人教版高一數學必修一知識點歸納最新 篇1
I.定義與定義表達式
一般地,自變數x和因變數y之間存在如下關係:y=ax^2+bx+c
(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0時,反比例函式圖像經過一,三象限,是減函式
當K<0時,反比例函式圖像經過二,四象限,是增函式
反比例函式圖像只能無限趨向於坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函式圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
對數函式
對數函式的一般形式為,它實際上就是指數函式的反函式。因此指數函數裡對於a的規定,同樣適用於對數函式。
對於不同大小a所表示的函式圖形:
可以看到對數函式的圖形只不過的指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。
(1)對數函式的定義域為大於0的實數集合。
(2)對數函式的值域為全部實數集合。
(3)函式總是通過(1,0)這點。
(4)a大於1時,為單調遞增函式,並且上凸;a小於1大於0時,函式為單調遞減函式,並且下凹。
(5)顯然對數函式無界。
人教版高一數學必修一知識點歸納最新 篇2
集合間的基本關係
1.“包含”關係—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關係(5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} “元素相同”
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
A?① 任何一個集合是它本身的子集。A
B那就說集合A是集合B的真子集,記作A B(或B A)?B,且A?②真子集:如果A
C?C ,那么 A?B, B?③如果 A
A 那么A=B?B 同時 B?④ 如果A
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:A∪B(讀作”A並B”),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A, A∪φ= A ,A∪B = B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即 ),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
A}?S且 x? x?記作: CSA 即 CSA ={x
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U
人教版高一數學必修一知識點歸納最新 篇3
圓的方程定義:
圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關係:
1。直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。
①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ<0,直線和圓相離。
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較。
①dR,直線和圓相離。
2。直線和圓相切,這類問題主要是求圓的切線方程。求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況。
3。直線和圓相交,這類問題主要是求弦長以及弦的中點問題。
切線的性質
⑴圓心到切線的距離等於圓的半徑;
⑵過切點的半徑垂直於切線;
⑶經過圓心,與切線垂直的直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足。
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線。
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角。
圓錐曲線性質:
一、圓錐曲線的定義
1、橢圓:到兩個定點的距離之和等於定長(定長大於兩個定點間的距離)的動點的軌跡叫做橢圓。
2、雙曲線:到兩個定點的距離的差的絕對值為定值(定值小於兩個定點的距離)的動點軌跡叫做雙曲線。即。
3、圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線。當01時為雙曲線。
二、圓錐曲線的方程
1、橢圓:+=1(a>b>0)或+=1(a>b>0)(其中,a2=b2+c2)
2、雙曲線:—=1(a>0,b>0)或—=1(a>0,b>0)(其中,c2=a2+b2)
3、拋物線:y2=±2px(p>0),x2=±2py(p>0)
三、圓錐曲線的性質
1、橢圓:+=1(a>b>0)
(1)範圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±
2、雙曲線:—=1(a>0,b>0)(1)範圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x
3、拋物線:y2=2px(p>0)(1)範圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=—
人教版高一數學必修一知識點歸納最新 篇4
1、二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的'圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h<0時,則向左平行移動|h|個單位得到.
當h>0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k<0時,將拋物線y=ax^2向右平行移動h個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k>0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h<0,k<0時,將拋物線向左平行移動|h|個單位,再向下移動|k|個單位可得到y=a(x-h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)^2+k的形式,可確定其頂點坐標、對稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便.
2、拋物線y=ax^2+bx+c(a≠0)的圖象:當a>0時,開口向上,當a<0時開口向下,對稱軸是直線x=-b/2a,頂點坐標是(-b/2a,[4ac-b^2]/4a).
3、拋物線y=ax^2+bx+c(a≠0),若a>0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a<0,當x≤-b/2a時,y隨x的增大而增大;當x≥-b/2a時,y隨x的增大而減小.
4、拋物線y=ax^2+bx+c的圖象與坐標軸的交點:
(1)圖象與y軸一定相交,交點坐標為(0,c);
(2)當△=b^2-4ac>0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△<0.圖象與x軸沒有交點.當a>0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a<0時,圖象落在x軸的下方,x為任何實數時,都有y<0.
5、拋物線y=ax^2+bx+c的最值:如果a>0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.
6、用待定係數法求二次函式的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7、二次函式知識很容易與其它知識綜合套用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
人教版高一數學必修一知識點歸納最新 篇5
一、集合有關概念
1、集合的含義
2、集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3、集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集:N_或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合{xR|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關係
1、“包含”關係—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關係:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:
①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同時BíA那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4、子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集並集補集
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:AB(讀作‘A並B’),即AB={x|xA,或xB}).
