高一數學必修2直線與方程知識點總結

高一數學必修2直線與方程知識點總結 篇1

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

兩個平面的位置關係:

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關係:

兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那么這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

b、相交

二面角

(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值範圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

esp.兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直於交線的直線垂直於另一個平面。

稜錐

稜錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做稜錐

稜錐的的性質:

(1)側棱交於一點。側面都是三角形

(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的稜錐的高與遠稜錐高的比的平方

正稜錐

正稜錐的定義:如果一個稜錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的稜錐叫做正稜錐。

正稜錐的性質:

(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正稜錐的斜高。

(3)多個特殊的直角三角形

esp:

a、相鄰兩側棱互相垂直的正三稜錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高一數學必修2直線與方程知識點總結 篇2

平面向量

向量:既有大小,又有方向的量.

數量:只有大小,沒有方向的量.

有向線段的三要素:起點、方向、長度.

零向量:長度為的向量.

單位向量:長度等於個單位的向量.

相等向量:長度相等且方向相同的向量

&向量的運算

加法運算

AB+BC=AC,這種計算法則叫做向量加法的三角形法則。

已知兩個從同一點O出發的兩個向量OA、OB,以OA、OB為鄰邊作平行四邊形OACB,則以O為起點的對角線OC就是向量OA、OB的和,這種計算法則叫做向量加法的平行四邊形法則。

對於零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運算定律。

減法運算

與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數乘運算

實數λ與向量a的積是一個向量,這種運算叫做向量的數乘,記作λa,|λa|=|λ||a|,當λ>0時,λa的方向和a的方向相同,當λ<0時,λa的方向和a的方向相反,當λ=0時,λa=0。

設λ、μ是實數,那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法運算、減法運算、數乘運算統稱線性運算。

向量的數量積

已知兩個非零向量a、b,那么|a||b|cosθ叫做a與b的數量積或內積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數量積為0。

a?b的幾何意義:數量積a?b等於a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

兩個向量的數量積等於它們對應坐標的乘積的和。

高一數學必修2直線與方程知識點總結 篇3

1.多面體的結構特徵

(1)稜柱有兩個面相互平行,其餘各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

正稜柱:側棱垂直於底面的稜柱叫做直稜柱,底面是正多邊形的直稜柱叫做正稜柱.反之,正稜柱的底面是正多邊形,側棱垂直於底面,側面是矩形。

(2)稜錐的底面是任意多邊形,側面是有一個公共頂點的三角形。

正稜錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的稜錐叫做正稜錐.特別地,各棱均相等的正三稜錐叫正四面體.反過來,正稜錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

(3)稜台可由平行於底面的平面截稜錐得到,其上下底面是相似多邊形。

2.旋轉體的結構特徵

(1)圓柱可以由矩形繞一邊所在直線旋轉一周得到.

(2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉一周得到.

(3)圓台可以由直角梯形繞直角腰所在直線旋轉一周或等腰梯形繞上下底面中心所在直線旋轉半周得到,也可由平行於底面的平面截圓錐得到。

(4)球可以由半圓面繞直徑旋轉一周或圓面繞直徑旋轉半周得到。

3.空間幾何體的三視圖

空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側視圖、俯視圖。

三視圖的長度特徵:“長對正,寬相等,高平齊”,即正視圖和側視圖一樣高,正視圖和俯視圖一樣長,側視圖和俯視圖一樣寬.若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

4.空間幾何體的直觀圖

空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

(1)畫幾何體的底面

在已知圖形中取互相垂直的x軸、y軸,兩軸相交於點O,畫直觀圖時,把它們畫成對應的x′軸、y′軸,兩軸相交於點O′,且使∠x′O′y′=45°或135°,已知圖形中平行於x軸、y軸的線段,在直觀圖中平行於x′軸、y′軸.已知圖形中平行於x軸的線段,在直觀圖中長度不變,平行於y軸的線段,長度變為原來的一半。

