人教版高一數學知識點精選總結

人教版高一數學知識點精選總結 篇1

圓的方程定義:

圓的標準方程(x-a)2+(y-b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。

直線和圓的位置關係:

1.直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係.

①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.

方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.

①dR,直線和圓相離.

2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.

3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.

切線的性質

⑴圓心到切線的距離等於圓的半徑;

⑵過切點的半徑垂直於切線;

⑶經過圓心,與切線垂直的`直線必經過切點;

⑷經過切點,與切線垂直的直線必經過圓心;

當一條直線滿足

(1)過圓心;

(2)過切點;

(3)垂直於切線三個性質中的兩個時,第三個性質也滿足.

切線的判定定理

經過半徑的外端點並且垂直於這條半徑的直線是圓的切線.

切線長定理

從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.

圓錐曲線性質:

一、圓錐曲線的定義

1.橢圓:到兩個定點的距離之和等於定長(定長大於兩個定點間的距離)的動點的軌跡叫做橢圓.

2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小於兩個定點的距離)的動點軌跡叫做雙曲線.即.

3.圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線.當01時為雙曲線.

人教版高一數學知識點精選總結 篇2

函式圖象知識歸納

(1)定義:在平面直角坐標系中,以函式y=f(x),(x∈A)中的'x為橫坐標,函式值y為縱坐標的點P(x,y)的集合C,叫做函式y=f(x),(x∈A)的圖象。

C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上。即記為C={P(x,y)|y=f(x),x∈A}

圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多只有一個交點的若干條曲線或離散點組成。

(2)畫法

A、描點法:根據函式解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x,y),最後用平滑的曲線將這些點連線起來。

B、圖象變換法(請參考必修4三角函式)

常用變換方法有三種,即平移變換、伸縮變換和對稱變換

(3)作用:

1、直觀的看出函式的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。

人教版高一數學知識點精選總結 篇3

元素與集合的關係有“屬於”與“不屬於”兩種。

集合與集合之間的關係

某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個≠符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。

人教版高一數學知識點精選總結 篇4

【立體幾何初步】

1、柱、錐、台、球的結構特徵

(1)稜柱:

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

(2)稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

(3)稜台:

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

(6)圓台:

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;

俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

人教版高一數學知識點精選總結 篇5

這學期我擔任高一7、8兩個普通班的數學教學工作。深入研究教法,經過一個學期的努力,獲取了很多寶貴的教學經驗。以下是我在本學期的教學情況總結:

教學就是教與學,兩者是相互聯繫,不可分割的,有教者就必然有學者。學生是被教的主體。因此,了解和分析學生情況,有針對地教對教學成功與否至關重要。一方面,從學生基礎來看,學生底子,另一方面,上課比較活躍,上課氣氛非常積極,但中等生、差等生占較大的比例,尖子生相對比較少。因此,講得太深,沒有照顧到整體,我備課時也沒有注意到這點,因此教學效果不是很理想。從此可以看出,了解及分析學生實際情況,實事求是,具體問題具體分析,做到因材施教,對授課效果有直接影響,這根提高數學高效課堂有很大的關係。這就是教育學中提到的“備教法的同時要備學生”。這一理論在我的教學實踐中得到了驗證。

教學中,備課是一個必不可少,十分重要的環節,備學生,又要備教法。備課不充分或備得不好,會嚴重影響課堂氣氛和積極性,曾有一位前輩對我說:“備課備不好,倒不如不上課,否則就是白費心機”。我明白到備課的重要性,因此,每天我都花費大量的時間在備課之上,認認真真鑽研教材和教法,不滿意就不收工。雖然辛苦,但事實證明是值得的。

一堂準備充分的課,會令學生和老師都獲益不淺。如果照本宣科地講授,學生會感到困難和沉悶。為了上好這堂課,我認真研究了教材,找出了重點,難點,準備有針對性地講。為了令教學生動,不沉悶,我還為此準備了大量的比較感興趣的事例和教具,授課時就胸有成竹了。