人教版高一數學必修一知識點歸納最新 篇6
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性,
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
? 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+ 整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{x?R| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關係
1.“包含”關係—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關係:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同時 B?A 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作‘A並B’),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
二、函式的有關概念
1.函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函式.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值範圍A叫做函式的定義域;與x的值相對應的y值叫做函式值,函式值的集合{f(x)| x∈A }叫做函式的值域.
注意:
1.定義域:能使函式式有意義的實數x的集合稱為函式的定義域。
求函式的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函式是由一些基本函式通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函式的定義域還要保證實際問題有意義.
相同函式的判斷方法:①表達式相同(與表示自變數和函式值的字母無關);②定義域一致 (兩點必須同時具備)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函式圖象知識歸納
(1)定義:在平面直角坐標系中,以函式 y=f(x) , (x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的集合C,叫做函式 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函式
(1)在定義域的不同部分上有不同的解析表達式的函式。
(2)各部分的自變數的取值情況.
(3)分段函式的定義域是各段定義域的交集,值域是各段值域的並集.
補充:複合函式
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的複合函式。
二.函式的性質
1.函式的單調性(局部性質)
(1)增函式
設函式y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1
如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函式.區間D稱為y=f(x)的單調減區間.
注意:函式的單調性是函式的局部性質;
(2) 圖象的特點
如果函式y=f(x)在某個區間是增函式或減函式,那么說函式y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函式的圖象從左到右是上升的,減函式的圖象從左到右是下降的.
(3).函式單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函式f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)複合函式的單調性
複合函式f[g(x)]的單調性與構成它的函式u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”
注意:函式的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函式的奇偶性(整體性質)
(1)偶函式
一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函式.
(2).奇函式
一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函式.
(3)具有奇偶性的函式的圖象的特徵
偶函式的圖象關於y軸對稱;奇函式的圖象關於原點對稱.
利用定義判斷函式奇偶性的步驟:
○1首先確定函式的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關係;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函式;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函式.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函式的圖象判定 .
9、函式的解析表達式
(1).函式的解析式是函式的一種表示方法,要求兩個變數之間的函式關係時,一是要求出它們之間的對應法則,二是要求出函式的定義域.
(2)求函式的解析式的主要方法有:
1) 湊配法
2) 待定係數法
3) 換元法
4) 消參法
10.函式最大(小)值(定義見課本p36頁)
○1 利用二次函式的性質(配方法)求函式的最大(小)值
○2 利用圖象求函式的最大(小)值
○3 利用函式單調性的判斷函式的最大(小)值:
如果函式y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函式y=f(x)在x=b處有最大值f(b);
如果函式y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函式y=f(x)在x=b處有最小值f(b);
人教版高一數學必修一知識點歸納最新 篇7
一:函式模型及其套用
本節主要包括函式的模型、函式的套用等知識點。主要是理解函式解套用題的一般步驟靈活利用函式解答實際套用題。