(2)畫幾何體的高

在已知圖形中過O點作z軸垂直於xOy平面,在直觀圖中對應的z′軸,也垂直於x′O′y′平面,已知圖形中平行於z軸的線段,在直觀圖中仍平行於z′軸且長度不變。

高一數學必修2直線與方程知識點總結 篇4

集合的運算

運算類型交 集並 集補 集

定義域 R定義域 R

值域>0值域>0

在R上單調遞增在R上單調遞減

非奇非偶函式非奇非偶函式

函式圖象都過定點(0,1)函式圖象都過定點(0,1)

注意:利用函式的單調性,結合圖象還可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,則 ; 取遍所有正數若且唯若 ;

(3)對於指數函式 ,總有 ;

二、對數函式

(一)對數

1.對數的概念:

一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:○1 注意底數的限制 ,且 ;

○2 ;

○3 注意對數的書寫格式.

兩個重要對數:

○1 常用對數:以10為底的對數 ;

○2 自然對數:以無理數 為底的對數的對數 .

指數式與對數式的互化

冪值 真數

= N = b

底數

指數 對數

(二)對數的運算性質

如果 ,且 , , ,那么:

○1 + ;

○2 - ;

○3 .

注意:換底公式: ( ,且 ; ,且 ; ).

利用換底公式推導下面的結論:(1) ;(2) .

(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恆等式

(二)對數函式

1、對數函式的概念:函式 ,且 叫做對數函式,其中 是自變數,函式的定義域是(0,+∞).

注意:○1 對數函式的定義與指數函式類似,都是形式定義,注意辨別。如: , 都不是對數函式,而只能稱其為對數型函式.

○2 對數函式對底數的限制: ,且 .

2、對數函式的性質:

a>100時,開口方向向上,a0時,拋物線向上開口;當a1,且∈_.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這裡叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合併成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函式及其性質

1、指數函式的概念:一般地,函式叫做指數函式(exponential),其中x是自變數,函式的定義域為R.

注意:指數函式的底數的取值範圍,底數不能是負數、零和1.

2、指數函式的圖象和性質

【函式的套用】

1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。

2、函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標。即:

方程有實數根函式的圖象與軸有交點函式有零點.

3、函式零點的求法:

求函式的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯繫起來,並利用函式的性質找出零點.

4、二次函式的零點:

二次函式.

1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點.

3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點.

高一數學必修2直線與方程知識點總結 篇5

立體幾何初步

柱、錐、台、球的結構特徵

稜柱

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

稜台

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點

圓柱

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

圓錐

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

圓台

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

球體

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

NO.2空間幾何體的三視圖

定義三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

NO.3空間幾何體的直觀圖——斜二測畫法

斜二測畫法

斜二測畫法特點

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

直線與方程

直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α0,則a可以是任意實數;

排除了為0這種可能,即對於x0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

高一數學必修2直線與方程知識點總結 篇6

本學期根據學校教導處計畫,結合本學期數學組的工作計畫,本組教師認真完成學校的各項工作認真學習學校的有關要求,認真履行備課組長與教師的職責,加強學科的理論學習,使數學組成為團結和諧、勤奮、互助合作能力較強的數學組。

一、教學常規方面

1、嚴格落實備教學常規,提高教學效益。全組教師做到重點落實備課常規和課堂教學常規,提高備課和上課質量,注意教學常規管理中的各個環節,並且儘量落實細節,養成學生良好規範的學習習慣,最終達到提高教學效益的目的。

2、加強集體備課。備課組做到統一進度、統一教案、統一練習、統一考試等,尤其是備課環節,人人有計畫、有任務有落實,充分發揮集體智慧,提高集體備課的質量。

3、加強作業批改。全組教師儘量控制作業量規範化批改,做到有發必收,有收必做,有做必評,有評必糾,每次批改後把有問題的學生面對面批改,具有很強的針對性,深受學生愛戴。