備課充分,能調動學生的積極性,上課效果就好。但同時又要有駕馭課堂的能力,因為學生在課堂上的一舉一動都會直接影響課堂教學。因此上課一定要設法令學生投入,不讓其分心,這就很講究方法了。上課內容豐富,現實。教態自然,講課生動,難易適中照顧全部,就自然能夠吸引住學生。所以,老師每天都要有充足的精神,讓學生感受到一種自然氣氛。這樣,授課就事半功倍。回看自己的授課,我感到有點愧疚,因為有時我並不能很好地做到這點。當學生在課堂上無心向學,違反紀律時,我的情緒就受到影響,並且把這帶到教學中,讓原本正常的講課受到衝擊,發揮不到應有的水平,以致影響教學效果。我以後必須努力克服,研究方法,採取有利方法解決當中困難。

數學是一門工具學科,對學生而言,既熟悉又困難,在這樣一種大環境之下,要教好數學,就要讓學生喜愛數學,讓他們對數學產生興趣。否則學生對這門學科產生畏難情緒,不願學,也無法學下去。為此,我採取了一些方法,就是儘量多講一些笑話和數學典故,讓他們更了解數學,更喜歡學習數學。只有激發學生學習數學的樂趣,才能提高同學們的`解題能力,對成績優秀的同學很有好處。

因為數學的特殊情況,學生在不斷學習中,會出現好差兩極分化的現象,差生面擴大,會嚴重影響班內的學習風氣。因此,絕對不能忽視。為此,我制定了具體的計畫和目標。對這部分同學進行有計畫的輔導。數學是語言。困此,除了課堂效果之外,還需要讓學生多想,多練。為此,在自修時,我堅持下班了解自修情況,發現問題及時糾正。課後發現學生作業問題也及時解決,及時講清楚,讓學生即時消化。另外,對部分不自覺的同學還採取紮實基礎的方式,先打實他們的基礎,然後想辦法提高他們的能力。

由於經驗頗淺,許多地方存在不足,希望在未來的日子裡,能在學校領導老師、前輩們的指導下,取得更好成績。

人教版高一數學知識點精選總結 篇6

1、集合的概念

集合是集合論中的不定義的原始概念,教材中對集合的概念進行了描述性說明:“一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集)”。理解這句話,應該把握4個關鍵字:對象、確定的、不同的、整體。

對象――即集合中的元素。集合是由它的元素確定的。

整體――集合不是研究某一單一對象的,它關注的是這些對象的全體。

確定的――集合元素的確定性――元素與集合的“從屬”關係。

不同的――集合元素的互異性。

2、有限集、無限集、空集的意義

有限集和無限集是針對非空集合來說的。我們理解起來並不困難。

我們把不含有任何元素的集合叫做空集,記做Φ。理解它時不妨思考一下“0與Φ”及“Φ與{Φ}”的關係。

幾個常用數集N、N_N+、Z、Q、R要記牢。

3、集合的表示方法

(1)列舉法的表示形式比較容易掌握,並不是所有的集合都能用列舉法表示,同學們需要知道能用列舉法表示的三種集合:

①元素不太多的有限集,如{0,1,8}

②元素較多但呈現一定的規律的有限集,如{1,2,3,…,100}

③呈現一定規律的無限集,如{1,2,3,…,n,…}

●注意a與{a}的區別

●注意用列舉法表示集合時,集合元素的“無序性”。

(2)特徵性質描述法的關鍵是把所研究的集合的“特徵性質”找準,然後適當地表示出來就行了。但關鍵點也是難點。學習時多加練習就可以了。另外,弄清“代表元素”也是非常重要的。如{x|y=x2},{y|y=x2},{(x,y)|y=x2}是三個不同的集合。

4、集合之間的關係

●注意區分“從屬”關係與“包含”關係

“從屬”關係是元素與集合之間的關係。

“包含”關係是集合與集合之間的關係。掌握子集、真子集的概念,掌握集合相等的概念,學會正確使用等符號,會用Venn圖描述集合之間的關係是基本要求。

●注意辨清Φ與{Φ}兩種關係。

人教版高一數學知識點精選總結 篇7

立體幾何初步

柱、錐、台、球的結構特徵

稜柱

定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。

表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。

幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。

稜錐

定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等

表示:用各頂點字母,如五稜錐

幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。

稜台

定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。

分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等

表示:用各頂點字母,如五稜台

幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點

圓柱

定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。

幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

圓錐

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。

幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。

圓台

定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。

球體

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。

NO.2空間幾何體的三視圖

定義三視圖

定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)

