國中九年級二次函式知識點總結

國中九年級二次函式知識點總結 篇1

一、基本概念

1.方程、方程的解(根)、方程組的解、解方程(組)

2.分類:

二、解方程的依據—等式性質

1.a=b←→a+c=b+c

2.a=b←→ac=bc (c≠0)

三、解法

1.一元一次方程的解法:去分母→去括弧→移項→合併同類項→

係數化成1→解。

2.元一次方程組的解法:⑴基本思想:“消元”⑵方法:①代入法

②加減法

四、一元二次方程

1.定義及一般形式:

2.解法:⑴直接開平方法(注意特徵)

⑵配方法(注意步驟—推倒求根公式)

⑶公式法:

⑷因式分解法(特徵:左邊=0)

3.根的判別式:

4.根與係數頂的關係:

逆定理:若,則以為根的一元二次方程是:。

5.常用等式:

五、可化為一元二次方程的方程

1.分式方程

⑴定義

⑵基本思想:

⑶基本解法:①去分母法②換元法(如,)

⑷驗根及方法

2.無理方程

⑴定義

⑵基本思想:

⑶基本解法:①乘方法(注意技巧!!)②換元法(例,)⑷驗根及方法

3.簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

六、列方程(組)解套用題

一概述

列方程(組)解套用題是中學數學聯繫實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關係是什麼。

⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。

⑶用含未知數的代數式表示相關的量。

⑷尋找相等關係(有的由題目給出,有的由該問題所涉及的等量關係給出),列方程。一般地,未知數個數與方程個數是相同的。

⑸解方程及檢驗。

⑹答案。

綜上所述,列方程(組)解套用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解套用題的關鍵。

二常用的相等關係

1.行程問題(勻速運動)

基本關係:s=vt

⑴相遇問題(同時出發):

+ = ;

⑵追及問題(同時出發):

若甲出發t小時後,乙才出發,而後在B處追上甲,則

⑶水中航行:;

2.配料問題:溶質=溶液_濃度

溶液=溶質+溶劑

3.增長率問題:

4.工程問題:基本關係:工作量=工作效率_工作時間(常把工作量看著單位“1”)。

5.幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。

國中九年級二次函式知識點總結 篇2

教學目標:

(1)能夠根據實際問題,熟練地列出二次函式關係式,並求出函式的自變數的取值範圍。

(2)注重學生參與,聯繫實際,豐富學生的感性認識,培養學生的良好的學習習慣

教學重點:能夠根據實際問題,熟練地列出二次函式關係式,並求出函式的自變數的取值範圍。

教學難點:求出函式的自變數的取值範圍。

教學過程:

一、問題引新

1.設矩形花圃的垂直於牆(牆長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,

AB長_(m) 1 2 3 4 5 6 7 8 9

BC長(m) 12

面積y(m2) 48

2._的值是否可以任意取?有限定範圍嗎?

3.我們發現,當AB的長(_)確定後,矩形的面積(y)也隨之確定,y是_的函式,試寫出這個函式的關係式,教師可提出問題,(1)當AB=_m時,BC長等於多少m?(2)面積y等於多少? y=_(20-2_)

二、提出問題,解決問題

1、引導學生看書第二頁問題一、二

2、觀察概括

y=6_2 d= n /2 (n-3) y= 20 (1-_)2

以上函式關係式有什麼共同特點? (都是含有二次項)

3、二次函式定義:形如y=a_2+b_+c(a、b、c是常數,a≠0)的函式叫做_的二次函式,a叫做二次函式的係數,b叫做一次項的係數,c叫作常數項.

4、課堂練習

(1) (口答)下列函式中,哪些是二次函式?

(1)y=5_+1 (2)y=4_2-1

(3)y=2_3-3_2 (4)y=5_4-3_+1

(2).P3練習第1,2題。

五、小結敘述二次函式的定義.

