。這樣長期形成習慣後,往往可以別出心裁,另闢解題捷徑。這種思維品質也是創新的重要標誌。為了讓學生達到這個境界,必須讓學生明確不要為解題而解題,要在解題後不斷反思、回顧,積累經驗,增強解題意識,提高能力。
如何從一名師範大學生轉變成為合格的數學教師這一問題,可能是所有年輕教師都經歷過的思索。我想對於老教師的經驗的借鑑在這個方面顯得尤為重要。在此我要感謝半年來一直幫助我、關心我的老教師們。從他們的經驗中我體會到數學的核心問題;總結出解決問題的途徑問的是什麼、有什麼、還有什麼、是什麼;教會學生如何去學習勤于思考、善於提問、解決問題。
高一數學函式知識總結 篇10
一、函式的概念與表示
1、映射
(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。
注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射
2、函式
構成函式概念的三要素
①定義域②對應法則③值域
兩個函式是同一個函式的條件:三要素有兩個相同
二、函式的解析式與定義域
1、求函式定義域的主要依據:
(1)分式的分母不為零;
(2)偶次方根的被開方數不小於零,零取零次方沒有意義;
(3)對數函式的真數必須大於零;
(4)指數函式和對數函式的底數必須大於零且不等於1;
三、函式的值域
1求函式值域的方法
①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;
②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;
③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且∈R的分式;
④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);
⑤單調性法:利用函式的單調性求值域;
⑥圖象法:二次函式必畫草圖求其值域;
⑦利用對號函式
⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式
四.函式的奇偶性
1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函式。
如果對於任意∈A,都有,則稱y=f(x)為奇
函式。
2.性質:
①y=f(x)是偶函式y=f(x)的圖象關於軸對稱,y=f(x)是奇函式y=f(x)的圖象關於原點對稱,
②若函式f(x)的定義域關於原點對稱,則f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函式的定義域D1,D2,D1∩D2要關於原點對稱]
3.奇偶性的判斷
①看定義域是否關於原點對稱②看f(x)與f(-x)的關係
五、函式的單調性
1、函式單調性的定義:
2設是定義在M上的函式,若f(x)與g(x)的單調性相反,則在M上是減函式;若f(x)與g(x)的單調性相同,則在M上是增函式。
高一數學函式知識總結 篇11
兩個平面的位置關係
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關係:
兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那么這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交
二面角
(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值範圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關係)。
高一數學函式知識總結 篇12
1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數學函式知識總結 篇13
【立體幾何初步】
1、柱、錐、台、球的結構特徵
(1)稜柱:
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)稜錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等
表示:用各頂點字母,如五稜錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等
表示:用各頂點字母,如五稜台
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;
俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
高一數學函式知識總結 篇14
一、教學方面
1.認真研究課程標準。在課程改革中,教師是關鍵,教師對新課程的理解與參與是推進課程改革的前提。我認真學習數學課程標準,對課改有了進一步的了解。課程標準明確規定了教學的目的、教學重點、教學的指導思想以及教學內容的確定和安排。繼承傳統,更新教學觀念。高中數學新課標指出:“豐富學生的學習方式,改進學生的學習方法是高中數學課程追求的基本理念。學生的數學學習活動不應只限於對概念、結論和技能的記憶、模仿和接受,獨立思考、自主探索、動手實踐、合作交流、閱讀自學等都是學習數學的重要方式。在高中數學教學中,教師的講授仍然是重要的教學方式之一,但要注意的是必須關注學生的主體參與,師生互動”。
2.合理使用教科書,提高課堂效益。對教材內容,教學時需要作適當處理,適當補充或降低難度是備課必須處理的。靈活使用教材,才能在教學中少走彎路,提高教學質量。對教材中存在的一些問題,教師應認真理解課標,對課標要求的重點內容要作適量的補充;對教材中不符合學生實際的題目要作適當的調整。此外,還應把握教材的“度”,不要想一步到位,如函式性質的教學,要多次螺旋上升,逐步加深。
3.發揮學生的主體作用。我重視加強學法指導,努力改變學生的學習方式,真正從接受性學習轉換為自主性學習。充分調動學生積極性、主動參與性,發揮學生在教學中的主體作用,使學生在激勵、鼓舞和自主中學習,掌握知識與技能,培養創新能力和實踐能力。每節新課前都要求學生自學,逐步培養學生的自學能力。
4.我在課堂教學中特別重視改進教學方法,注意問題的提出、探究和解決。組織、引導學生開展合作交流、展示等學習活動,以問題引導學生去發現、探究、歸納、總結,教會學生髮現問題和提出問題的方法。使學生學的主動、學的有興趣,培養問題意識及合作、交流、表達等能力。
5.落實分層教學、努力實現人人發展的目標。根據學生個性、認知能力、思維類型等差異,實行分層設計、分層教學、分層指導、分層訓練。使每一個學生都在原有基礎上獲得充分的最大化的發展。 6.營造和諧師生關係。師生之間具有愉快的情感溝通與智慧交流,課堂里充滿歡樂、微笑、輕鬆、和諧、合作和互動。教師與學生建立了一種民主、平等、尊重、溫暖、理解的師生關係。教師的親和力和教學藝術對學生產生積極影響,90%以上的學生喜歡學科教師並對這一門學科產生濃厚的學習興趣,掌握了基本的學習方法並獲得積極的情感體驗,有成功喜悅感。
7.在課後作業,反饋練習中培養學生自學能力。課後作業和反饋練習、測試是檢查學生學習效果的重要手段。抓好這一環節的教學,也有利於複習和鞏固舊課,還鍛鍊了學生的自學能力。在學完一課、一單元後,讓學生主動歸納總結,要求學生儘量自己獨立完成,以便正確反饋教學效果。
8注重做好培優補基工作,促進後進生的轉化。要提高教學質量,還要做好課後輔導工作,包括輔導學生課業和抓好學生的思想教育,尤其在後進生的轉化上。本學期培優補基工作效果顯著,特別是在對後進生轉化工作上,注意針對不同的學生採取不同的方法,先全面了解學生的基本情況,爭取準確的找出導致“差”的原因。並在情感上溫暖他們,取得他們的信任。從讚美著手,所有的人都渴望得到別人的理解和尊重,在和差生交談時,對他的處境、想法表示深刻的理解和尊重;還有在批評學生時,注意陽光語言的使用,使他們真正意識到自己所犯的錯誤或自身存在的缺點,通過自身的`努力儘快的趕超其他同學,因此兩班的數學成績提高幅度很大。
二、存在困惑
1.書本習題都較簡單和基礎,而我們的教輔題目偏難,加重了學生的學習負擔,而且學生完成情況很不好。課時又不足,教學時間緊,沒時間講評這些練習題。
2.由於學生的基礎參差不齊且整體數學素質不理想,在教學中,經常出現一節課的教學任務完不成的現象,少有鞏固練習的時間。一些學生聽得似懂非懂,給差生學好數學造成了一定的困難。而且知識內容需要補充的:如乘法公式;因式分解的十字相乘法;一元二次方程及根與係數的關係;根式的運算;解不等式等知識沒有專門的時間教學,只能是在新授過程中逐漸滲透。
3.雖然經常要求學生課後要去完成教輔上的精選的題目,但是,相當部分的同學還是沒辦法完成。學生的課業負擔偏重(原因:9個學科同時並進),有的學生則是學習意識淡薄,導致有的學生難於適應。
三、今後要注意的幾點
1.要處理好課時緊張與教學內容多的矛盾,加強對教材的研究;
2.注意對教輔材料題目的精選再精選,減經學生的負擔。
3.要加強對數學後進生的思想教育,進一步增強他們學好數學的信心。
高一數學函式知識總結 篇15
當我看到數學成績時,我哭了,透過淚水我看到了老師和父母對我的失望和惋惜!
