高一數學必考知識點總結

高一數學必考知識點總結 篇1

定義:

x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。

範圍:

傾斜角的取值範圍是0°≤α0時α∈(0°,90°)

k0時,反比例函式圖像經過一,三象限,是減函式

當K<0時,反比例函式圖像經過二,四象限,是增函式

反比例函式圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函式圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

高一數學必考知識點總結 篇2

一、集合有關概念

1.集合的含義

2.集合的中元素的三個特性:

(1)元素的確定性如:世界上的山

(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集:N_或N+

整數集:Z

有理數集:Q

實數集:R

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xR|x-3>2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

二、集合間的基本關係

1.“包含”關係—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.“相等”關係:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那么AíC

④如果AíB同時BíA那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

4.子集個數:

有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集

三、集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作‘A並B’),即AB={x|xA,或xB}).

【基本初等函式】

一、指數函式

(一)指數與指數冪的運算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這裡叫做根指數(radicalexponent),叫做被開方數(radicand).

當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合併成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。

注意:當是奇數時,當是偶數時,

2.分數指數冪

正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義

指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.

3.實數指數冪的運算性質

(二)指數函式及其性質

1、指數函式的概念:一般地,函式叫做指數函式(exponential),其中x是自變數,函式的定義域為R.

注意:指數函式的底數的取值範圍,底數不能是負數、零和1.

2、指數函式的圖象和性質

【函式的套用】

1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。

2、函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標。即:

方程有實數根函式的圖象與軸有交點函式有零點.

3、函式零點的求法:

求函式的零點:

1(代數法)求方程的實數根;

2(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯繫起來,並利用函式的性質找出零點.

4、二次函式的零點:

二次函式.

1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點.

2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點.

3)△b>0)或 + =1(a>b>0)(其中,a2=b2+c2)

2.雙曲線:- =1(a>0,b>0)或 - =1(a>0,b>0)(其中,c2=a2+b2)

3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

三、圓錐曲線的性質

1.橢圓:+ =1(a>b>0)

(1)範圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e= ∈(0,1)(5)準線:x=±

2.雙曲線:- =1(a>0,b>0)(1)範圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e= ∈(1,+∞)(5)準線:x=± (6)漸近線:y=± x

3.拋物線:y2=2px(p>0)(1)範圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:( ,0)(4)離心率:e=1(5)準線:x=-

高一數學必考知識點總結 篇3

集合的有關概念

1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無限集,空集。

4)常用數集:N,Z,Q,R,N

子集、交集、並集、補集、空集、全集等概念

1)子集:若對x∈A都有x∈B,則AB(或AB);

2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

3)交集:A∩B={x|x∈A且x∈B}

4)並集:A∪B={x|x∈A或x∈B}

5)補集:CUA={x|xA但x∈U}

注意:A,若A≠?,則?A;

若且,則A=B(等集)

集合與元素

掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。

子集的幾個等價關係

①A∩B=AAB;②A∪B=BAB;③ABCuACuB;

④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

交、並集運算的性質

①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

有限子集的個數:

設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

練習題:

已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關係

A)M=NPB)MN=PC)MNPD)NPM

分析一:從判斷元素的共性與區別入手。

解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}

對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。

高一數學必考知識點總結 篇4

【(一)、映射、函式、反函式】

1、對應、映射、函式三個概念既有共性又有區別,映射是一種特殊的對應,而函式又是一種特殊的映射.

2、對於函式的概念,應注意如下幾點:

(1)掌握構成函式的三要素,會判斷兩個函式是否為同一函式.

(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函式關係式,特別是會求分段函式的解析式.

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的複合函式,其中g(x)為內函式,f(u)為外函式.

3、求函式y=f(x)的反函式的一般步驟:

(1)確定原函式的值域,也就是反函式的定義域;

(2)由y=f(x)的解析式求出x=f-1(y);

(3)將x,y對換,得反函式的習慣表達式y=f-1(x),並註明定義域.

注意①:對於分段函式的反函式,先分別求出在各段上的反函式,然後再合併到一起.

②熟悉的套用,求f-1(x0)的值,合理利用這個結論,可以避免求反函式的過程,從而簡化運算.

【(二)、函式的解析式與定義域】

1、函式及其定義域是不可分割的整體,沒有定義域的函式是不存在的,因此,要正確地寫出函式的解析式,必須是在求出變數間的對應法則的同時,求出函式的.定義域.求函式的定義域一般有三種類型:

(1)有時一個函式來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;

(2)已知一個函式的解析式求其定義域,只要使解析式有意義即可.如:

①分式的分母不得為零;

②偶次方根的被開方數不小於零;

③對數函式的真數必須大於零;

④指數函式和對數函式的底數必須大於零且不等於1;

⑤三角函式中的正切函式y=tanx(x∈R,且k∈Z),餘切函式y=cotx(x∈R,x≠kπ,k∈Z)等.

應注意,一個函式的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集).

(3)已知一個函式的定義域,求另一個函式的定義域,主要考慮定義域的深刻含義即可.

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值範圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域.

2、求函式的解析式一般有四種情況

(1)根據某實際問題需建立一種函式關係時,必須引入合適的變數,根據數學的有關知識尋求函式的解析式.

(2)有時題設給出函式特徵,求函式的解析式,可採用待定係數法.比如函式是一次函式,可設f(x)=ax+b(a≠0),其中a,b為待定係數,根據題設條件,列出方程組,求出a,b即可.

(3)若題設給出複合函式f[g(x)]的表達式時,可用換元法求函式f(x)的表達式,這時必須求出g(x)的值域,這相當於求函式的定義域.

(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(-x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式.