4、認真組織完成各次的周測、月考的命題、閱卷工作,認真搞好考試後的情況分析,根據成績對教學工作及時調整,並拿出相應的措施和辦法進行彌補。

二、教研活動開展情況

1、堅持開展好教研活動和備課組活動。本學期堅持每周一次說課和一次聽課活動。做到先由一個人說課,然後組織全組去聽課,並利用教研組活動時間組內評課,充分發表自己的觀點,找出閃光點、疑惑點和不足點。通過聽課評課發現對方的優點,互相取長補短、共同進步。

2、認真組織組內及校級公開課,強化教學過程的相互學習、研討,本學期按學校要求做好公開課和組內聽、說課活動。

3、認真進行課題研究,使教師的.教學科研能力得到了提高,另外利用課餘時間多寫些教學論文,提高自身的業務素質。

三、發揮數學組真誠合作精神

我們本著相互學習、相互促進的同心,每一個教師的課對全組教師公開,可以隨時聽課。在備課活動中我們共享大家的教學成果和體會,一個學期以來,我們一直真誠的愉快的合作,我們一如既往的做下去,爭取取得更優異的成績。

高一數學必修2直線與方程知識點總結 篇7

1.學習的心態。

多數中等生的數學成績是很有希望提升。一方面是目前具備了一定基礎,加上努力認真,這種學生態度沒有問題,只是缺少方向和適合的方法而已。另一方面,備考時間還算充足,還有時間進行調整和最佳化。所以平日裡多給自己一些積極的心裡暗示,堅持不斷地實踐合適自己的學習方法。

2.備考的方向。

什麼是備考方向?所謂備考方向就是考試方向。在平時做題的時候,要弄明白,你面前的題是哪個知識框架下,那種類型的題型,做這樣類型的題有什麼樣的方法,這一類的題型有哪些?等等。

題型和知識點都是有限的,只要我們根據常考的題型,尋找解題思路併合理的訓練,那么很容易提升自己的數學成績。

3.訓練的方式。

每個人實際的情況不一樣,訓練的方式也不不同,考試中取得的好成績都是考前合理訓練的結果。很多學生抱怨時間不足,每天做完作業以後,身心疲憊。面對一堆題目,特別是數學題,可以注重以下幾個角度:

(1)弄清楚自己的需要。例如拿到老師布置的作業,無論是試卷還是課本習題,如果帶著情緒做,那么效果肯定不好。首先要弄清自己的需要,比如這些題目中哪些題目質量好?哪些是你還沒有弄懂的?哪些是以前常出現的?哪些是你肯定會做的等等,你最想解決哪題?

(2)制定目標。如果應付老師來做題無疑導致做題質量不高,那么在做題之前應該制定一定目標,如上面說的那樣,你通過哪些題目來訓練正確率?通過哪些題目來練習速度?通過哪些題目來完善步驟等等。有了目標,更好的實現目標,在這個過程中,你肯定有很多收穫。

高一數學必修2直線與方程知識點總結 篇8

指數函式及其性質

1、指數函式的概念:一般地,函式叫做指數函式(exponential),其中x是自變數,函式的定義域為R.

注意:指數函式的底數的取值範圍,底數不能是負數、零和1.

2、指數函式的圖象和性質

【函式的套用】

1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。

2、函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標。即:

方程有實數根函式的圖象與軸有交點函式有零點.

3、函式零點的求法:

求函式的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯繫起來,並利用函式的性質找出零點.

4、二次函式的零點:

二次函式.

1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點.

3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點.

高一數學必修2直線與方程知識點總結 篇9

集合的含義

集合的中元素的三個特性:

元素的確定性如:世界上的山

元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集NN+整數集Z有理數集Q實數集R

列舉法:{a,b,c……}

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{x(R|x—3>2},{x|x—3>2}

語言描述法:例:{不是直角三角形的三角形}

Venn圖:

4、集合的分類:

有限集含有有限個元素的集合

無限集含有無限個元素的集合

空集不含任何元素的集合例:{x|x2=—5}

高一數學必修2直線與方程知識點總結 篇10

【立體幾何初步】

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一數學必修2直線與方程知識點總結 篇11

知識點1

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1、元素的確定性;

