高一數學知識點總結大全

高一數學知識點總結大全 篇1

1、集合的概念

集合是集合論中的不定義的原始概念,教材中對集合的概念進行了描述性說明:“一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集)”。理解這句話,應該把握4個關鍵字:對象、確定的、不同的、整體。

對象――即集合中的元素。集合是由它的元素確定的。

整體――集合不是研究某一單一對象的,它關注的是這些對象的全體。

確定的――集合元素的確定性――元素與集合的“從屬”關係。

不同的――集合元素的互異性。

2、有限集、無限集、空集的意義

有限集和無限集是針對非空集合來說的。我們理解起來並不困難。

我們把不含有任何元素的集合叫做空集,記做Φ。理解它時不妨思考一下“0與Φ”及“Φ與{Φ}”的關係。

幾個常用數集N、N_N+、Z、Q、R要記牢。

3、集合的表示方法

(1)列舉法的表示形式比較容易掌握,並不是所有的集合都能用列舉法表示,同學們需要知道能用列舉法表示的三種集合:

①元素不太多的有限集,如{0,1,8}

②元素較多但呈現一定的規律的有限集,如{1,2,3,…,100}

③呈現一定規律的無限集,如{1,2,3,…,n,…}

●注意a與{a}的區別

●注意用列舉法表示集合時,集合元素的“無序性”。

(2)特徵性質描述法的關鍵是把所研究的集合的“特徵性質”找準,然後適當地表示出來就行了。但關鍵點也是難點。學習時多加練習就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個不同的集合。

4、集合之間的關係

●注意區分“從屬”關係與“包含”關係

“從屬”關係是元素與集合之間的關係。

“包含”關係是集合與集合之間的關係。掌握子集、真子集的概念,掌握集合相等的概念,學會正確使用等符號,會用Venn圖描述集合之間的關係是基本要求。

●注意辨清Φ與{Φ}兩種關係。

高一數學知識點總結大全 篇2

函式的概念

函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有確定的數f(x)和它對應,那么就稱f:A---B為從集合A到集合B的一個函式.記作:y=f(x),x∈A.

(1)其中,x叫做自變數,x的取值範圍A叫做函式的定義域;

(2)與x的值相對應的y值叫做函式值,函式值的集合{f(x)|x∈A}叫做函式的值域.

函式的三要素:定義域、值域、對應法則

函式的表示方法:(1)解析法:明確函式的定義域

(2)圖想像:確定函式圖像是否連線,函式的圖像可以是連續的曲線、直線、折線、離散的點等等。

(3)列表法:選取的自變數要有代表性,可以反應定義域的特徵。

4、函式圖象知識歸納

(1)定義:在平面直角坐標系中,以函式y=f(x),(x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的集合C,叫做函式y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.

(2)畫法

A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。

(3)函式圖像平移變換的特點:

1)加左減右——————只對x

2)上減下加——————只對y

3)函式y=f(x)關於X軸對稱得函式y=-f(x)

4)函式y=f(x)關於Y軸對稱得函式y=f(-x)

5)函式y=f(x)關於原點對稱得函式y=-f(-x)

6)函式y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得

函式y=|f(x)|

7)函式y=f(x)先作x≥0的圖像,然後作關於y軸對稱的圖像得函式f(|x|)

高一數學知識點總結大全 篇3

1、函式的奇偶性

(1)若f(x)是偶函式,那么f(x)=f(-x);

(2)若f(x)是奇函式,0在其定義域內,則f(0)=0(可用於求參數);

(3)判斷函式奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);

(4)若所給函式的解析式較為複雜,應先化簡,再判斷其奇偶性;

(5)奇函式在對稱的單調區間內有相同的單調性;偶函式在對稱的單調區間內有相反的單調性;

2、複合函式的有關問題

(1)複合函式定義域求法:若已知的定義域為[a,b],其複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函式的問題一定要注意定義域優先的原則。

(2)複合函式的單調性由“同增異減”判定;

3、函式圖像(或方程曲線的對稱性)

(1)證明函式圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;

(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;

(5)若函式y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;

(6)函式y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;

4、函式的周期性

(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函式;

(2)若y=f(x)是偶函式,其圖像又關於直線x=a對稱,則f(x)是周期為2|a|的周期函式;

(3)若y=f(x)奇函式,其圖像又關於直線x=a對稱,則f(x)是周期為4|a|的周期函式;

(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函式;

(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函式y=f(x)是周期為2的周期函式;

(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函式;

5、方程k=f(x)有解k∈D(D為f(x)的值域);

a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;

