國中數學工作總結 篇1
轉眼的時間,我在教師的崗位上又走過了半年。追憶往昔,展望未來,為了更好的總結經驗教訓無愧於“合格的人民教師”這一稱號,我現將20xx-20xx年度第一學期工作情況總結如下:
一、師德方面:加強修養,塑造師德
我始終認為作為一名教師應把“師德”放在一個重要的位置上,因為這是教師的立身之本。“學高為師,身正為范”,這個道理古今皆然。從踏上講台的第一天,我就時刻嚴格要求自己,力爭做一個有崇高師德的人。我始終堅持給學生一個好的師範,希望從我這走出去的都是合格的學生,都是一個個大寫的“人”。為了給自己的學生一個好的表率,同時也是使自己陶冶情操,加強修養,課餘時間我閱讀了大量的書籍,不斷提高自己水平。今後我將繼續加強師德方面的修養,力爭在這一方面有更大的提高。
二、教學方面:虛心求教,強化自我
擔任七年級兩個班的數學教學的工作任務是艱巨的,在實際工作中,那就得實幹加巧幹國中數學教師工作總結20xx-範文大全國中數學教師工作總結20xx-範文大全。對於一名數學教師來說,加強自身業務水平,提高教學質量無疑是至關重要的。隨著歲月的流逝,伴著我教學天數的增加,我越來越感到我知識的匱乏,經驗的缺少。面對講台下那一雙雙渴望的眼睛,每次上課我都感到自己責任之重大。為了儘快充實自己,使自己教學水平有一個質的飛躍,我從以下幾個方面對自身進行了強化。
首先是從教學理論和教學知識上。我借閱大量有關教學理論和教學方法的書籍,對於裡面各種教學理論和教學方法儘量做到博採眾家之長為己所用!。在讓先進的理論指導自己的教學實踐的同時,我也在一次次的教學實踐中來驗證和發展這種理論。
其次是從教學經驗上。由於自己教學經驗有限,有時還會在教學過程中碰到這樣或那樣的問題而不知如何處理。因而我虛心向老教師學習,力爭從他們那裡儘快增加一些寶貴的教學經驗。我個人應付和處理課堂各式各樣問題的能力大大增強。
最後我做到“不恥下問” 教學互長。從另一個角度來說,學生也是老師的。由於學生接受新知識快,接受信息多,因此我從和他們的交流中亦能豐富我的教學知識。
為了不辜負領導的信任和同學的希望,我決心盡我最大所能去提高自身水平,爭取較出色的完成教學。為此,我一方面下苦功完善自身知識體系,打牢基礎知識,使自己能夠比較自如的進行教學;另一方面,繼續向其他教師學習,抽出業餘時間向具有豐富教學經驗的老師學習。對待課程,虛心聽取他們意見,備好每一節課;仔細聽課,認真學習他們上課的安排和技巧。這半年來,通過認真學習教學理論,刻苦鑽研教學,虛心向老教師學習,我自己感到在教學方面有了較大的提高。學生的成績也證實了這一點,我教的班級在歷次考試當中都取的了較好的成績,。
三、 考勤紀律方面
我嚴格遵守學校的各項規章制度,不遲到、不早退、有事主動請假。在工作中,尊敬領導、團結同事,能正確處理好與領導同事之間的關係。平時,勤儉節約、任勞任怨、對人真誠、熱愛學生、人際關係和諧融洽,從不鬧無原則的糾紛,處處以一名人民教師的要求來規範自己的言行,毫不鬆懈地培養自己的綜合素質和能力。
我擔任的兩個班級的數學教學工作取得了一定的成績,我將繼續努力,取得更優異的教學成績,為學校爭光!