2、元素的互異性;

3、元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2、集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

關於“屬於”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分類:

1、有限集含有有限個元素的集合

2、無限集含有無限個元素的集合

3、空集不含任何元素的集合例:{x|x2=—5}

知識點2

I、定義與定義表達式

一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

則稱y為x的二次函式。

二次函式表達式的右邊通常為二次三項式。

II、二次函式的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x—h)^2+k[拋物線的頂點P(h,k)]

交點式:y=a(x—x?)(x—x?)[僅限於與x軸有交點A(x?,0)和B(x?,0)的拋物線]

註:在3種形式的互相轉化中,有如下關係:

h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

III、二次函式的圖像

在平面直角坐標系中作出二次函式y=x^2的圖像,可以看出,二次函式的圖像是一條拋物線。

IV、拋物線的性質

1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,坐標為

P(—b/2a,(4ac—b^2)/4a)

當—b/2a=0時,P在y軸上;當Δ=b^2—4ac=0時,P在x軸上。

3、二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

知識點3

1、拋物線是軸對稱圖形。對稱軸為直線

x=—b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,坐標為

P(—b/2a,(4ac—b’2)/4a)

當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。

3、二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4、一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5、常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6、拋物線與x軸交點個數

Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

知識點4

對數函式

對數函式的一般形式為,它實際上就是指數函式的反函式。因此指數函數裡對於a的規定,同樣適用於對數函式。

右圖給出對於不同大小a所表示的函式圖形:

可以看到對數函式的圖形只不過的指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。

(1)對數函式的定義域為大於0的實數集合。

(2)對數函式的值域為全部實數集合。

(3)函式總是通過(1,0)這點。

(4)a大於1時,為單調遞增函式,並且上凸;a小於1大於0時,函式為單調遞減函式,並且下凹。

(5)顯然對數函式。

知識點5

方程的根與函式的零點

1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。

2、函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標。即:方程有實數根,函式的圖象與坐標軸有交點,函式有零點。

3、函式零點的求法:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯繫起來,並利用函式的性質找出零點。

4、二次函式的零點:

(1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點。

(2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點。

(3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點。

高一數學必修2直線與方程知識點總結 篇12

立體幾何初步

柱、錐、台、球的結構特徵

稜柱

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

稜台

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點

圓柱

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

圓錐

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

圓台

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

球體

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

NO.2空間幾何體的三視圖

定義三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關係,即反映了物體的'高度和長度;

俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

NO.3空間幾何體的直觀圖——斜二測畫法

斜二測畫法

斜二測畫法特點

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

直線與方程

直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°

直線的斜率

定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

過兩點的直線的斜率公式:

(注意下面四點)

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

冪函式

定義

形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式稱為冪函式。

定義域和值域

當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。當x為不同的數值時,冪函式的值域的不同情況如下:在x大於0時,函式的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。而只有a為正數,0才進入函式的值域

性質

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函式的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

高一數學必修2直線與方程知識點總結 篇13

集合間的基本關係

1、“包含”關係—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2、“相等”關係:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。AA

②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

③如果AB,BC,那么AC

④如果AB同時BA那么A=B

3、不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n—1個真子集

集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:AB(讀作‘A並B’),即AB={x|xA,或xB})。

設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

高一數學必修2直線與方程知識點總結 篇14

圓的方程定義:

圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關係:

1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。

①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ<0,直線和圓相離。

方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

①dR,直線和圓相離、

2、直線和圓相切,這類問題主要是求圓的切線方程、求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

3、直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

切線的性質

⑴圓心到切線的距離等於圓的半徑;

⑵過切點的半徑垂直於切線;

⑶經過圓心,與切線垂直的直線必經過切點;

⑷經過切點,與切線垂直的直線必經過圓心;

當一條直線滿足

(1)過圓心;

(2)過切點;