(1)(a>0,a≠1,b>0,n∈R+);

(2)logaN=(a>0,a≠1,b>0,b≠1);

(3)logab的符號由口訣“同正異負”記憶;

(4)alogaN=N(a>0,a≠1,N>0);

6、判斷對應是否為映射時,抓住兩點:

(1)A中元素必須都有象且;

(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;

7、能熟練地用定義證明函式的單調性,求反函式,判斷函式的奇偶性。

8、對於反函式,應掌握以下一些結論:

(1)定義域上的單調函式必有反函式;

(2)奇函式的反函式也是奇函式;

(3)定義域為非單元素集的偶函式不存在反函式;

(4)周期函式不存在反函式;

(5)互為反函式的兩個函式具有相同的單調性;

(6)y=f(x)與y=f-1(x)互為反函式,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

9、處理二次函式的問題勿忘數形結合

二次函式在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關係;

10、依據單調性

利用一次函式在區間上的保號性可解決求一類參數的範圍問題;

高一數學知識點總結大全 篇4

稜錐

稜錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做稜錐

稜錐的的性質:

(1)側棱交於一點。側面都是三角形

(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的稜錐的高與遠稜錐高的比的平方

正稜錐

正稜錐的定義:如果一個稜錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的稜錐叫做正稜錐。

正稜錐的性質:

(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正稜錐的斜高。

(3)多個特殊的直角三角形

esp:

a、相鄰兩側棱互相垂直的正三稜錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

高一數學知識點總結大全 篇5

集合間的基本關係

1、“包含”關係—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2、“相等”關係:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”

即:①任何一個集合是它本身的子集。AA

②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)

③如果AB,BC,那么AC

④如果AB同時BA那么A=B

3、不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n—1個真子集

集合的運算

運算類型交集並集補集

定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:AB(讀作‘A並B’),即AB={x|xA,或xB})。

設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

高一數學知識點總結大全 篇6

集合具有某種特定性質的事物的總體。這裡的事物可以是人,物品,也可以是數學元素。

例如:

1、分散的人或事物聚集到一起;使聚集:緊急~。

2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。

3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G、F、P、,1845年1918年,德國數學家先驅,是集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。

集合,在數學上是一個基礎概念。

什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

集合與集合之間的關係

某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)

高一數學知識點總結大全 篇7

高一數學集合有關概念

集合的含義

集合的中元素的三個特性:

元素的確定性如:世界上的山

元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}

元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合

集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

集合的表示方法:列舉法與描述法。

注意:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N_N+整數集Z有理數集Q實數集R

列舉法:{a,b,c……}

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{x(R|x—3>2},{x|x—3>2}

語言描述法:例:{不是直角三角形的三角形}

Venn圖:

集合的分類:

有限集含有有限個元素的集合

無限集含有無限個元素的集合

空集不含任何元素的集合例:{x|x2=—5}

高一數學知識點總結大全 篇8

圓的方程定義:

圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的`定形條件。

直線和圓的位置關係:

1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。

①Δ>0,直線和圓相交、②Δ=0,直線和圓相切、③Δ0,則a可以是任意實數;

排除了為0這種可能,即對於x0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

指數函式

(1)指數函式的定義域為所有實數的集合,這裡的前提是a大於0,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮。

(2)指數函式的值域為大於0的實數集合。

(3)函式圖形都是下凹的。

(4)a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。

(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。

(6)函式總是在某一個方向上無限趨向於X軸,永不相交。

(7)函式總是通過(0,1)這點。

(8)顯然指數函式無界。

奇偶性

定義

一般地,對於函式f(x)

(1)如果對於函式定義域內的任意一個x,都有f(-x)=-f(x),那么函式f(x)就叫做奇函式。

(2)如果對於函式定義域內的任意一個x,都有f(-x)=f(x),那么函式f(x)就叫做偶函式。

(3)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。

(4)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。

高一數學知識點總結大全 篇9

圓的方程定義:

圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關係:

1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。

①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ0,直線和圓相交.②Δ=0,直線和圓相切.③Δb>0)或+=1(a>b>0)(其中,a2=b2+c2)

2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)

3.拋物線:y2=±2px(p>0),x2=±2py(p>0)

三、圓錐曲線的性質

1.橢圓:+=1(a>b>0)

(1)範圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±

2.雙曲線:-=1(a>0,b>0)(1)範圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x

3.拋物線:y2=2px(p>0)(1)範圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=-

高一數學知識點總結大全 篇10

定義:

從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交於一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。

表達式:

斜截式:y=kx+b

兩點式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)

點斜式:y-y1=k(x-x1)