這次的數學成績太令我失望了,因為錯的非常可惜。一道套用題,在4000米長的路兩旁栽樹,每隔100米栽一棵,兩端都要栽,問一共能栽多少棵?我算式列對了,可惜把4000抄成了400,檢查時竟也沒檢查出來,因此,那寶貴的5分就跟我說拜拜了。最後一題是畫折線統計圖,圖我畫對了,可畫完後,我卻放鬆了,描點的時候,我竟然把85描在了75上,雖說下面的都描對了,可一分也沒給我。都是粗心惹得禍,看著卷子上那鮮紅而又刺眼的紅叉叉,我心裡像打翻了五味瓶,說不出是什麼味了。
我流著淚,垂頭喪氣地趴在桌子上,其實媽媽也很失望,可是為了不讓我氣餒,媽媽卻又安慰我,鼓勵我:這只是人生中的一次小測驗而已,你要學會輸得起,考得不好沒關係,只要你能從中找到錯誤並吸取教訓,你就是最棒的。考試已經過去了,要把所有的成績都歸零。不要因為數學、英語考得好而驕傲,也不要因為數學沒考好就氣餒。我們現在要做的就是要從失敗的地方站起來,為以後的學習打好基礎,時刻對自己充滿信心,寶貝,媽媽相信你!
聽了媽媽這番話,我的眼前頓時一片光亮,我內心的陰暗被驅逐走了。我又重新拾回了信心,對呀!哭不是目的,怎樣克服粗心大意才是最重要的。媽媽經常看《哈佛女孩劉亦婷》,她笑著對我說:劉亦婷的媽媽說開朗活潑的孩子大多都有粗心的毛病,粗心不是學習態度的問題,而是學習能力的問題,既然能力不足就要採取相應的措施來防治。我說呀,開朗活潑沒有錯,錯的是粗心。咱們今天就按照她們的方法來制定專項訓練計畫。我當然是迫不及待了,真想把這粗心一拳打走。變粗心為細心具體方法:
一、提高細心度的方法抄電話號碼。找一個通訊錄,在一分鐘內抄寫電話號碼,做到左手指、右手抄,儘量做到抄得又快又不出錯。連續對三次以上結束當天的訓練,如果錯了就要訓練十分鐘。
二、計算快又準的方法撲克牌速算。去掉牌里的大小王和J、Q、K,然後把牌洗亂,再掐著秒表一張張地迅速累加牌上的數字,直到熟練無比。這個方法我以前用過,可都沒堅持下來,這次我一定要堅持下來。
三、寫得快又好的方法抄寫阿拉伯數字。在一分鐘內儘可能快而又準確地抄寫阿拉伯數字,具體方法同一。
成長的路上有曲折和險峻,有人失敗有人成功。良好的計畫是成功的一半,媽媽的鼓勵是我前行的動力。努力+好的學習方法=成功 總有一天,我一定會超越自我……
高一數學函式知識總結 篇16
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)並集:A∪B={x|x∈A或x∈B}
5)補集:CUA={x|xA但x∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關係
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、並集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關係
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}
對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
高一數學函式知識總結 篇17
反比例函式
形如y=k/x(k為常數且k≠0)的函式,叫做反比例函式。
自變數x的取值範圍是不等於0的一切實數。
反比例函式圖像性質:
反比例函式的圖像為雙曲線。
由於反比例函式屬於奇函式,有f(—x)=—f(x),圖像關於原點對稱。
另外,從反比例函式的解析式可以得出,在反比例函式的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和—2)時的函式圖像。
當K>0時,反比例函式圖像經過一,三象限,是減函式
當K0時α∈(0°,90°)
k0,則a可以是任意實數;
排除了為0這種可能,即對於x0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。
在x大於0時,函式的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。
而只有a為正數,0才進入函式的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況。
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。
(3)當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函式過(0,0);a小於0,函式不過(0,0)點。
(6)顯然冪函式無界。