註:正視圖反映了物體上下、左右的位置關係,即反映了物體的'高度和長度;

俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;

側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。

NO.3空間幾何體的直觀圖——斜二測畫法

斜二測畫法

斜二測畫法特點

①原來與x軸平行的線段仍然與x平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

直線與方程

直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°

直線的斜率

定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

過兩點的直線的斜率公式:

(注意下面四點)

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

冪函式

定義

形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式稱為冪函式。

定義域和值域

當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。當x為不同的數值時,冪函式的值域的不同情況如下:在x大於0時,函式的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。而只有a為正數,0才進入函式的值域

性質

對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函式的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:

排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;

排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;

排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。

人教版高一數學知識點精選總結 篇8

高一數學函式知識點歸納

1、函式:設A、B為非空集合,如果按照某個特定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函式,寫作y=f(x),x∈A,其中,x叫做自變數,x的取值範圍A叫做函式的定義域,與x相對應的y的值叫做函式值,函式值的集合B={f(x)∣x∈A }叫做函式的值域。

2、函式定義域的解題思路:

⑴若x處於分母位置,則分母x不能為0。

⑵偶次方根的被開方數不小於0。

⑶對數式的真數必須大於0。

⑷指數對數式的底,不得為1,且必須大於0。

⑸指數為0時,底數不得為0。

⑹如果函式是由一些基本函式通過四則運算結合而成的,那么,它的定義域是各個部分都有意義的x值組成的集合。

⑺實際問題中的函式的定義域還要保證實際問題有意義。

3、相同函式

⑴表達式相同:與表示自變數和函式值的字母無關。

⑵定義域一致,對應法則一致。

4、函式值域的求法

⑴觀察法:適用於初等函式及一些簡單的由初等函式通過四則運算得到的函式。

⑵圖像法:適用於易於畫出函式圖像的函式已經分段函式。

⑶配方法:主要用於二次函式,配方成y=(x-a)2+b的形式。

⑷代換法:主要用於由已知值域的函式推測未知函式的值域。

5、函式圖像的變換

⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進行加減。

⑵伸縮變換:在x前加上係數。

⑶對稱變換:高中階段不作要求。

6、映射:設A、B是兩個非空集合,如果按某一個確定的對應法則f,使對於A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應,那么就稱對應f:A→B為從集合A到集合B的映射。

⑴集合A中的每一個元素,在集合B中都有象,並且象是唯一的。

⑵集合A中的不同元素,在集合B中對應的象可以是同一個。

⑶不要求集合B中的每一個元素在集合A中都有原象。

7、分段函式

⑴在定義域的不同部分上有不同的解析式表達式。

⑵各部分自變數和函式值的取值範圍不同。

⑶分段函式的定義域是各段定義域的交集,值域是各段值域的並集。

8、複合函式:如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的複合函式。

高一數學必修五知識點總結

空間兩條直線只有三種位置關係:平行、相交、異面

1、按是否共面可分為兩類:

(1)共面:平行、相交

(2)異面:

異面直線的定義:不同在任何一個平面內的兩條直線或既不平行也不相交。

異面直線判定定理:用平面內一點與平面外一點的直線,與平面內不經過該點的直線是異面直線。

兩異面直線所成的角:範圍為(0°,90°)

esp.空間向量法

兩異面直線間距離:公垂線段(有且只有一條)

esp.空間向量法

2、若從有無公共點的角度看可分為兩類:

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

高一數學直線和平面的位置關係

直線和平面只有三種位置關係:在平面內、與平面相交、與平面平行

①直線在平面內——有無數個公共點

②直線和平面相交——有且只有一個公共點

直線與平面所成的角:平面的一條斜線和它在這個平面內的射影所成的銳角。

空間向量法(找平面的法向量)