【(三)、函式的值域與最值】

1、函式的值域取決於定義域和對應法則,不論採用何種方法求函式值域都應先考慮其定義域,求函式值域常用方法如下:

(1)直接法:亦稱觀察法,對於結構較為簡單的函式,可由函式的解析式套用不等式的性質,直接觀察得出函式的值域.

(2)換元法:運用代數式或三角換元將所給的複雜函式轉化成另一種簡單函式再求值域,若函式解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元.

(3)反函式法:利用函式f(x)與其反函式f-1(x)的定義域和值域間的關係,通過求反函式的定義域而得到原函式的值域,形如(a≠0)的函式值域可採用此法求得.

(4)配方法:對於二次函式或二次函式有關的函式的值域問題可考慮用配方法.

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函式的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧.

(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用“△≥0”求值域.其題型特徵是解析式中含有根式或分式.

(7)利用函式的單調性求值域:當能確定函式在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函式的值域.

(8)數形結合法求函式的值域:利用函式所表示的幾何意義,藉助於幾何方法或圖象,求出函式的值域,即以數形結合求函式的值域.

2、求函式的最值與值域的區別和聯繫

求函式最值的常用方法和求函式值域的方法基本上是相同的,事實上,如果在函式的值域中存在一個最小(大)數,這個數就是函式的最小(大)值.因此求函式的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異.

如函式的值域是(0,16],值是16,無最小值.再如函式的值域是(-∞,-2]∪[2,+∞),但此函式無值和最小值,只有在改變函式定義域後,如x>0時,函式的最小值為2.可見定義域對函式的值域或最值的影響.

3、函式的最值在實際問題中的套用

函式的最值的套用主要體現在用函式知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.

【(四)、函式的奇偶性】

1、函式的奇偶性的定義:對於函式f(x),如果對於函式定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函式f(x)就叫做奇函式(或偶函式).

正確理解奇函式和偶函式的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函式f(x)為奇函式或偶函式的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恆等式.(奇偶性是函式定義域上的整體性質).

2、奇偶函式的定義是判斷函式奇偶性的主要依據。為了便於判斷函式的奇偶性,有時需要將函式化簡或套用定義的等價形式:

注意如下結論的運用:

(1)不論f(x)是奇函式還是偶函式,f(|x|)總是偶函式;

(2)f(x)、g(x)分別是定義域D1、D2上的奇函式,那么在D1∩D2上,f(x)+g(x)是奇函式,f(x)·g(x)是偶函式,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函式的複合函式的奇偶性通常是偶函式;

(4)奇函式的導函式是偶函式,偶函式的導函式是奇函式。

3、有關奇偶性的幾個性質及結論

(1)一個函式為奇函式的充要條件是它的圖象關於原點對稱;一個函式為偶函式的充要條件是它的圖象關於y軸對稱.

(2)如要函式的定義域關於原點對稱且函式值恆為零,那么它既是奇函式又是偶函式.

(3)若奇函式f(x)在x=0處有意義,則f(0)=0成立.

(4)若f(x)是具有奇偶性的區間單調函式,則奇(偶)函式在正負對稱區間上的單調性是相同(反)的。

(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(-x)是偶函式,G(x)=f(x)-f(-x)是奇函式.

(6)奇偶性的推廣

函式y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函式.函式y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函式。

【(五)、函式的單調性】

1、單調函式

對於函式f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或x2),這說明單調性使得自變數間的不等關係和函式值之間的不等關係可以“正逆互推”.

5、複合函式y=f[g(x)]的單調性

若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則複合函式y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱“同增、異減”.

在研究函式的單調性時,常需要先將函式化簡,轉化為討論一些熟知函式的單調性。因此,掌握並熟記一次函式、二次函式、指數函式、對數函式的單調性,將大大縮短我們的判斷過程.

6、證明函式的單調性的方法

(1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或0,則f(x)為增函式;如果f′(x)0)

沿y軸向平移b個單位

y=f(x±a)(a>0)

沿x軸向平移a個單位

y=-f(x)

作關於x軸的對稱圖形

y=f(|x|)

右不動、左右關於y軸對稱

y=|f(x)|

上不動、下沿x軸翻折

y=f-1(x)

作關於直線y=x的對稱圖形

y=f(ax)(a>0)

橫坐標縮短到原來的,縱坐標不變

y=af(x)

縱坐標伸長到原來的|a|倍,橫坐標不變

y=f(-x)

作關於y軸對稱的圖形

【例】定義在實數集上的函式f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

①求證:f(0)=1;

②求證:y=f(x)是偶函式;

③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函式f(x)是不是周期函式,如果是,找出它的一個周期;如果不是,請說明理由.

思路分析:我們把沒有給出解析式的函式稱之為抽象函式,解決這類問題一般採用賦值法.

解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函式.

③分別用(c>0)替換x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=-f(x).

兩邊套用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

所以f(x)是周期函式,2c就是它的一個周期.