國中數學工作總結 篇2
對於本學期教研組工作,簡要總結如下:
一、工作進展情況
本學期我校數學組成員由上學期的7人減為6人,雖然人數減少了,但是工作量並沒有減輕,反而加大了,同時,工作質量也沒有因為人員變動降低了,反而還在原有的基礎上提升了。
總而言之,本學期的教研工作進展順利,不但超額完成了學期初工作計畫內的事情,還圓滿完成了校級、縣級甚至是市級安排的臨時任務。
二、主要成績
1.接待實習生及置換生兩批次總計3人次。
2.批閱教案800餘次(平均每位教師每周7節次)。
3.集體備課次總計12次,平均每位教師主備2次。
4.公開課達9次,包括實習生在內,平均每人一次。
5.參與網路培訓、校內外外出培訓活動達29人次,其中網路培訓達18次,平均每人三次(含國家級西南大學中國小教師學科培訓6人次,市級遠程培訓之“評好課”專題6人次、縣級信息技術培訓6人次),校外培訓學習4人次,省級2人次,縣級2人次;校內培訓7人次。
6.參與校內外聽評課100餘次,平均每人進20餘次。
7.參加校內課賽1人次,獲獎1人次。
8.開展學生活動兩項,分別是數學基礎知識競賽和數學手抄報大賽,數學基礎知識競賽覆蓋全校學生,參與度達100%,發放獎金800餘元;數學手抄報參與學生80餘人,參與度近20%,發放獎金400餘元。
三、經驗及體會
經驗總結:教師是知識的傳承者,教師的素養決定著學生的未來,因此,本學期在教研工作方面,我主要著手加強教師專業素養的提高,嚴格按照上級要求對本組教師的教案進行認真細緻的批閱,認真組織本組教師積極開張集體備課活動以及聽評課活動。而興趣是學生學習最好的老師,因此,我又通過開張數學知識競賽、數學手抄報等活動激發了學生學習數學的熱情,為學生創造了良好的數學學習氛圍。
體會:教師專業素養的提高與業務水平的提高,有利於學生在數學課堂上聽到更精彩生動的課,學生學習興趣的提高又可以影響教師教育教學的積極心態,因此,兩者是相輔相成,互相促進的,往後還必須加這方面的研究。
四、存在問題
1.組內成員的教學理論水平曾次不齊,導致全校數學教育教學質量在不同年級,不同班級之間都存在差異。
2.組內成員的工作積極性沒有完全調動,儘管有所改觀,但仍需努力。
3.組內成員的專業成長速度緩慢,課後對專業知識的自我提升完善觀念欠缺。
五、今後努力的方向
1.繼續積極開展各項師生活動,豐富師生課餘生活。
2.繼續落實各級相關要求,努力完善組內各項規章制度。
3.加強組內成員的理論學習,不斷提高組內成員的業務水平。
4.努力創建和諧平等的教學工作環境,加強與其他學科教師的溝通協作。
5.努力爭取各種大小培訓活動,強化隊伍建設。
國中數學工作總結 篇3
這學期,一個全新的教育理念生本教育進入了我們的視線,將生本教育融入到高效課堂中來,通過這段時間的摸索和探索,我對實施高效生本課堂做如下總結。
一、學生們得到了釋放
“生本教育”要求教師放棄講解,而是拋出有價值的問題讓學生你一句我一句的討論,體現出學生是學習的主人。在課堂上給學生充足的時間,讓孩子們自主交流、展示成果、互相質疑,在合作、交流、質疑中主動學習,獲取知識和解決問題的能力,經過自己的實踐獲得的知識,他們特別有成就感,自信心增強,在這種氛圍中學習,孩子們很放鬆,他們得到了釋放,在課堂上很放的開,對學習更加感興趣了。其中,我們班的崔新偉同學的變化就很明顯,原來的時候他在課堂上屬於不主動積極回答問題的那類學生,學習的參與積極性不高,但自從我們開始讓學生們一小組合作為單位討論、探究並走向講台當小老師為大家講題後,他像換了一個人似的,積極性特別高。看到同學們的變化,我特別高興特別激動。
二、老師的角色得到翻天覆地的變化
關於這一點我深有體會,自從實施了高效生本課堂,我才意識到我這樣的老師太強勢了,而且我發現在教學中我們太自作多情了,很多時候我們一廂情願承擔了許多工作,渴望孩子們按照我們設計的方向去發展,但到最後卻往往是我們自己失敗。
三、遇到的問題