規定:

a、直線與平面垂直時,所成的角為直角,

b、直線與平面平行或在平面內,所成的角為0°角

由此得直線和平面所成角的取值範圍為[0°,90°]

最小角定理:斜線與平面所成的角是斜線與該平面內任一條直線所成角中的最小角

三垂線定理及逆定理:如果平面內的一條直線,與這個平面的一條斜線的射影垂直,那么它也與這條斜線垂直

直線和平面垂直

直線和平面垂直的定義:如果一條直線a和一個平面內的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這條直線垂直於這個平面。

直線與平面垂直的性質定理:如果兩條直線同垂直於一個平面,那么這兩條直線平行。

③直線和平面平行——沒有公共點

直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

直線和平面平行的判定定理:如果平面外一條直線和這個平面內的一條直線平行,那么這條直線和這個平面平行。

直線和平面平行的性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行。

(1)有且僅有一個公共點——相交直線;(2)沒有公共點——平行或異面

人教版高一數學知識點精選總結 篇9

1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a2},{x|x—3>2}

語言描述法:例:{不是直角三角形的三角形}

Venn圖:

4、集合的分類:

有限集含有有限個元素的集合

無限集含有無限個元素的集合

空集不含任何元素的集合例:{x|x2=—5}

人教版高一數學知識點精選總結 篇10

I.定義與定義表達式

一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0時,反比例函式圖像經過一,三象限,是減函式

當K<0時,反比例函式圖像經過二,四象限,是增函式

反比例函式圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函式圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

對數函式

對數函式的一般形式為,它實際上就是指數函式的反函式。因此指數函數裡對於a的規定,同樣適用於對數函式。

對於不同大小a所表示的函式圖形:

可以看到對數函式的圖形只不過的指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。

(1)對數函式的定義域為大於0的實數集合。

(2)對數函式的值域為全部實數集合。

(3)函式總是通過(1,0)這點。

(4)a大於1時,為單調遞增函式,並且上凸;a小於1大於0時,函式為單調遞減函式,並且下凹。

(5)顯然對數函式無界。

人教版高一數學知識點精選總結 篇11

(1)兩個平面互相平行的定義:空間兩平面沒有公共點

(2)兩個平面的位置關係:

兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。

a、平行

兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那么這兩個平面平行。

兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。

b、相交

二面角

(1)半平面:平面內的'一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。

(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值範圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直

兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直於交線的直線垂直於另一個平面。

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關係)

稜錐

稜錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做稜錐。

稜錐的性質:

(1)側棱交於一點。側面都是三角形

(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的稜錐的高與遠稜錐高的比的平方

正稜錐

正稜錐的定義:如果一個稜錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的稜錐叫做正稜錐。

正稜錐的性質:

(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正稜錐的斜高。

(3)多個特殊的直角三角形

a、相鄰兩側棱互相垂直的正三稜錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

集合

集合具有某種特定性質的事物的總體。這裡的“事物”可以是人,物品,也可以是數學元素。例如:

1、分散的人或事物聚集到一起;使聚集:緊急~。

2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。

3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G、F、P、,1845年—1918年,德國數學家先驅,是集合論的創始者,目前集合論的基本思想已經滲透到現代數學的所有領域。

集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合

集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

集合與集合之間的關係

某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

人教版高一數學知識點精選總結 篇12

反比例函式

形如y=k/x(k為常數且k≠0)的函式,叫做反比例函式。

自變數x的取值範圍是不等於0的一切實數。

反比例函式圖像性質:

反比例函式的圖像為雙曲線。

由於反比例函式屬於奇函式,有f(-x)=-f(x),圖像關於原點對稱。

另外,從反比例函式的解析式可以得出,在反比例函式的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

如圖,上面給出了k分別為正和負(2和-2)時的函式圖像。

當K>0時,反比例函式圖像經過一,三象限,是減函式

當K<0時,反比例函式圖像經過二,四象限,是增函式

反比例函式圖像只能無限趨向於坐標軸,無法和坐標軸相交。

知識點:

1.過反比例函式圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。

2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

人教版高一數學知識點精選總結 篇13

1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:

解析式

頂點坐標

對稱軸

y=ax^2

(0,0)

x=0

y=a(x-h)^2

(h,0)

x=h

y=a(x-h)^2+k

(h,k)

x=h

y=ax^2+bx+c

(-b/2a,[4ac-b^2]/4a)

x=-b/2a

當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,

當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;

當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;

當h0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0

(a≠0)的兩根.這兩點間的距離AB=|x?-x?|

當△=0.圖象與x軸只有一個交點;

當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a2} ,{x| x-3>2}

3) 語言描述法:例:{不是直角三角形的三角形}

4) Venn圖:

4、集合的分類:

(1) 有限集 含有有限個元素的集合

(2) 無限集 含有無限個元素的集合

(3) 空集 不含任何元素的集合 例:{x|x2=-5}

二、集合間的基本關係

1.“包含”關係—子集

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A

2.“相等”關係:A=B (5≥5,且5≤5,則5=5)

實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”

即:① 任何一個集合是它本身的子集。A?A

②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)

③如果 A?B, B?C ,那么 A?C

④ 如果A?B 同時 B?A 那么A=B

3. 不含任何元素的集合叫做空集,記為Φ

規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

? 有n個元素的集合,含有2n個子集,2n-1個真子集

三、集合的運算

運算類型 交 集 並 集 補 集

定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.

由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作‘A並B’),即A B ={x|x A,或x B}).

設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)

二、函式的有關概念

1.函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函式.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值範圍A叫做函式的定義域;與x的值相對應的y值叫做函式值,函式值的集合{f(x)| x∈A }叫做函式的值域.

注意:

1.定義域:能使函式式有意義的實數x的集合稱為函式的定義域。

求函式的定義域時列不等式組的主要依據是:

(1)分式的分母不等於零;

(2)偶次方根的被開方數不小於零;

(3)對數式的真數必須大於零;

(4)指數、對數式的底必須大於零且不等於1.

(5)如果函式是由一些基本函式通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.

(6)指數為零底不可以等於零,

(7)實際問題中的函式的定義域還要保證實際問題有意義.

相同函式的判斷方法:①表達式相同(與表示自變數和函式值的字母無關);②定義域一致 (兩點必須同時具備)

2.值域 : 先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3. 函式圖象知識歸納

(1)定義:在平面直角坐標系中,以函式 y=f(x) , (x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的集合C,叫做函式 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .

(2) 畫法

A、 描點法:

B、 圖象變換法

常用變換方法有三種

1) 平移變換

2) 伸縮變換

3) 對稱變換

4.區間的概念

(1)區間的分類:開區間、閉區間、半開半閉區間

(2)無窮區間

(3)區間的數軸表示.

5.映射

一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B

6.分段函式

(1)在定義域的不同部分上有不同的解析表達式的函式。

(2)各部分的自變數的取值情況.

(3)分段函式的定義域是各段定義域的交集,值域是各段值域的並集.

補充:複合函式

如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的複合函式。

二.函式的性質

1.函式的單調性(局部性質)

(1)增函式

設函式y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1

如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函式.區間D稱為y=f(x)的單調減區間.

注意:函式的單調性是函式的局部性質;

(2) 圖象的特點

如果函式y=f(x)在某個區間是增函式或減函式,那么說函式y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函式的圖象從左到右是上升的,減函式的圖象從左到右是下降的.

(3).函式單調區間與單調性的判定方法

(A) 定義法:

○1 任取x1,x2∈D,且x1

○2 作差f(x1)-f(x2);

○3 變形(通常是因式分解和配方);

○4 定號(即判斷差f(x1)-f(x2)的正負);

○5 下結論(指出函式f(x)在給定的區間D上的單調性).

(B)圖象法(從圖象上看升降)

(C)複合函式的單調性

複合函式f[g(x)]的單調性與構成它的函式u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”

注意:函式的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.

8.函式的奇偶性(整體性質)

(1)偶函式

一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函式.

(2).奇函式

一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函式.

(3)具有奇偶性的函式的圖象的特徵

偶函式的圖象關於y軸對稱;奇函式的圖象關於原點對稱.