截距式:(x/a)+(y/b)=0

補充一下:最基本的標準方程不要忘了,AX+BY+C=0,

因為,上面的四種直線方程不包含斜率K不存在的情況,如x=3,這條直線就不能用上面的四種形式表示,解題過程中尤其要注意,K不存在的情況。

高一數學知識點總結大全 篇11

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

高一數學知識點總結大全 篇12

知識點1

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1、元素的確定性;

2、元素的互異性;

3、元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2、集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

關於“屬於”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分類:

1、有限集含有有限個元素的集合

2、無限集含有無限個元素的集合

3、空集不含任何元素的集合例:{x|x2=—5}

知識點2

I、定義與定義表達式

一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a<0時,開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)

則稱y為x的二次函式。

二次函式表達式的右邊通常為二次三項式。

II、二次函式的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)

頂點式:y=a(x—h)^2+k[拋物線的頂點P(h,k)]

交點式:y=a(x—x?)(x—x?)[僅限於與x軸有交點A(x?,0)和B(x?,0)的拋物線]

註:在3種形式的互相轉化中,有如下關係:

h=—b/2ak=(4ac—b^2)/4ax?,x?=(—b±√b^2—4ac)/2a

III、二次函式的圖像

在平面直角坐標系中作出二次函式y=x^2的圖像,可以看出,二次函式的圖像是一條拋物線。

IV、拋物線的性質

1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,坐標為

P(—b/2a,(4ac—b^2)/4a)

當—b/2a=0時,P在y軸上;當Δ=b^2—4ac=0時,P在x軸上。

3、二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

知識點3

1、拋物線是軸對稱圖形。對稱軸為直線

x=—b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,坐標為

P(—b/2a,(4ac—b’2)/4a)

當—b/2a=0時,P在y軸上;當Δ=b’2—4ac=0時,P在x軸上。

3、二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。

|a|越大,則拋物線的開口越小。

4、一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5、常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6、拋物線與x軸交點個數

Δ=b’2—4ac>0時,拋物線與x軸有2個交點。

Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

Δ=b’2—4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=—b±√b’2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

知識點4

對數函式

對數函式的一般形式為,它實際上就是指數函式的反函式。因此指數函數裡對於a的規定,同樣適用於對數函式。

右圖給出對於不同大小a所表示的函式圖形:

可以看到對數函式的圖形只不過的指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。

(1)對數函式的定義域為大於0的實數集合。

(2)對數函式的值域為全部實數集合。

(3)函式總是通過(1,0)這點。

(4)a大於1時,為單調遞增函式,並且上凸;a小於1大於0時,函式為單調遞減函式,並且下凹。

(5)顯然對數函式。

知識點5

方程的根與函式的零點

1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。

2、函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標。即:方程有實數根,函式的圖象與坐標軸有交點,函式有零點。

3、函式零點的求法:

(1)(代數法)求方程的實數根;

(2)(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯繫起來,並利用函式的性質找出零點。

4、二次函式的零點:

(1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點。

(2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點。

(3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點。

高一數學知識點總結大全 篇13

知識點1

一、集合有關概念

1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。

2、集合的中元素的三個特性:

1、元素的確定性;

2、元素的互異性;

3、元素的無序性

說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。

(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。

(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}

1、用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}

2、集合的表示方法:列舉法與描述法。

注意啊:常用數集及其記法:

非負整數集(即自然數集)記作:N

正整數集N或N+整數集Z有理數集Q實數集R

關於“屬於”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A記作a?A

列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}

4、集合的分類:

1、有限集含有有限個元素的集合

2、無限集含有無限個元素的集合

3、空集不含任何元素的集合例:{x|x2=—5}

知識點2

I、定義與定義表達式

一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0時,拋物線向上開口;當a0),對稱軸在y軸左;

當a與b異號時(即ab0時,拋物線與x軸有2個交點。

Δ=b’2—4ac=0時,拋物線與x軸有1個交點。

Δ=b’2—4ac0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點。

(2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點。

(3)△2},{x|x-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)Venn圖:

4、集合的分類:

(1)有限集含有有限個元素的集合

(2)無限集含有無限個元素的集合

(3)空集不含任何元素的集合例:{x|x2=-5}

2、高一數學知識點總結:集合間的基本關係

1.“包含”關係—子集

注意:A?B有兩種可能(1)A是B的一部分;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作A?/B或B?/A

2.“相等”關係:A=B(5≥5,且5≤5,則5=5)

實例:設A={x|x2

-1=0}B={-1,1}“元素相同則兩集合相等”即:①任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A≠B那就說集合A是集合B的真子集,記作AB(或BA)