第二課時:26.1二次函式(2)

教學目標:

1、使學生會用描點法畫出y=a_2的圖象,理解拋物線的有關概念。

2、使學生經歷、探索二次函式y=a_2圖象性質的過程,培養學生觀察、思考、歸納的良好思維習慣。

教學重點:使學生理解拋物線的有關概念,會用描點法畫出二次函式y=a_2的圖象

教學難點:用描點法畫出二次函式y=a_2的圖象以及探索二次函式性質。

國中九年級二次函式知識點總結 篇3

I.定義與定義表達式

一般地,自變數_和因變數y之間存在如下關係:y=a_^2+b_+c

(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a0時,拋物線向上開口;當a0),對稱軸在y軸左;

當a與b異號時(即ab0時,拋物線與_軸有2個交點。

Δ=b^2-4ac=0時,拋物線與_軸有1個交點。

Δ=b^2-4ac0時,y=a(_-h)^2的圖象可由拋物線y=a_^2向右平行移動h個單位得到,

當h0,k>0時,將拋物線y=a_^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(_-h)^2+k的圖象;

當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(_-h)^2+k的圖象;

當h0時,開口向上,當a0,當_≤-b/2a時,y隨_的增大而減小;當_≥-b/2a時,y隨_的增大而增大.若a0,圖象與_軸交於兩點A(_?,0)和B(_?,0),其中的_1,_2是一元二次方程a_^2+b_+c=0

(a≠0)的兩根.這兩點間的.距離AB=|_?-_?|

當△=0.圖象與_軸只有一個交點;

當△0時,圖象落在_軸的上方,_為任何實數時,都有y>0;當a0(a<0),則當_=-b/2a時,y最小(大)值=(4ac-b^2)/4a.

頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.

6.用待定係數法求二次函式的解析式

(1)當題給條件為已知圖象經過三個已知點或已知_、y的三對對應值時,可設解析式為一般形式:

y=a_^2+b_+c(a≠0).

(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(_-h)^2+k(a≠0).

(3)當題給條件為已知圖象與_軸的兩個交點坐標時,可設解析式為兩根式:y=a(_-_?)(_-_?)(a≠0).

7.二次函式知識很容易與其它知識綜合套用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.

國中九年級二次函式知識點總結 篇4

計算方法

1.樣本平均數:

2.樣本方差:

3.樣本標準差:

相交線與平行線、三角形、四邊形的有關概念、判定、性質。

內容提要

一、直線、相交線、平行線

1.線段、射線、直線三者的區別與聯繫

從“圖形”、“表示法”、“界限”、“端點個數”、“基本性質”等方面加以分析。

2.線段的中點及表示

3.直線、線段的基本性質(用“線段的基本性質”論證“三角形兩邊之和大於第三邊”)

4.兩點間的距離(三個距離:點-點;點-線;線-線)

5.角(平角、周角、直角、銳角、鈍角)

6.互為餘角、互為補角及表示方法

7.角的平分線及其表示

8.垂線及基本性質(利用它證明“直角三角形中斜邊大於直角邊”)

9.對頂角及性質

10.平行線及判定與性質(互逆)(二者的區別與聯繫)

11.常用定理:①同平行於一條直線的兩條直線平行(傳遞性);②同垂直於一條直線的兩條直線平行。

12.定義、命題、命題的組成

13.公理、定理

14.逆命題

二、三角形

分類:

⑴按邊分;

⑵按角分

1.定義(包括內、外角)

2.三角形的邊角關係:⑴角與角:①內角和及推論;②外角和;③n邊形內角和;④n邊形外角和。⑵邊與邊:三角形兩邊之和大於第三邊,兩邊之差小於第三邊。⑶角與邊:在同一三角形中,

3.三角形的主要線段

討論:①定義②__線的交點—三角形的_心③性質

①高線②中線③角平分線④中垂線⑤中位線

⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等邊三角形

4.特殊三角形(直角三角形、等腰三角形、等邊三角形、等腰直角三角形)的判定與性質

5.全等三角形

⑴一般三角形全等的判定(SAS、ASA、AAS、SSS)

⑵特殊三角形全等的判定:①一般方法②專用方法

6.三角形的面積

⑴一般計算公式⑵性質:等底等高的三角形面積相等。

7.重要輔助線

⑴中點配中點構成中位線;⑵加倍中線;⑶添加輔助平行線

8.證明方法

⑴直接證法:綜合法、分析法

⑵間接證法—反證法:①反設②歸謬③結論

⑶證線段相等、角相等常通過證三角形全等

⑷證線段倍分關係:加倍法、折半法

⑸證線段和差關係:延結法、截余法

⑹證面積關係:將面積表示出來

三、四邊形

分類表:

1.一般性質(角)

⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。

⑶外角和:360°

2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定

⑶判定步驟:四邊形→平行四邊形→矩形→正方形

菱形

⑷對角線的紐帶作用:

3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)

4.有關定理:①平行線等分線段定理及其推論1、2

②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結頂點和對腰中點並延長與底邊相交”轉化為三角形。

6.作圖:任意等分線段。