利用定義判斷函式奇偶性的步驟:

○1首先確定函式的定義域,並判斷其是否關於原點對稱;

○2確定f(-x)與f(x)的關係;

○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函式;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函式.

(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

(3)利用定理,或藉助函式的圖象判定 .

9、函式的解析表達式

(1).函式的解析式是函式的一種表示方法,要求兩個變數之間的函式關係時,一是要求出它們之間的對應法則,二是要求出函式的定義域.

(2)求函式的解析式的主要方法有:

1) 湊配法

2) 待定係數法

3) 換元法

4) 消參法

10.函式最大(小)值(定義見課本p36頁)

○1 利用二次函式的性質(配方法)求函式的最大(小)值

○2 利用圖象求函式的最大(小)值

○3 利用函式單調性的判斷函式的最大(小)值:

如果函式y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函式y=f(x)在x=b處有最大值f(b);

如果函式y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函式y=f(x)在x=b處有最小值f(b);

人教版高一數學知識點精選總結 篇14

一、函式的概念與表示

1、映射

(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。

注意點:

(1)對映射定義的理解。

(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射

2、函式

構成函式概念的三要素:

①定義域

②對應法則

③值域

兩個函式是同一個函式的條件:三要素有兩個相同

二、函式的解析式與定義域

1、求函式定義域的主要依據:

(1)分式的分母不為零;

(2)偶次方根的被開方數不小於零,零取零次方沒有意義;

(3)對數函式的真數必須大於零;

(4)指數函式和對數函式的底數必須大於零且不等於1;

三、函式的值域

1求函式值域的方法

①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;

②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;

③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且∈R的分式;

④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);

⑤單調性法:利用函式的單調性求值域;

⑥圖象法:二次函式必畫草圖求其值域;

⑦利用對號函式

⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式

四.函式的奇偶性

1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函式。

如果對於任意∈A,都有,則稱y=f(x)為奇

函式。

2.性質:

①y=f(x)是偶函式y=f(x)的圖象關於軸對稱,y=f(x)是奇函式y=f(x)的圖象關於原點對稱,

②若函式f(x)的定義域關於原點對稱,則f(0)=0

③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函式的定義域D1,D2,D1∩D2要關於原點對稱]

3.奇偶性的判斷

①看定義域是否關於原點對稱

②看f(x)與f(-x)的關係

人教版高一數學知識點精選總結 篇15

直線與平面的位置關係

2.1空間點、直線、平面之間的位置關係

2.1.1

1平面含義:平面是無限延展的

2平面的畫法及表示

(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)

(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。

3三個公理:

(1)公理1:如果一條直線上的兩點在一個平面內,那么這條直線在此平面內

符號表示為

A∈L

B∈L=>Lα

A∈α

B∈α

公理1作用:判斷直線是否在平面內

(2)公理2:過不在一條直線上的三點,有且只有一個平面。

符號表示為:A、B、C三點不共線=>有且只有一個平面α,

使A∈α、B∈α、C∈α。

公理2作用:確定一個平面的依據。

(3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

符號表示為:P∈α∩β=>α∩β=L,且P∈L

公理3作用:判定兩個平面是否相交的依據

2.1.2空間中直線與直線之間的位置關係

1空間的兩條直線有如下三種關係:

共面直線

相交直線:同一平面內,有且只有一個公共點;

平行直線:同一平面內,沒有公共點;

異面直線:不同在任何一個平面內,沒有公共點。

2公理4:平行於同一條直線的兩條直線互相平行。

符號表示為:設a、b、c是三條直線

a∥b

c∥b

強調:公理4實質上是說平行具有傳遞性,在平面、空間這個性質都適用。

公理4作用:判斷空間兩條直線平行的依據。

3等角定理:空間中如果兩個角的兩邊分別對應平行,那么這兩個角相等或互補

4注意點:

①a與b所成的角的大小隻由a、b的相互位置來確定,與O的選擇無關,為了簡便,點O一般取在兩直線中的一條上;

②兩條異面直線所成的角θ∈(0,);

③當兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;

④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;