(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。

切線的判定定理

經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。

切線長定理

從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

高一數學必修2直線與方程知識點總結 篇15

1過兩點有且只有一條直線

2兩點之間線段最短

3同角或等角的補角相等

4同角或等角的餘角相等

5過一點有且只有一條直線和已知直線垂直

6直線外一點與直線上各點連線的所有線段中,垂線段最短

7平行公理經過直線外一點,有且只有一條直線與這條直線平行

8如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9同位角相等,兩直線平行

10內錯角相等,兩直線平行

11同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13兩直線平行,內錯角相等

14兩直線平行,同旁內角互補

15定理三角形兩邊的和大於第三邊

16推論三角形兩邊的差小於第三邊

17三角形內角和定理三角形三個內角的和等於180°

18推論1直角三角形的兩個銳角互余

19推論2三角形的一個外角等於和它不相鄰的兩個內角的和

20推論3三角形的一個外角大於任何一個和它不相鄰的內角

21全等三角形的對應邊、對應角相等

22邊角邊公理(sas)有兩邊和它們的夾角對應相等的兩個三角形全等

23角邊角公理(asa)有兩角和它們的夾邊對應相等的兩個三角形全等

24推論(aas)有兩角和其中一角的對邊對應相等的兩個三角形全等

25邊邊邊公理(sss)有三邊對應相等的兩個三角形全等

26斜邊、直角邊公理(hl)有斜邊和一條直角邊對應相等的兩個直角三角形全等

27定理1在角的平分線上的點到這個角的兩邊的距離相等

28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

29角的平分線是到角的兩邊距離相等的所有點的集合

30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

31推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33推論3等邊三角形的各角都相等,並且每一個角都等於60°

34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35推論1三個角都相等的三角形是等邊三角形

36推論2有一個角等於60°的等腰三角形是等邊三角形

37在直角三角形中,如果一個銳角等於30°那么它所對的直角邊等於斜邊的一半

38直角三角形斜邊上的中線等於斜邊上的一半

39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42定理1關於某條直線對稱的兩個圖形是全等形

43定理2如果兩個圖形關於某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱

46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

47勾股定理的逆定理如果三角形的三邊長a、b、c有關係a^2+b^2=c^2,那么這個三角形是直角三角形

48定理四邊形的內角和等於360°

49四邊形的外角和等於360°

50多邊形內角和定理n邊形的內角的和等於(n-2)×180°

51推論任意多邊的外角和等於360°

52平行四邊形性質定理1平行四邊形的對角相等

53平行四邊形性質定理2平行四邊形的對邊相等

54推論夾在兩條平行線間的平行線段相等

55平行四邊形性質定理3平行四邊形的對角線互相平分

56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

60矩形性質定理1矩形的四個角都是直角

61矩形性質定理2矩形的對角線相等

62矩形判定定理1有三個角是直角的四邊形是矩形

63矩形判定定理2對角線相等的平行四邊形是矩形

64菱形性質定理1菱形的四條邊都相等

65菱形性質定理2菱形的.對角線互相垂直,並且每一條對角線平分一組對角

66菱形面積=對角線乘積的一半,即s=(a×b)÷2

67菱形判定定理1四邊都相等的四邊形是菱形

68菱形判定定理2對角線互相垂直的平行四邊形是菱形

69正方形性質定理1正方形的四個角都是直角,四條邊都相等

70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71定理1關於中心對稱的兩個圖形是全等的

72定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那么這兩個圖形關於這一點對稱

74等腰梯形性質定理等腰梯形在同一底上的兩個角相等

75等腰梯形的兩條對角線相等

76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

77對角線相等的梯形是等腰梯形

78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰

80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半

82梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半l=(a+b)÷2s=l×h

83(1)比例的基本性質如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d

85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

87推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行於三角形的第三邊

89平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91相似三角形判定定理1兩角對應相等,兩三角形相似(asa)

92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(sas)

94判定定理3三邊對應成比例,兩三角形相似(sss)