1、常見的函式模型有一次函式模型、二次函式模型、指數函式模型、對數函式模型、分段函式模型等。
2、用函式解套用題的基本步驟是:
(1)閱讀並且理解題意。(關鍵是數據、字母的實際意義);
(2)設量建模;
(3)求解函式模型;
(4)簡要回答實際問題。
常見考法:
本節知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函式和較複雜的函式的最值等問題,屬於拔高題,難度較大。
誤區提醒:
1、求解套用性問題時,不僅要考慮函式本身的定義域,還要結合實際問題理解自變數的取值範圍。
2、求解套用性問題時,首先要弄清題意,分清條件和結論,抓住關鍵字和量,理順數量關係,然後將文字語言轉化成數學語言,建立相應的數學模型。
【典型例題】
例1:
(1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數x之間的函式關係式,並計算5個月後的本息和(不計複利)。
(2)按複利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫出本利和y隨存期x變化的函式式。如果存入本金1000元,每期利率2。25%,試計算5期後的本利和是多少?解:(1)利息=本金×月利率×月數。y=100+100×0。36%·x=100+0。36x,當x=5時,y=101。8,∴5個月後的本息和為101。8元。
例2:
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關係如圖1,B產品的利潤與投資的算術平方根成正比,其關係如圖2(註:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函式,並寫出它們的函式關係式。
(2)該企業已籌集到10萬元資金,並全部投入A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能是企業獲得利潤,其利潤約為多少萬元。(精確到1萬元)。
人教版高一數學必修一知識點歸納最新 篇8
元素與集合的關係有“屬於”與“不屬於”兩種。
集合與集合之間的關係
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個≠符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。
人教版高一數學必修一知識點歸納最新 篇9
稜錐
稜錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做稜錐
稜錐的的性質:
(1)側棱交於一點。側面都是三角形
(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的稜錐的高與遠稜錐高的比的平方
正稜錐
正稜錐的定義:如果一個稜錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的稜錐叫做正稜錐。
正稜錐的性質:
(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正稜錐的斜高。
(3)多個特殊的直角三角形
esp:
a、相鄰兩側棱互相垂直的正三稜錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
人教版高一數學必修一知識點歸納最新 篇10
兩個平面的位置關係
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關係:
兩個平面平行-----沒有公共點;兩個平面相交-----有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那么這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。b、相交
二面角
(1)半平面:平面內的一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值範圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關係)。
人教版高一數學必修一知識點歸納最新 篇11
對數函式
對數函式的一般形式為,它實際上就是指數函式的反函式。因此指數函數裡對於a的規定,同樣適用於對數函式。
右圖給出對於不同大小a所表示的函式圖形:
可以看到對數函式的圖形只不過的指數函式的圖形的關於直線y=x的對稱圖形,因為它們互為反函式。
(1)對數函式的定義域為大於0的實數集合。
(2)對數函式的值域為全部實數集合。
(3)函式總是通過(1,0)這點。
(4)a大於1時,為單調遞增函式,並且上凸;a小於1大於0時,函式為單調遞減函式,並且下凹。
(5)顯然對數函式。
人教版高一數學必修一知識點歸納最新 篇12
圓的方程定義:
圓的標準方程(x—a)2+(y—b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關係:
1、直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係。
①Δ>0,直線和圓相交。②Δ=0,直線和圓相切。③Δ0,直線和圓相交.②Δ=0,直線和圓相切.③Δb>0)或+=1(a>b>0)(其中,a2=b2+c2)
2.雙曲線:-=1(a>0,b>0)或-=1(a>0,b>0)(其中,c2=a2+b2)
3.拋物線:y2=±2px(p>0),x2=±2py(p>0)
三、圓錐曲線的性質
1.橢圓:+=1(a>b>0)
(1)範圍:|x|≤a,|y|≤b(2)頂點:(±a,0),(0,±b)(3)焦點:(±c,0)(4)離心率:e=∈(0,1)(5)準線:x=±
2.雙曲線:-=1(a>0,b>0)(1)範圍:|x|≥a,y∈R(2)頂點:(±a,0)(3)焦點:(±c,0)(4)離心率:e=∈(1,+∞)(5)準線:x=±(6)漸近線:y=±x
3.拋物線:y2=2px(p>0)(1)範圍:x≥0,y∈R(2)頂點:(0,0)(3)焦點:(,0)(4)離心率:e=1(5)準線:x=-
人教版高一數學必修一知識點歸納最新 篇13
【—正比例函式公式】正比例函式要領:一般地,兩個變數x,y之間的關係式可以表示成形如y=kx(k為常數,且k≠0)的函式,那么y就叫做x的正比例函式。
正比例函式的性質
定義域:R(實數集)
值域:R(實數集)
奇偶性:奇函式
單調性:
當>0時,圖像位於第一、三象限,從左往右,y隨x的增大而增大(單調遞增),為增函式;
當k<0時,圖像位於第二、四象限,從左往右,y隨x的增大而減小(單調遞減),為減函式。
周期性:不是周期函式。
對稱性:無軸對稱性,但關於原點中心對稱。
正比例函式圖像的作法
1、在x允許的範圍內取一個值,根據解析式求出y的值;
2、根據第一步求的x、y的值描出點;
3、作出第二步描出的點和原點的直線(因為兩點確定一直線)。
人教版高一數學必修一知識點歸納最新 篇14
時間過得真快,轉眼間高一上學期的工作就結束了。
回想起這學期的工作,我感受頗多。當然經驗談不上,因為樂東中學工作能力出色的老師實在是太多了,我只想和大家一起交流一下這學期工作心得體會,有不妥之處希望各位老師批評指正。我在教學上虛心向同行請教,結合本校和班級學生的實際情況,針對性的開展教學工作,使工作有計畫,有組織,有步驟。我對這一學期來的教學工作總結如下:
一、對學生嚴格要求,培養良好的學習習慣和學習方法
學生在從國中到高中的過渡階段,往往會有些不能適應新的學習環境。例如新的競爭壓力,以往的學習方法不能適應高中的學習,不良的學習習慣和學習態度等一些問題困擾和制約著學生的學習。為了解決這些問題,我下了一翻功夫:
1、改變學生學習數學的一些思想觀念,樹立學好數學的信心2、改變學生不良的學習習慣,建立良好的學習方法和學習態度開始,有些學生有不好的學習習慣,例如作業字跡潦草,不寫解答過程;不喜歡課前預習和課後複習;不會總結消化知識;對學習馬虎大意,過分自信等。我要求統一作業格式,表揚優秀作業,指導他們預習和複習,強調總結的重要性。對做得好的同學全班表揚並推廣,不做或做得差的同學要批評。在我的嚴格要求下,大多數同學能很快接受,慢慢的建立起好的學習方法和認真的學習態度。
二、刻苦鑽研教材,不斷提高自身的教學教研能力高一的教學對我來說是一個新的內容,要做好不容易。
第一:我認真閱讀新課標,鑽研新教材,熟悉教材內容,查閱教學資料,適當增減教學內容,認真細緻的備好每一節課,真正做到重點明確,難點分解。
第二:認真備課,不但備學生而且備教材備教法,根據教材內容及學生的實際,設計課的類型,擬定採用的教學方法,並對教學過程的程式及時間安排都做了詳細的記錄,認真寫好教案。每一課都做到“有備而來”,每堂課都在課前做好充分的準備,並製作各種利於吸引學生注意力的有趣教具,課後及時
微果網人人都是好老師學習從分享開始
對該課做出總結,寫好教學後記,並認真按蒐集每課書的知識要點,歸納成集。
第三:增強上課技能,提高教學質量,使講解清晰化,條理化,準確化,情感化,生動化,做到線索清晰,層次分明,言簡意賅,深入淺出。在課堂上特別注重調動學生的積極性,加強師生交流,充分體現學生的自主作用,讓學生學得容易,學得輕鬆,學得愉快;注重精講精練,在課堂上老師講得儘量少,學生動口動手動腦儘量多;同時在每一堂課上都充分考慮每一個層次的學生學習需求和學習能力,讓各個層次的學生都得到提高。在教學上,堅持教學研究,共同討論,同時,多聽課,學習別人的優點,克服自己的不足。
第四:在課堂教學中,堅持啟發式教學,堅持向45分鐘要質量。以學生為主體,以訓練為主線。教學過程重視知識與技能,學習過程和方法,情感態度與價值觀,培養學生自主學習,合作學習,探究性學習的精神。
第五:認真批改作業,布置作業做到精讀精練。有針對性,有層次性。為了做到這點,我常常通過網際網路蒐集資料,對各種輔助資料進行篩選,力求每一次練習都起到最大的效果。同時對學生的作業批改及時、認真,分析並記錄學生的作業情況,將他們在作業過程出現的問題做出分類總結,進行透徹評講,並針對有關情況及時改進教學方法,做到有的.放矢。
第六:做好課後輔導工作,注重分層教學。在課後,為不同層次的學生進行相應的輔導,以滿足不同層次的學生的需求,避免了一刀切的弊端,同時加大了後進生的輔導力度。對後進生的輔導,並不限於學習知識性的輔導,更重要的是學習思想的輔導,要提高后進生的成績,首先要解決他們心結,讓他們意識到學習的重要性和必要性,使之對學習萌發興趣。要通過各種途徑激發他們的求知慾和上進心,讓他們意識到學習並不是一項任務,也不是一件痛苦的事情。而是充滿樂趣的。從而自覺的把身心投放到學習中去。這樣,後進生的轉化,就由原來的簡單、強制學習轉化到自覺的求知上來。使學習成為他們自我意識的一部分。在此基礎上,再教給他們學習的方法,提高他們的技能。並認真細緻地做好查漏補缺工作。後進生通常存在很多知識斷層,這些都是後進生轉化過程中的拌腳石,在做好後進生的轉化工作時,要特別注意給他們補課,把他們以前學習的知識斷層補充完整,這樣,他們就會學得輕鬆,進步也快,興趣和求知慾也會隨之增加。
第七:積極推進素質教育。目前的考試模式仍然比較傳統,這決定了教師的教學模式要停留在應試教育的層次上,為此,我在教學工作中注意了學生能力的培養,堅持採用分組探究式數學教學模式,把傳授知識、技能和發展智力、能力結合起來,在知識層面上注入了思想情感教育的因素,發揮學生的創新意識和創新能力。讓學生的各種素質都得到有效的發展和培養。
以上是我工作的一個總結和體會,當然,有些可能是膚淺的,有些是大家平常都知道的。在我工作中,也有很多沒能達到預期的效果,但我始終相信一分耕耘,總會有一分收穫,所以我也將會繼續努力,力爭做的更好。
人教版高一數學必修一知識點歸納最新 篇15
1.函式的奇偶性
(1)若f(x)是偶函式,那么f(x)=f(-x);
(2)若f(x)是奇函式,0在其定義域內,則f(0)=0(可用於求參數);
(3)判斷函式奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函式的解析式較為複雜,應先化簡,再判斷其奇偶性;
(5)奇函式在對稱的單調區間內有相同的單調性;偶函式在對稱的單調區間內有相反的單調性;
2.複合函式的有關問題
(1)複合函式定義域求法:若已知的定義域為[a,b],其複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函式的問題一定要注意定義域優先的原則。
(2)複合函式的單調性由“同增異減”判定;
3.函式圖像(或方程曲線的對稱性)
(1)證明函式圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函式y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱,高中數學;
(6)函式y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;