⑤計算中,通常把兩條異面直線所成的角轉化為兩條相交直線所成的角。

人教版高一數學知識點精選總結 篇16

I.定義與定義表達式

一般地,自變數_和因變數y之間存在如下關係:y=a_^2+b_+c則稱y為_的二次函式。

二次函式表達式的右邊通常為二次三項式。

II.二次函式的三種表達式

一般式:y=a_^2+b_+c(a,b,c為常數,a≠0)

頂點式:y=a(_-h)^2+k[拋物線的頂點P(h,k)]

交點式:y=a(_-_?)(_-_?)[僅限於與_軸有交點A(_?,0)和B(_?,0)的拋物線]

註:在3種形式的互相轉化中,有如下關係:

h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a

III.二次函式的圖像

在平面直角坐標系中作出二次函式y=_^2的圖像,可以看出,二次函式的圖像是一條拋物線。

IV.拋物線的性質

1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。

對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)

2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。

3.二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

4.一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;

當a與b異號時(即ab<0),對稱軸在y軸右。

5.常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6.拋物線與_軸交點個數

Δ=b^2-4ac>0時,拋物線與_軸有2個交點。

Δ=b^2-4ac=0時,拋物線與_軸有1個交點。

Δ=b^2-4ac<0時,拋物線與_軸沒有交點。

_的取值是虛數(_=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)

V.二次函式與一元二次方程

特別地,二次函式(以下稱函式)y=a_^2+b_+c,

當y=0時,二次函式為關於_的一元二次方程(以下稱方程),即a_^2+b_+c=0

此時,函式圖像與_軸有無交點即方程有無實數根。函式與_軸交點的橫坐標即為方程的根。

人教版高一數學知識點精選總結 篇17

函式的概念

函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有確定的數f(x)和它對應,那么就稱f:A---B為從集合A到集合B的一個函式.記作:y=f(x),x∈A.

(1)其中,x叫做自變數,x的取值範圍A叫做函式的定義域;

(2)與x的值相對應的y值叫做函式值,函式值的集合{f(x)|x∈A}叫做函式的值域.

函式的三要素:定義域、值域、對應法則

函式的表示方法:(1)解析法:明確函式的定義域

(2)圖想像:確定函式圖像是否連線,函式的圖像可以是連續的曲線、直線、折線、離散的點等等。

(3)列表法:選取的自變數要有代表性,可以反應定義域的特徵。

4、函式圖象知識歸納

(1)定義:在平面直角坐標系中,以函式y=f(x),(x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的集合C,叫做函式y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.

(2)畫法

A、描點法:B、圖象變換法:平移變換;伸縮變換;對稱變換,即平移。

(3)函式圖像平移變換的特點:

1)加左減右——————只對x

2)上減下加——————只對y

3)函式y=f(x)關於X軸對稱得函式y=-f(x)

4)函式y=f(x)關於Y軸對稱得函式y=f(-x)

5)函式y=f(x)關於原點對稱得函式y=-f(-x)

6)函式y=f(x)將x軸下面圖像翻到x軸上面去,x軸上面圖像不動得

函式y=|f(x)|

7)函式y=f(x)先作x≥0的圖像,然後作關於y軸對稱的圖像得函式f(|x|)

人教版高一數學知識點精選總結 篇18

一、教學方面

1.認真研究課程標準。在課程改革中,教師是關鍵,教師對新課程的理解與參與是推進課程改革的前提。我認真學習數學課程標準,對課改有了進一步的了解。課程標準明確規定了教學的目的、教學重點、教學的指導思想以及教學內容的確定和安排。繼承傳統,更新教學觀念。高中數學新課標指出:“豐富學生的學習方式,改進學生的學習方法是高中數學課程追求的基本理念。學生的數學學習活動不應只限於對概念、結論和技能的記憶、模仿和接受,獨立思考、自主探索、動手實踐、合作交流、閱讀自學等都是學習數學的重要方式。在高中數學教學中,教師的講授仍然是重要的教學方式之一,但要注意的是必須關注學生的主體參與,師生互動”。