高一數學必考知識點總結 篇5

開學一個多月了,10月9日進行了七年級數學月考,考試批閱後,感覺無論是課堂教學效果還是學生的學習成績都不容樂觀。尤其是在本次月考考試中,暴露出學生對計算題掌握不牢,練習不夠,運用知識點十分不熟練,思維缺乏想像能力和創造性。為了尋找差距,彌補不足,現對這次考試總結如下:

一、試卷分析:

1、從整體上看,本次試題難度適中,符合學生的認知水平。試題注重基礎計算,內容緊密聯繫生活實際,有利於考察數學基礎和基本技能的掌握程度,有利於教學方法和學法的引導和培養。

2、不足之處是:(1)計算不過關,六道計算題錯誤率高,有理數的加、減、乘、除的法則掌握不夠牢固,特別是對計算的方法缺乏靈活性:(2)不會具體問題具體分析,缺乏舉一反三、觸類旁通能力,缺乏靈活性:(3)不能夠認真審題。(4)運用數學知識解決生活實際問題的能力不足。

二、原因分析:結合平時上課學生的表現與作業,發現我們在教學過程中存在以下幾個誤區。

1、思想認識不夠。

相信學生的能力,而忽視了學生在學習過程中和解題的過程中存在的問題。直接導致在課堂教學過程中沒有很好的結合學生的實際情況進行備課,忽視了部分基礎知識不夠紮實的學生,造成其學習困難增加,進而逐步喪失了學習數學的興趣,為後面的繼續教學增添了很大的困難。

2、備課過程中準備不足,沒有充分認識到知識點的難度和學生的實際情況。

通過調閱部分中等生的考試試卷,發現中等生在答題的過程中,知識點混淆不清,解題思路混亂,不能抓住問題的關鍵。

3、對部分成績較好的學生的監管力度不夠,放鬆了對他們的學習要求。

本次考試不僅中等生的成績下滑,部分中等學生勉強及格甚至不及格。究其原因是對該部分學生在課後的學習和練習的過程中,沒有過多的去關注,未能及時發現他們存在的問題並給以指正,導致其產生驕傲自滿的情緒,學習也不如以往認真,作業也馬虎了事,最終成績出現重大危機。

三、改進措施:

1、提高課堂教學效率。

根據年級學生的年齡和思維特點,充分利用學生的生活經驗,設計生動有趣、直觀形象的教學活動,激發學生的學習興趣,讓學生在生動具體的情境中理解和認識知識。

2、重視知識的獲得過程。

任何一類新知的學習都要力爭在第一遍教學中讓學生通過操作、實踐、探索等活動充分地感知,使他們在經歷和體驗知識的產生和形成過程中,獲取知識、形成能力。另外,課堂上教師應為學生留下思考的時間。好的課堂教學應當是富于思考的,學生應當有更多的思考餘地。學習的效果最終取決於學生是否真正參與到學習活動中,是否積極主動地思考,而教師的責任更多的是為學生提供思考的機會,為學生留有思考的時間和空間。

3、關注學生中的弱勢群體。

做好後進生的補差工作要從“以人為本”的角度出發,堅持“補心”與補課相結合,與學生多溝通,消除他們的心理障礙;幫助他們形成良好的學習習慣;加強方法指導;嚴格要求學生,從最基礎的知識抓起;根據學生差異,進行分層教學;努力使每位學生在原有基礎上得到最大限度的發展。

總之,在今後的教學過程中要以學生為重點,重在引導學生學會學習,讓學生能樂學、愛學、好學,採取有針對性的補救措施,提高學生的基礎知識和基本技能,加強對學生課後學習和練習的監管和督促力度,加強學生分析問題的能力,培養其創新思維能力,為今後的學習教學打好基礎。

高一數學必考知識點總結 篇6

1、函式的奇偶性

(1)若f(x)是偶函式,那么f(x)=f(-x);

(2)若f(x)是奇函式,0在其定義域內,則f(0)=0(可用於求參數);

(3)判斷函式奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函式的解析式較為複雜,應先化簡,再判斷其奇偶性;

(5)奇函式在對稱的單調區間內有相同的單調性;偶函式在對稱的單調區間內有相反的單調性;

2、複合函式的有關問題

(1)複合函式定義域求法:若已知的定義域為[a,b],其複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函式的問題一定要注意定義域優先的原則。

(2)複合函式的單調性由“同增異減”判定;

3、函式圖像(或方程曲線的對稱性)

(1)證明函式圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函式y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函式y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;

4、函式的周期性

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函式;

(2)若y=f(x)是偶函式,其圖像又關於直線x=a對稱,則f(x)是周期為2|a|的周期函式;

(3)若y=f(x)奇函式,其圖像又關於直線x=a對稱,則f(x)是周期為4|a|的周期函式;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函式;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函式y=f(x)是周期為2的周期函式;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函式;

5、方程k=f(x)有解k∈D(D為f(x)的值域);

a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;

(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣“同正異負”記憶;

(4)alogaN=N(a>0,a≠1,N>0);

6、判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且;

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

7、能熟練地用定義證明函式的單調性,求反函式,判斷函式的奇偶性。

8、對於反函式,應掌握以下一些結論:

(1)定義域上的單調函式必有反函式;

(2)奇函式的反函式也是奇函式;

(3)定義域為非單元素集的偶函式不存在反函式;

(4)周期函式不存在反函式;

(5)互為反函式的兩個函式具有相同的單調性;

(6)y=f(x)與y=f-1(x)互為反函式,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

9、處理二次函式的問題勿忘數形結合

二次函式在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關係;

10、依據單調性

利用一次函式在區間上的保號性可解決求一類參數的範圍問題;

高一數學必考知識點總結 篇7

1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a2},{x|x—3>2}

語言描述法:例:{不是直角三角形的三角形}

Venn圖:

4、集合的分類:

有限集含有有限個元素的集合

無限集含有無限個元素的集合

空集不含任何元素的集合例:{x|x2=—5}

高一數學必考知識點總結 篇8

本節內容主要是空間點、直線、平面之間的位置關係,在認識過程中,可以進一步提高同學們的空間想像能力,發展推理能力.通過對實際模型的認識,學會將文字語言轉化為圖形語言和符號語言,以具體的長方體中的點、線、面之間的關係作為載體,使同學們在直觀感知的基礎上,認識空間中點、線、面之間的位置關係,點、線、面的位置關係是立體幾何的主要研究對象,同時也是空間圖形最基本的幾何元素.