95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97性質定理2相似三角形周長的比等於相似比

98性質定理3相似三角形面積的比等於相似比的平方

99任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等

於它的餘角的正弦值

100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

101圓是定點的距離等於定長的點的集合

102圓的內部可以看作是圓心的距離小於半徑的點的集合

103圓的外部可以看作是圓心的距離大於半徑的點的集合

104同圓或等圓的半徑相等

105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

109定理不在同一直線上的三點確定一個圓。

110垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112推論2圓的兩條平行弦所夾的弧相等

113圓是以圓心為對稱中心的中心對稱圖形

114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等

116定理一條弧所對的圓周角等於它所對的圓心角的一半

117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

119推論3如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形

120定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

121①直線l和⊙o相交d

②直線l和⊙o相切d=r

③直線l和⊙o相離d>r

122切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線

123切線的性質定理圓的切線垂直於經過切點的半徑

124推論1經過圓心且垂直於切線的直線必經過切點

125推論2經過切點且垂直於切線的直線必經過圓心

126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

127圓的外切四邊形的兩組對邊的和相等

128弦切角定理弦切角等於它所夾的弧對的圓周角

129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的

兩條線段的比例中項

132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割

線與圓交點的兩條線段長的比例中項

133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

134如果兩個圓相切,那么切點一定在連心線上

135①兩圓外離d>r+r②兩圓外切d=r+r

③兩圓相交r-rr)

④兩圓內切d=r-r(r>r)⑤兩圓內含dr)

136定理相交兩圓的連心線垂直平分兩圓的公共弦

137定理把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

139正n邊形的每個內角都等於(n-2)×180°/n

140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141正n邊形的面積sn=pnrn/2p表示正n邊形的周長

142正三角形面積√3a/4a表示邊長

143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為

360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144弧長計算公式:l=nπr/180

145扇形面積公式:s扇形=nπr2/360=lr/2

146內公切線長=d-(r-r)外公切線長=d-(r+r)

147等腰三角形的兩個底腳相等

148等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合

149如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等

150三條邊都相等的三角形叫做等邊三角形

高一數學必修2直線與方程知識點總結 篇16

定義:

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交於一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。

表達式:

斜截式:y=kx+b

兩點式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)

點斜式:y-y1=k(x-x1)

截距式:(x/a)+(y/b)=0

補充一下:最基本的標準方程不要忘了,AX+BY+C=0,

因為,上面的四種直線方程不包含斜率K不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過程中尤其要注意,K不存在的情況。

高一數學必修2直線與方程知識點總結 篇17

I.定義與定義表達式

一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0時,反比例函式圖像經過一,三象限,是減函式

當K<0時,反比例函式圖像經過二,四象限,是增函式

反比例函式圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函式圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

對數函式

對數函式的一般形式為,它實際上就是指數函式的反函式。因此指數函數裡對於a的規定,同樣適用於對數函式。

對於不同大小a所表示的函式圖形:

可以看到對數函式的圖形只不過的指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。

(1)對數函式的定義域為大於0的實數集合。

(2)對數函式的值域為全部實數集合。

(3)函式總是通過(1,0)這點。

(4)a大於1時,為單調遞增函式,並且上凸;a小於1大於0時,函式為單調遞減函式,並且下凹。

(5)顯然對數函式無界。

高一數學必修2直線與方程知識點總結 篇18

1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a0,直線和圓相交、②Δ=0,直線和圓相切、③Δ0,則a可以是任意實數;

排除了為0這種可能,即對於x0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

指數函式

(1)指數函式的定義域為所有實數的集合,這裡的前提是a大於0,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函式的值域為大於0的實數集合。

(3)函式圖形都是下凹的。

(4)a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函式總是在某一個方向上無限趨向於X軸,永不相交。

(7)函式總是通過(0,1)這點。

(8)顯然指數函式無界。

奇偶性

定義

一般地,對於函式f(x)

(1)如果對於函式定義域內的任意一個x,都有f(-x)=-f(x),那么函式f(x)就叫做奇函式。

(2)如果對於函式定義域內的任意一個x,都有f(-x)=f(x),那么函式f(x)就叫做偶函式。

(3)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。

(4)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。