③如果A?B,B?C,那么A?C

④如果A?B同時B?A那么A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個元素的集合,含有2n個子集,2n-1個真子集,一般我們把不含任何元素的集合叫做空集。

3、高一數學知識點總結:集合的分類(1)按元素屬性分類,如點集,數集。(2)按元素的個數多少,分為有/無限集

關於集合的概念:

(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。

(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。

(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標準。

集合可以根據它含有的元素的個數分為兩類:

含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。

非負整數全體構成的集合,叫做自然數集,記作N;

在自然數集內排除0的集合叫做正整數集,記作N+或N;

整數全體構成的集合,叫做整數集,記作Z;

有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)

實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的點一一對應的數。)

1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.

有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。

例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.

無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.

2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。

例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大於0”

而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為

{x∈R│x能被2整除,且大於0}或{x∈R│x=2n,n∈N+},

大括弧內豎線左邊的X表示這個集合的任意一個元素,元素X從實數集合中取值,在豎線右邊寫出只有集合內的元素x才具有的性質。

一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}

它表示集合A是由集合I中具有性質p(x)的所有元素構成的,這種表示集合的方法,叫做特徵性質描述法,簡稱描述法。

例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0

高一數學知識點總結大全 篇14

集合的運算

運算類型交 集並 集補 集

定義域 R定義域 R

值域>0值域>0

在R上單調遞增在R上單調遞減

非奇非偶函式非奇非偶函式

函式圖象都過定點(0,1)函式圖象都過定點(0,1)

注意:利用函式的單調性,結合圖象還可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,則 ; 取遍所有正數若且唯若 ;

(3)對於指數函式 ,總有 ;

二、對數函式

(一)對數

1.對數的概念:

一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)

說明:○1 注意底數的限制 ,且 ;

○2 ;

○3 注意對數的書寫格式.

兩個重要對數:

○1 常用對數:以10為底的對數 ;

○2 自然對數:以無理數 為底的對數的對數 .

指數式與對數式的互化

冪值 真數

= N = b

底數

指數 對數

(二)對數的運算性質

如果 ,且 , , ,那么:

○1 + ;

○2 - ;

○3 .

注意:換底公式: ( ,且 ; ,且 ; ).

利用換底公式推導下面的結論:(1) ;(2) .

(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恆等式

(二)對數函式

1、對數函式的概念:函式 ,且 叫做對數函式,其中 是自變數,函式的定義域是(0,+∞).

注意:○1 對數函式的定義與指數函式類似,都是形式定義,注意辨別。如: , 都不是對數函式,而只能稱其為對數型函式.

○2 對數函式對底數的限制: ,且 .

2、對數函式的性質:

a>100時,函式的最小值為2.可見定義域對函式的值域或最值的影響.

3、函式的最值在實際問題中的套用

函式的最值的套用主要體現在用函式知識求解實際問題上,從文字表述上常常表現為“工程造價最低”,“利潤”或“面積(體積)(最小)”等諸多現實問題上,求解時要特別關注實際意義對自變數的制約,以便能正確求得最值.

【(四)、函式的奇偶性】

1、函式的奇偶性的定義:對於函式f(x),如果對於函式定義域內的任意一個x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函式f(x)就叫做奇函式(或偶函式).

正確理解奇函式和偶函式的定義,要注意兩點:(1)定義域在數軸上關於原點對稱是函式f(x)為奇函式或偶函式的必要不充分條件;(2)f(x)=-f(x)或f(-x)=f(x)是定義域上的恆等式.(奇偶性是函式定義域上的整體性質).

2、奇偶函式的定義是判斷函式奇偶性的主要依據。為了便於判斷函式的奇偶性,有時需要將函式化簡或套用定義的等價形式:

注意如下結論的運用:

(1)不論f(x)是奇函式還是偶函式,f(|x|)總是偶函式;

(2)f(x)、g(x)分別是定義域D1、D2上的奇函式,那么在D1∩D2上,f(x)+g(x)是奇函式,f(x)·g(x)是偶函式,類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函式的複合函式的奇偶性通常是偶函式;

(4)奇函式的導函式是偶函式,偶函式的導函式是奇函式。

3、有關奇偶性的幾個性質及結論

(1)一個函式為奇函式的充要條件是它的圖象關於原點對稱;一個函式為偶函式的充要條件是它的圖象關於y軸對稱.

(2)如要函式的定義域關於原點對稱且函式值恆為零,那么它既是奇函式又是偶函式.

(3)若奇函式f(x)在x=0處有意義,則f(0)=0成立.