重難點知識歸納

1、平面

(1)平面概念的理解

直觀的理解:桌面、黑板面、平靜的水面等等都給人以平面的直觀的印象,但它們都不是平面,而僅僅是平面的一部分.

抽象的理解:平面是平的,平面是無限延展的,平面沒有厚薄.

(2)平面的表示法

①圖形表示法:通常用平行四邊形來表示平面,有時根據實際需要,也用其他的平面圖形來表示平面.

②字母表示:常用等希臘字母表示平面.

(3)涉及本部分內容的符號表示有:

①點A在直線l內,記作; ②點A不在直線l內,記作;

③點A在平面內,記作; ④點A不在平面內,記作;

⑤直線l在平面內,記作; ⑥直線l不在平面內,記作;

注意:符號的使用與集合中這四個符號的使用的區別與聯繫.

(4)平面的基本性質

公理1:如果一條直線的兩個點在一個平面內,那么這條直線上的所有點都在這個平面內.

符號表示為:.

注意:如果直線上所有的點都在一個平面內,我們也說這條直線在這個平面內,或者稱平面經過這條直線.

公理2:過不在一條直線上的三點,有且只有一個平面.

符號表示為:直線AB存在唯一的平面,使得.

注意:“有且只有”的含義是:“有”表示存在,“只有”表示唯一,不能用“只有”來代替.此公理又可表示為:不共線的三點確定一個平面.

公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線.

符號表示為:.

注意:兩個平面有一條公共直線,我們說這兩個平面相交,這條公共直線就叫作兩個平面的交線.若平面、平面相交於直線l,記作.

公理的推論:

推論1:經過一條直線和直線外的一點有且只有一個平面.

推論2:經過兩條相交直線有且只有一個平面.

推論3:經過兩條平行直線有且只有一個平面.

2.空間直線

(1)空間兩條直線的位置關係

①相交直線:有且僅有一個公共點,可表示為;

②平行直線:在同一個平面內,沒有公共點,可表示為a//b;

③異面直線:不同在任何一個平面內,沒有公共點.

(2)平行直線

公理4:平行於同一條直線的兩條直線互相平行.

符號表示為:設a、b、c是三條直線,.

定理:如果一個角的兩邊和另一個角的兩邊分別平行並且方向相同,那么這兩個角相等.

(3)兩條異面直線所成的角

注意:

①兩條異面直線a,b所成的角的範圍是(0°,90°].

②兩條異面直線所成的角與點O的選擇位置無關,這可由前面所講過的“等角定理”直接得出.

③由兩條異面直線所成的角的定義可得出異面直線所成角的一般方法:

(i)在空間任取一點,這個點通常是線段的中點或端點.

(ii)分別作兩條異面直線的平行線,這個過程通常採用平移的方法來實現.

(iii)指出哪一個角為兩條異面直線所成的角,這時我們要注意兩條異面直線所成的角的範圍.

3.空間直線與平面

直線與平面位置關係有且只有三種:

(1)直線在平面內:有無數個公共點;

(2)直線與平面相交:有且只有一個公共點;

(3)直線與平面平行:沒有公共點.

4.平面與平面

兩個平面之間的位置關係有且只有以下兩種:

(1)兩個平面平行:沒有公共點;

(2)兩個平面相交:有一條公共直線.

高一數學必考知識點總結 篇9

一、函式的概念與表示

1、映射

(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

2、函式

構成函式概念的三要素

①定義域②對應法則③值域

兩個函式是同一個函式的條件:三要素有兩個相同

二、函式的解析式與定義域

1、求函式定義域的主要依據:

(1)分式的分母不為零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函式的真數必須大於零;

(4)指數函式和對數函式的底數必須大於零且不等於1;

三、函式的值域

1求函式值域的方法

①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;

②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且∈R的分式;

④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函式的單調性求值域;

⑥圖象法:二次函式必畫草圖求其值域;

⑦利用對號函式

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式

四.函式的奇偶性

1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函式。

如果對於任意∈A,都有,則稱y=f(x)為奇

函式。

2.性質:

①y=f(x)是偶函式y=f(x)的圖象關於軸對稱,y=f(x)是奇函式y=f(x)的圖象關於原點對稱,

②若函式f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函式的定義域D1,D2,D1∩D2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱②看f(x)與f(-x)的關係

五、函式的單調性

1、函式單調性的定義:

2設是定義在M上的函式,若f(x)與g(x)的單調性相反,則在M上是減函式;若f(x)與g(x)的單調性相同,則在M上是增函式。

高一數學必考知識點總結 篇10

反比例函式

形如y=k/x(k為常數且k≠0)的函式,叫做反比例函式。

自變數x的取值範圍是不等於0的一切實數。

反比例函式圖像性質:

反比例函式的圖像為雙曲線。

由於反比例函式屬於奇函式,有f(—x)=—f(x),圖像關於原點對稱。

另外,從反比例函式的解析式可以得出,在反比例函式的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和—2)時的函式圖像。

當K>0時,反比例函式圖像經過一,三象限,是減函式

當K0時α∈(0°,90°)

k0,則a可以是任意實數;

排除了為0這種可能,即對於x0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;

如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。

在x大於0時,函式的值域總是大於0的實數。

在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。

而只有a為正數,0才進入函式的值域。

由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況。

可以看到:

(1)所有的圖形都通過(1,1)這點。

(2)當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。

(3)當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。

(4)當a小於0時,a越小,圖形傾斜程度越大。

(5)a大於0,函式過(0,0);a小於0,函式不過(0,0)點。

(6)顯然冪函式無界。

高一數學必考知識點總結 篇11

圓的方程定義:

圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關係:

1。直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。

①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。

方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。

①dR,直線和圓相離。

2。直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。

3。直線和圓相交,這類問題主要是求弦長以及弦的中點問題。

切線的性質

⑴圓心到切線的距離等於圓的半徑;

⑵過切點的半徑垂直於切線;

⑶經過圓心,與切線垂直的直線必經過切點;

⑷經過切點,與切線垂直的直線必經過圓心;

當一條直線滿足

(1)過圓心;

(2)過切點;

(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。

切線的判定定理

經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。

切線長定理

從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。

圓錐曲線性質:

一、圓錐曲線的定義

1、橢圓:到兩個定點的距離之和等於定長(定長大於兩個定點間的距離)的動點的軌跡叫做橢圓。

2、雙曲線:到兩個定點的距離的差的絕對值為定值(定值小於兩個定點的距離)的動點軌跡叫做雙曲線。即。

3、圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線。當01時為雙曲線。

二、圓錐曲線的方程

1、橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)

2、雙曲線:—=1(a>0,b>0)或—=1(a>0,b>0)(其中,c2=a2+b2)

3、拋物線:y2=±2px(p>0),x2=±2py(p>0)

三、圓錐曲線的性質

1、橢圓:+=1(a>b>0)

(1)範圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±

2、雙曲線:—=1(a>0,b>0)(1)範圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x

3、拋物線:y2=2px(p>0)(1)範圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=—

高一數學必考知識點總結 篇12

一、函式的概念與表示

1、映射

(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

注意點:

(1)對映射定義的理解。

(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

2、函式

構成函式概念的三要素:

①定義域

②對應法則

③值域

兩個函式是同一個函式的條件:三要素有兩個相同

二、函式的解析式與定義域

1、求函式定義域的主要依據:

(1)分式的分母不為零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函式的真數必須大於零;

(4)指數函式和對數函式的底數必須大於零且不等於1;

三、函式的值域

1求函式值域的方法

①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;

②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且∈R的分式;

④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函式的單調性求值域;

⑥圖象法:二次函式必畫草圖求其值域;

⑦利用對號函式

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式

四.函式的奇偶性

1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函式。

如果對於任意∈A,都有,則稱y=f(x)為奇

函式。

2.性質:

①y=f(x)是偶函式y=f(x)的圖象關於軸對稱,y=f(x)是奇函式y=f(x)的圖象關於原點對稱,

②若函式f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函式的定義域D1,D2,D1∩D2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱

②看f(x)與f(-x)的關係

高一數學必考知識點總結 篇13

本學期我擔任高一,兩班的數學教學,完成了必修1 、 4的教學。本學期教學主要內容有:集合與函式的概念,基本初等函式,函式的套用,三角函式、平面向量、三角恆等變換等六個章節的內容。現將本學期高中數學必修1 、必修4的教學總結如下:

一、教學方面

1、要認真研究課程標準。在課程改革中,教師是關鍵,教師對新課程的理解與參與是推進課程改革的前提。認真學習數學課程標準,對課改有所了解。課程標準明確規定了教學的目的、教學目標、教學的指導思想以及教學內容的確定和安排。繼承傳統,更新教學觀念。高中數學新課標指出:“豐富學生的學習方式,改進學生的學習方法是高中數學課程追求的基本理念。學生的數學學習活動不應只限於對概念、結論和技能的記憶、模仿和接受,獨立思考、自主探索、動手實踐、合作交流、閱讀自學等都是學習數學的重要方式。在高中數學教學中,教師的講授仍然是重要的教學方式之一,但要注意的是必須關注學生的主體參與,師生互動”。

2、合理使用教科書,提高課堂效益。對教材內容,教學時需要作適當處理,適當補充或降低難度是備課必須處理的。靈活使用教材,才能在教學中少走彎路,提高教學質量。對教材中存在的一些問題,教師應認真理解課標,對課標要求的重點內容要作適量的補充;對教材中不符合學生實際的題目要作適當的調整。此外,還應把握教材的“度”,不要想一步到位,如函式性質的教學,要多次螺旋上升,逐步加深。

3、改進學生的學習方式,注意問題的提出、探究和解決。教會學生髮現問題和提出問題的方法。以問題引導學生去發現、探究、歸納、總結。引導他們更加主動、有興趣的學,培養問題意識。

4、在課後作業,反饋練習中培養學生自學能力。課後作業和反饋練習、測試是檢查學生學習效果的重要手段。抓好這一環節的教學,也有利於複習和鞏固舊課,還鍛鍊了學生的自學能力。在學完一課、一單元後,讓學生主動歸納總結,要求學生儘量自己獨立完成,以便正確反饋教學效果。

5、分層次教學。我所教的兩個班,層次差別大9班主要是落後面的學生,國中的基礎差,高中的知識對他們來說就更增加了難度,而10班也是兩極分化嚴重,前面約20個學生的基礎紮實,成績在中等以上,而後面的30多個學生的成績卻處於中下以下的水平,因此,不管是備課還是備練習,我都注重分層次教學,注意引導他們從基礎做起,同時又不乏讓他們可以開拓思維,積極動腦的提高性知識,讓人人有的學,讓人人學有獲。

6、注意培養學生良好的學習習慣和學習方法。學生在從國中到高中的過渡階段,往往會有些不能適應新的學習環境。例如新的競爭壓力,以往的學習方法不能適應高中的學習,不良的學習習慣和學習態度等一些問題困擾和制約著學生的學習。為了解決這些問題,我從下面幾方面下功夫:

(1)改變學生學習數學的一些思想觀念,樹立學好數學的信心。

在開學初,我就給他們指出高中數學學習較國中的要難度大,內容多,知識面廣,讓他們有一個心理準備。對此,我給他們講清楚,大家其實處在同一起跑線上,誰先跑,誰跑得有力,誰就會成功。對較差的學生,給予多的關心和指導,並幫助他們樹立信心;對驕傲的學生批評教育,讓他們不要放鬆學習。

(2)改變學生不良的學習習慣,建立良好的學習方法和學習態度

開始,有些學生有不好的學習習慣,例如作業字跡潦草,不寫解答過程;不喜歡課前預習和課後複習;不會總結消化知識;對學習馬虎大意,過分自信等。為了改變學生不良的學習習慣,我要求統一作業格式,表揚優秀作業,指導他們預習和複習,強調總結的重要性,並有一些具體的做法,如寫章節小結,做錯題檔案,總結做題規律等。對做得好的同學全班表揚並推廣,不做或做得差的同學要批評。通過努力,大多數同學能很快接受,慢慢的建立起好的學習方法和認真的學習態度。

二存在困惑

1、書本習題都較簡單和基礎,而我們的教輔題目偏難,加重了學生的學習負擔,而且學生完成情況很不好。課時又不足,教學時間緊,沒時間講評這些練習題。

2、在教學中,經常出現一節課的教學任務完不成的現象,更少鞏固練習的時間。勉強按規定時間講完,一些學生聽得似懂非懂,造成差生越來越多。而且知識內容需要補充的內容有:乘法公式;因式分解的十字相乘法;一元二次方程及根與係數的關係;根式的運算;解不等式等知識。

3、雖然經常要求學生課後要去完成教輔上的精選的題目,但是,相當部分的同學還是沒辦法完成。學生的課業負擔太重,有的學生則是學習意識淡薄。

三、今後要注意的幾點

1、要處理好課時緊張與教學內容多的矛盾,加強對教材的研究;

2、注意對教輔材料題目的精選;

3、要加強對數學後進生的思想教育。

總之,作為一名高中的新教師,對新教材還不太熟悉,對重難點的突破,對考點的把握,對學生的方法指導,對高中教學的經驗都是一個很大漏洞,我將把握好每一天,繼續努力,爭取更好的成績。

高一數學必考知識點總結 篇14

指數函式

(1)指數函式的定義域為所有實數的集合,這裡的前提是a大於0,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函式的值域為大於0的實數集合。

(3)函式圖形都是下凹的。

(4)a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函式總是在某一個方向上無限趨向於X軸,永不相交。

(7)函式總是通過(0,1)這點。

(8)顯然指數函式。

反比例函式

形如y=k/x(k為常數且k≠0)的函式,叫做反比例函式。

自變數x的取值範圍是不等於0的一切實數。

反比例函式圖像性質:

反比例函式的圖像為雙曲線。

由於反比例函式屬於奇函式,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函式的解析式可以得出,在反比例函式的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

k分別為正和負(2和-2)時的函式圖像。

當K>0時,反比例函式圖像經過一,三象限,是減函式

當K<0時,反比例函式圖像經過二,四象限,是增函式

反比例函式圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函式圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

高一數學必考知識點總結 篇15

知識點1

一、集合有關概念

1、集合的'含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1、元素的確定性;

2、元素的互異性;

3、元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2、集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

關於“屬於”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分類:

1、有限集含有有限個元素的集合

2、無限集含有無限個元素的集合

3、空集不含任何元素的集合例:{x|x2=—5}

知識點2

I、定義與定義表達式

一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0時,拋物線向上開口;當a0),對稱軸在y軸左;

當a與b異號時(即ab0時,拋物線與x軸有2個交點。

Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

Δ=b’2—4ac0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點。

(2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點。

(3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點。

高一數學必考知識點總結 篇16

集合與元素

一個東西是集合還是元素並不是絕對的,很多情況下是相對的,集合是由元素組成的集合,元素是組成集合的元素。

例如:你所在的班級是一個集合,是由幾十個和你同齡的同學組成的集合,你相對於這個班級集合來說,是它的一個元素;

而整個學校又是由許許多多個班級組成的集合,你所在的班級只是其中的一分子,是一個元素。

班級相對於你是集合,相對於學校是元素,參照物不同,得到的結論也不同,可見,是集合還是元素,並不是絕對的。

解集合問題的關鍵

解集合問題的關鍵:弄清集合是由哪些元素所構成的,也就是將抽象問題具體化、形象化,將特徵性質描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數軸來表示集合,或是集合的元素為有序實數對時,可用平面直角坐標系中的圖形表示相關的集合等。

高一數學必考知識點總結 篇17

圓的方程定義:

圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關係:

1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。

①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ0,直線和圓相交.②Δ=0,直線和圓相切.③Δb>0)或+=1(a>b>0)(其中,a2=b2+c2)

2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

三、圓錐曲線的性質

1.橢圓:+=1(a>b>0)

(1)範圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±

2.雙曲線:-=1(a>0,b>0)(1)範圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x

3.拋物線:y2=2px(p>0)(1)範圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=-

高一數學必考知識點總結 篇18

知識點1

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1、元素的確定性;

2、元素的互異性;

3、元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2、集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

關於“屬於”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分類:

1、有限集含有有限個元素的集合

2、無限集含有無限個元素的集合

3、空集不含任何元素的集合例:{x|x2=—5}

知識點2

I、定義與定義表達式

一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

則稱y為x的二次函式。

二次函式表達式的右邊通常為二次三項式。

II、二次函式的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x—h)^2+k[拋物線的頂點P(h,k)]

交點式:y=a(x—x?)(x—x?)[僅限於與x軸有交點A(x?,0)和B(x?,0)的拋物線]