在高效生本課堂中,我發現孩子們都是自信的、快樂的,當學生從自己研究和探索中發現規律,找到解決問題的方法的時候,我感到非常的意外和喜悅。但是,有時候還存在一些問題,孩子們怎么這么不合作?語言表達能力怎么這么欠缺?每次做總結時怎么總是說不到點子上,還這么羅嗦?實際上,他們的現狀都非常正常,因為在前期,我們並沒有在課堂上有意識的去培養孩子的.這些方面的好習慣,現在,我們剛剛接觸生本教育,作為老師是新手,很多地方作的都不夠,又何況是孩子們呢?但是,通過他們的變化,發現他們在學習上衝勁十足,自主意識很強,慢慢有了合作意識,更多的是學習上的創新意識,我深切的意識到,孩子們的潛力是無窮無盡的。
國中數學工作總結 篇4
①直線和圓無公共點,稱相離。AB與圓O相離,d>r。
②直線和圓有兩個公共點,稱相交,這條直線叫做圓的割線。AB與⊙O相交,d
③直線和圓有且只有一公共點,稱相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。AB與⊙O相切,d=r。(d為圓心到直線的距離)
平面內,直線Ax+By+C=0與圓x^2+y^2+Dx+Ey+F=0的位置關係判斷一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等於0),代入x^2+y^2+Dx+Ey+F=0,即成為一個關於x的方程
如果b^2-4ac>0,則圓與直線有2交點,即圓與直線相交。
如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切。
如果b^2-4ac<0,則圓與直線有0交點,即圓與直線相離。
2.如果B=0即直線為Ax+C=0,即x=-C/A,它平行於y軸(或垂直於x軸),將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2。令y=b,求出此時的兩個x值x1、x2,並且規定x1
當x=-C/Ax2時,直線與圓相離;
國中數學工作總結 篇5
自然數的分類包括了奇數和偶數,質數與合數、1和0。
自然數的分類
①按能否被2整除分
可分為奇數和偶數。
1、奇 數:不能被2整除的數叫奇數。
2、偶 數:能被2整除的數叫偶數。
註:0是偶數。(20__年國際數學協會規定,零為偶數.我國20__年也規定零為偶數。偶數可以被2整除,0照樣可以,只不過得數依然是0而已)。
②按因數個數分
可分為質數、合數、1和0。
1、質 數:只有1和它本身這兩個因數的自然數叫做質數。也稱作素數。
2、合 數:除了1和它本身還有其它的因數的自然數叫做合數。
3、1:只有1個因數。它既不是質數也不是合數。
4、當然0不能計算因數,和1一樣,也不是質數也不是合數。
備註:這裡是因數不是約數。
同學們對於“0”,它是否包括在自然數之記憶體在爭議,其實學術界目前關於這個問題尚無一致意見。
國中數學工作總結 篇6
正稜錐是稜錐的一種,具備著所有稜錐的性質和定理。
正稜錐
如果一個稜錐的底面是正多邊形,且頂點在底面的射影是底面的中心,這樣的稜錐叫正稜錐。
正稜錐的性質
(1)正稜錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正稜錐的斜高);
(2)正稜錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正稜錐的高、側棱、側棱在底面內的射影也組成一個直角三角形;
(3)正稜錐的側棱與底面所成的角都相等;正稜錐的側面與底面所成的二面角都相等;
(4)正稜錐的側面積:如果正稜錐的底面周長為c,斜高為h’,那么它的側面積是 s=1/2ch‘。
特別地,側棱與底面邊長相等的正三稜錐叫做正四面體。
國中數學工作總結 篇7
一、學情分析的目標:
(1)進一步培養良好的數學行為習慣和學習習慣。
(2)加強學風建設,培養學習數學的興趣,明確學習任務,注重學法指導,提高學習效率。
(3)培養學生獲得知識和技能,培養觀察和分析推理的能力,培養學生實事求是,嚴肅認真的科學態度和學習方法。