(4)若f(x)是具有奇偶性的區間單調函式,則奇(偶)函式在正負對稱區間上的單調性是相同(反)的。

(5)若f(x)的定義域關於原點對稱,則F(x)=f(x)+f(-x)是偶函式,G(x)=f(x)-f(-x)是奇函式.

(6)奇偶性的推廣

函式y=f(x)對定義域內的任一x都有f(a+x)=f(a-x),則y=f(x)的圖象關於直線x=a對稱,即y=f(a+x)為偶函式.函式y=f(x)對定義域內的任-x都有f(a+x)=-f(a-x),則y=f(x)的圖象關於點(a,0)成中心對稱圖形,即y=f(a+x)為奇函式。

【(五)、函式的單調性】

1、單調函式

對於函式f(x)定義在某區間[a,b]上任意兩點x1,x2,當x1>x2時,都有不等式f(x1)>(或x2),這說明單調性使得自變數間的不等關係和函式值之間的不等關係可以“正逆互推”.

5、複合函式y=f[g(x)]的單調性

若u=g(x)在區間[a,b]上的單調性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調性相同,則複合函式y=f[g(x)]在[a,b]上單調遞增;否則,單調遞減.簡稱“同增、異減”.

在研究函式的單調性時,常需要先將函式化簡,轉化為討論一些熟知函式的單調性。因此,掌握並熟記一次函式、二次函式、指數函式、對數函式的單調性,將大大縮短我們的判斷過程.

6、證明函式的單調性的方法

(1)依定義進行證明.其步驟為:①任取x1、x2∈M且x1(或0,則f(x)為增函式;如果f′(x)0)

沿y軸向平移b個單位

y=f(x±a)(a>0)

沿x軸向平移a個單位

y=-f(x)

作關於x軸的對稱圖形

y=f(|x|)

右不動、左右關於y軸對稱

y=|f(x)|

上不動、下沿x軸翻折

y=f-1(x)

作關於直線y=x的對稱圖形

y=f(ax)(a>0)

橫坐標縮短到原來的,縱坐標不變

y=af(x)

縱坐標伸長到原來的|a|倍,橫坐標不變

y=f(-x)

作關於y軸對稱的圖形

【例】定義在實數集上的函式f(x),對任意x,y∈R,有f(x+y)+f(x-y)=2f(x)·f(y),且f(0)≠0.

①求證:f(0)=1;

②求證:y=f(x)是偶函式;

③若存在常數c,使求證對任意x∈R,有f(x+c)=-f(x)成立;試問函式f(x)是不是周期函式,如果是,找出它的一個周期;如果不是,請說明理由.

思路分析:我們把沒有給出解析式的函式稱之為抽象函式,解決這類問題一般採用賦值法.

解答:①令x=y=0,則有2f(0)=2f2(0),因為f(0)≠0,所以f(0)=1.

②令x=0,則有f(x)+f(-y)=2f(0)·f(y)=2f(y),所以f(-y)=f(y),這說明f(x)為偶函式.

③分別用(c>0)替換x、y,有f(x+c)+f(x)=

所以,所以f(x+c)=-f(x).

兩邊套用中的結論,得f(x+2c)=-f(x+c)=-[-f(x)]=f(x),

所以f(x)是周期函式,2c就是它的一個周期.

高一數學知識點總結大全 篇15

函式圖象知識歸納

(1)定義:在平面直角坐標系中,以函式y=f(x),(x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的函式C,叫做函式y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.

(2)畫法

A、描點法:

B、圖象變換法

常用變換方法有三種

1)平移變換

2)伸縮變換

3)對稱變換

4.高中數學函式區間的概念

(1)函式區間的分類:開區間、閉區間、半開半閉區間

(2)無窮區間

5.映射

一般地,設A、B是兩個非空的函式,如果按某一個確定的對應法則f,使對於函式A中的任意一個元素x,在函式B中都有確定的元素y與之對應,那么就稱對應f:AB為從函式A到函式B的一個映射。記作“f(對應關係):A(原象)B(象)”

對於映射f:A→B來說,則應滿足:

(1)函式A中的每一個元素,在函式B中都有象,並且象是的;

(2)函式A中不同的元素,在函式B中對應的象可以是同一個;

(3)不要求函式B中的每一個元素在函式A中都有原象。

6.高中數學函式之分段函式

(1)在定義域的不同部分上有不同的解析表達式的函式。

(2)各部分的自變數的取值情況.

(3)分段函式的定義域是各段定義域的交集,值域是各段值域的並集.

補充:複合函式

如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的複合函式。