註:在3種形式的互相轉化中,有如下關係:

h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

III、二次函式的圖像

在平面直角坐標系中作出二次函式y=x^2的圖像,可以看出,二次函式的圖像是一條拋物線。

IV、拋物線的性質

1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,坐標為

P(—b/2a,(4ac—b^2)/4a)

當—b/2a=0時,P在y軸上;當Δ=b^2—4ac=0時,P在x軸上。

3、二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

知識點3

1、拋物線是軸對稱圖形。對稱軸為直線

x=—b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,坐標為

P(—b/2a,(4ac—b’2)/4a)

當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。

3、二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4、一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5、常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6、拋物線與x軸交點個數

Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

知識點4

對數函式

對數函式的一般形式為,它實際上就是指數函式的反函式。因此指數函數裡對於a的規定,同樣適用於對數函式。

右圖給出對於不同大小a所表示的函式圖形:

可以看到對數函式的圖形只不過的指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。

(1)對數函式的定義域為大於0的實數集合。

(2)對數函式的值域為全部實數集合。

(3)函式總是通過(1,0)這點。

(4)a大於1時,為單調遞增函式,並且上凸;a小於1大於0時,函式為單調遞減函式,並且下凹。

(5)顯然對數函式。

知識點5

方程的根與函式的零點

1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。

2、函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標。即:方程有實數根,函式的圖象與坐標軸有交點,函式有零點。

3、函式零點的求法:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯繫起來,並利用函式的性質找出零點。

4、二次函式的零點:

(1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點。

(2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點。

(3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點。

高一數學必考知識點總結 篇19

【(一)、映射、函式、反函式】

1、對應、映射、函式三個概念既有共性又有區別,映射是一種特殊的對應,而函式又是一種特殊的映射。

2、對於函式的概念,應注意如下幾點:

(1)掌握構成函式的三要素,會判斷兩個函式是否為同一函式。

(2)掌握三種表示法——列表法、解析法、圖象法,能根實際問題尋求變數間的函式關係式,特別是會求分段函式的解析式。

(3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的複合函式,其中g(x)為內函式,f(u)為外函式。

3、求函式y=f(x)的反函式的一般步驟:

(1)確定原函式的值域,也就是反函式的定義域;

(2)由y=f(x)的解析式求出x=f—1(y);

(3)將x,y對換,得反函式的習慣表達式y=f—1(x),並註明定義域。

注意①:對於分段函式的反函式,先分別求出在各段上的反函式,然後再合併到一起。

②熟悉的套用,求f—1(x0)的值,合理利用這個結論,可以避免求反函式的過程,從而簡化運算。

【(二)、函式的解析式與定義域】

1、函式及其定義域是不可分割的整體,沒有定義域的函式是不存在的,因此,要正確地寫出函式的解析式,必須是在求出變數間的對應法則的同時,求出函式的定義域。求函式的定義域一般有三種類型:

(1)有時一個函式來自於一個實際問題,這時自變數x有實際意義,求定義域要結合實際意義考慮;

(2)已知一個函式的解析式求其定義域,只要使解析式有意義即可。如:

①分式的分母不得為零;

②偶次方根的被開方數不小於零;

③對數函式的真數必須大於零;

④指數函式和對數函式的底數必須大於零且不等於1;

⑤三角函式中的正切函式y=tanx(x∈R,且k∈Z),餘切函式y=cotx(x∈R,x≠kπ,k∈Z)等。

應注意,一個函式的解析式由幾部分組成時,定義域為各部分有意義的自變數取值的公共部分(即交集)。

(3)已知一個函式的定義域,求另一個函式的定義域,主要考慮定義域的深刻含義即可。

已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值範圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時f(x)的定義域,即g(x)的值域。

2、求函式的解析式一般有四種情況

(1)根據某實際問題需建立一種函式關係時,必須引入合適的變數,根據數學的有關知識尋求函式的解析式。

(2)有時題設給出函式特徵,求函式的解析式,可採用待定係數法。比如函式是一次函式,可設f(x)=ax+b(a≠0),其中a,b為待定係數,根據題設條件,列出方程組,求出a,b即可。

(3)若題設給出複合函式f[g(x)]的表達式時,可用換元法求函式f(x)的表達式,這時必須求出g(x)的值域,這相當於求函式的定義域。

(4)若已知f(x)滿足某個等式,這個等式除f(x)是未知量外,還出現其他未知量(如f(—x),等),必須根據已知等式,再構造其他等式組成方程組,利用解方程組法求出f(x)的表達式。

【(三)、函式的值域與最值】

1、函式的值域取決於定義域和對應法則,不論採用何種方法求函式值域都應先考慮其定義域,求函式值域常用方法如下:

(1)直接法:亦稱觀察法,對於結構較為簡單的函式,可由函式的解析式套用不等式的性質,直接觀察得出函式的值域。

(2)換元法:運用代數式或三角換元將所給的複雜函式轉化成另一種簡單函式再求值域,若函式解析式中含有根式,當根式里一次式時用代數換元,當根式里是二次式時,用三角換元。

(3)反函式法:利用函式f(x)與其反函式f—1(x)的定義域和值域間的關係,通過求反函式的定義域而得到原函式的值域,形如(a≠0)的函式值域可採用此法求得。

(4)配方法:對於二次函式或二次函式有關的函式的值域問題可考慮用配方法。

(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函式的值域,不過應注意條件“一正二定三相等”有時需用到平方等技巧。