2.合理使用教科書,提高課堂效益。對教材內容,教學時需要作適當處理,適當補充或降低難度是備課必須處理的。靈活使用教材,才能在教學中少走彎路,提高教學質量。對教材中存在的一些問題,教師應認真理解課標,對課標要求的重點內容要作適量的補充;對教材中不符合學生實際的題目要作適當的調整。此外,還應把握教材的“度”,不要想一步到位,如函式性質的教學,要多次螺旋上升,逐步加深。

3.發揮學生的主體作用。我重視加強學法指導,努力改變學生的學習方式,真正從接受性學習轉換為自主性學習。充分調動學生積極性、主動參與性,發揮學生在教學中的主體作用,使學生在激勵、鼓舞和自主中學習,掌握知識與技能,培養創新能力和實踐能力。每節新課前都要求學生自學,逐步培養學生的自學能力。

4.我在課堂教學中特別重視改進教學方法,注意問題的提出、探究和解決。組織、引導學生開展合作交流、展示等學習活動,以問題引導學生去發現、探究、歸納、總結,教會學生髮現問題和提出問題的方法。使學生學的主動、學的有興趣,培養問題意識及合作、交流、表達等能力。

5.落實分層教學、努力實現人人發展的目標。根據學生個性、認知能力、思維類型等差異,實行分層設計、分層教學、分層指導、分層訓練。使每一個學生都在原有基礎上獲得充分的最大化的發展。 6.營造和諧師生關係。師生之間具有愉快的情感溝通與智慧交流,課堂里充滿歡樂、微笑、輕鬆、和諧、合作和互動。教師與學生建立了一種民主、平等、尊重、溫暖、理解的師生關係。教師的親和力和教學藝術對學生產生積極影響,90%以上的學生喜歡學科教師並對這一門學科產生濃厚的學習興趣,掌握了基本的學習方法並獲得積極的情感體驗,有成功喜悅感。

7.在課後作業,反饋練習中培養學生自學能力。課後作業和反饋練習、測試是檢查學生學習效果的重要手段。抓好這一環節的教學,也有利於複習和鞏固舊課,還鍛鍊了學生的自學能力。在學完一課、一單元後,讓學生主動歸納總結,要求學生儘量自己獨立完成,以便正確反饋教學效果。

8注重做好培優補基工作,促進後進生的轉化。要提高教學質量,還要做好課後輔導工作,包括輔導學生課業和抓好學生的思想教育,尤其在後進生的轉化上。本學期培優補基工作效果顯著,特別是在對後進生轉化工作上,注意針對不同的學生採取不同的方法,先全面了解學生的基本情況,爭取準確的找出導致“差”的原因。並在情感上溫暖他們,取得他們的信任。從讚美著手,所有的人都渴望得到別人的理解和尊重,在和差生交談時,對他的處境、想法表示深刻的理解和尊重;還有在批評學生時,注意陽光語言的使用,使他們真正意識到自己所犯的錯誤或自身存在的缺點,通過自身的`努力儘快的趕超其他同學,因此兩班的數學成績提高幅度很大。

二、存在困惑

1.書本習題都較簡單和基礎,而我們的教輔題目偏難,加重了學生的學習負擔,而且學生完成情況很不好。課時又不足,教學時間緊,沒時間講評這些練習題。

2.由於學生的基礎參差不齊且整體數學素質不理想,在教學中,經常出現一節課的教學任務完不成的現象,少有鞏固練習的時間。一些學生聽得似懂非懂,給差生學好數學造成了一定的困難。而且知識內容需要補充的:如乘法公式;因式分解的十字相乘法;一元二次方程及根與係數的關係;根式的運算;解不等式等知識沒有專門的時間教學,只能是在新授過程中逐漸滲透。

3.雖然經常要求學生課後要去完成教輔上的精選的題目,但是,相當部分的同學還是沒辦法完成。學生的課業負擔偏重(原因:9個學科同時並進),有的學生則是學習意識淡薄,導致有的學生難於適應。

三、今後要注意的幾點

1.要處理好課時緊張與教學內容多的矛盾,加強對教材的研究;

2.注意對教輔材料題目的精選再精選,減經學生的負擔。

3.要加強對數學後進生的思想教育,進一步增強他們學好數學的信心。