(6)判別式法:把y=f(x)變形為關於x的一元二次方程,利用“△≥0”求值域。其題型特徵是解析式中含有根式或分式。

(7)利用函式的單調性求值域:當能確定函式在其定義域上(或某個定義域的子集上)的單調性,可採用單調性法求出函式的值域。

(8)數形結合法求函式的值域:利用函式所表示的幾何意義,藉助於幾何方法或圖象,求出函式的值域,即以數形結合求函式的值域。

2、求函式的最值與值域的區別和聯繫

求函式最值的常用方法和求函式值域的方法基本上是相同的,事實上,如果在函式的值域中存在一個最小(大)數,這個數就是函式的最小(大)值。因此求函式的最值與值域,其實質是相同的,只是提問的角度不同,因而答題的方式就有所相異。

如函式的值域是(0,16],值是16,無最小值。再如函式的值域是(—∞,—2]∪[2,+∞),但此函式無值和最小值,只有在改變函式定義域後,如x>0時,函式的最小值為2。可見定義域對函式的值域或最值的影響。

3、函式的最值在實際問題中的套用

函式的最值的套用主要體現在用函式知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值。

【(四)、函式的奇偶性】

1、函式的奇偶性的定義:對於函式f(x),如果對於函式定義域內的任意一個x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函式f(x)就叫做奇函式(或偶函式)。

正確理解奇函式和偶函式的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函式f(x)為奇函式或偶函式的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恆等式。(奇偶性是函式定義域上的整體性質)。

2、奇偶函式的定義是判斷函式奇偶性的主要依據。為了便於判斷函式的奇偶性,有時需要將函式化簡或套用定義的等價形式:

注意如下結論的運用:

(1)不論f(x)是奇函式還是偶函式,f(|x|)總是偶函式;

(2)f(x)、g(x)分別是定義域D1、D2上的奇函式,那么在D1∩D2上,f(x)+g(x)是奇函式,f(x)·g(x)是偶函式,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函式的複合函式的奇偶性通常是偶函式;

(4)奇函式的導函式是偶函式,偶函式的導函式是奇函式。

3、有關奇偶性的幾個性質及結論

(1)一個函式為奇函式的充要條件是它的圖象關於原點對稱;一個函式為偶函式的充要條件是它的圖象關於y軸對稱。

(2)如要函式的定義域關於原點對稱且函式值恆為零,那么它既是奇函式又是偶函式。

(3)若奇函式f(x)在x=0處有意義,則f(0)=0成立。

(4)若f(x)是具有奇偶性的區間單調函式,則奇(偶)函式在正負對稱區間上的單調性是相同(反)的。

(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(—x)是偶函式,G(x)=f(x)—f(—x)是奇函式。

(6)奇偶性的推廣

函式y=f(x)對定義域內的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函式。函式y=f(x)對定義域內的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函式。

【(五)、函式的單調性】

1、單調函式

對於函式f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調遞增(或遞減);增函式或減函式統稱為單調函式。

對於函式單調性的定義的理解,要注意以下三點:

(1)單調性是與“區間”緊密相關的概念。一個函式在不同的區間上可以有不同的單調性。

(2)單調性是函式在某一區間上的“整體”性質,因此定義中的x1,x2具有任意性,不能用特殊值代替。

(3)單調區間是定義域的子集,討論單調性必須在定義域範圍內。

(4)注意定義的兩種等價形式:

設x1、x2∈[a,b],那么:

①在[a、b]上是增函式;

在[a、b]上是減函式。

②在[a、b]上是增函式。

在[a、b]上是減函式。

需要指出的是:①的幾何意義是:增(減)函式圖象上任意兩點(x1,f(x1))、(x2,f(x2))連線的斜率都大於(或小於)零。

(5)由於定義都是充要性命題,因此由f(x)是增(減)函式,且(或x1>x2),這說明單調性使得自變數間的不等關係和函式值之間的不等關係可以“正逆互推”。

5、複合函式y=f[g(x)]的單調性

若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則複合函式y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減。簡稱“同增、異減”。

在研究函式的單調性時,常需要先將函式化簡,轉化為討論一些熟知函式的單調性。因此,掌握並熟記一次函式、二次函式、指數函式、對數函式的單調性,將大大縮短我們的判斷過程。

6、證明函式的單調性的方法

(1)依定義進行證明。其步驟為:①任取x1、x2∈M且x1(或<)f(x2);③根據定義,得出結論。

(2)設函式y=f(x)在某區間內可導。

如果f′(x)>0,則f(x)為增函式;如果f′(x)<0,則f(x)為減函式。

【(六)、函式的圖象】

函式的圖象是函式的直觀體現,應加強對作圖、識圖、用圖能力的培養,培養用數形結合的思想方法解決問題的意識。

求作圖象的函式表達式

與f(x)的關係

由f(x)的圖象需經過的變換

y=f(x)±b(b>0)

沿y軸向平移b個單位

y=f(x±a)(a>0)

沿x軸向平移a個單位

y=—f(x)

作關於x軸的對稱圖形

y=f(|x|)

右不動、左右關於y軸對稱

y=|f(x)|

上不動、下沿x軸翻折

y=f—1(x)

作關於直線y=x的對稱圖形

y=f(ax)(a>0)

橫坐標縮短到原來的,縱坐標不變

y=af(x)

縱坐標伸長到原來的|a|倍,橫坐標不變

y=f(—x)

作關於y軸對稱的圖形

【例】定義在實數集上的函式f(x),對任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。

①求證:f(0)=1;

②求證:y=f(x)是偶函式;

③若存在常數c,使求證對任意x∈R,有f(x+c)=—f(x)成立;試問函式f(x)是不是周期函式,如果是,找出它的一個周期;如果不是,請說明理由。

思路分析:我們把沒有給出解析式的函式稱之為抽象函式,解決這類問題一般採用賦值法。

解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1。

②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函式。

③分別用(c>0)替換x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=—f(x)。

兩邊套用中的結論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),

所以f(x)是周期函式,2c就是它的一個周期。