二、學情分析的內容:
主要包括學生學習起點狀態的分析、學生潛在狀態的分析兩部分。學生起點狀態的分析主要從三個維度展開:知識維度,指學生的認知基礎;技能維度,指學生已有的學習能力;素質維度,指學生的學習態度、學習習慣、意志品質……學生潛在狀態的分析,主要指學生可能發生的狀況與可能的發展。下面我就國中數學課作學情分析,敬請各位老師斧正。
在我的數學教學中,我認為學生的數學基礎影響學生的學習興趣,九年級任務重,學習進度快,兩級分化嚴重,學生學習主動性不夠,學生學習習慣有待提高。學生除了需要學習數學,還要學習其它科目,時間有限,需要我們教師教會學生解題方法以提高速度。
三、學情分析的方法:
1.學生的熱點問題要善於剖析
我們捕捉到的來自學生中間的信息,可能非常凌亂,成因也可能會很複雜,與數學教學的聯繫或許未必緊密,不可能把捕捉到的所有信息簡單地堆砌到課堂教學中去。這就需要教師學會用實事求是的觀點、方法,耐心分析、遴選出與思想數學結合最緊密、最有代表性的學生熱點。分清哪些是積極的、哪些是消極的
2.用心捕捉學生熱點問題
學生在為人處事的生活實踐中,常常會對某一事物或某一問題表現出極大的關注和傾向,這種關注點和傾向性構成了學生的熱點,成為把脈學情的捷徑。數學課是一門思維較強的課程,準確把握學生學習中的熱點問題,有助於增強教學的實效性和針對性。
做好學生的思想工作,闡明中考競爭的嚴峻形勢,讓學生有憂患意識,從而調動學習的積極性。多與各科教師聯繫,及時了解學生動態,接受科任老師的建議。多與家長交流,形成合力,共同督促學生學習,使其進步。學生進行深刻的自我反思,對自己的學習提出具體的要求,促成每個學生形成適合自己的良好學習方法。
國中數學工作總結 篇8
一、一次函式圖象 y=kx+b
一次函式的圖象可以由k、b的正負來決定:
k大於零是一撇(由左下至右上,增函式)
k小於零是一捺(由右上至左下,減函式)
b等於零必過原點;
b大於零交點(指圖象與y軸的交點)在上方(指x軸上方)
b小於零交點(指圖象與y軸的交點)在下方(指x軸下方)
其圖象經過(0,b) 和 (-b/k , 0) 這兩點(兩點就可以決定一條直線),且(0,b) 在 y軸上, (-b/k , 0) 在x軸上。
b的數值就是一次函式在y軸上的截距(不是距離,有正、負、零之分)。
二、不等式組的解集
1、步驟:去分母(後分子應加上括弧)、去括弧、移項、合併同類項、係數化為1 。
2、解一元一次不等式組時,先求出各個不等式的解集,然後按不等式組解集的四種類型所反映的規律,寫出不等式組的解集:不等式組解集的確定方法,若a
A 的解集是 解集 小小的取小
B 的解集是 解集 大大的取大
C 的解集是 解集 大小的 小大的取中間
D 的解集是空集 解集 大大的 小小的無解
另需注意等於的問題。
國中數學工作總結 篇9
一.圓的定義
1.平面上到定點的距離等於定長的所有點組成的圖形叫做圓。
2.平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。
二.圓心
1.定義1中的定點為圓心。
2.定義2中繞的那一端的端點為圓心。
3.圓任意兩條對稱軸的交點為圓心。
4.垂直於圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。
註:圓心一般用字母O表示
5.直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
6.半徑:連線圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
7.圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的`二分之一.d=2r或r=二分之d。
8.圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
三.圓的基本性質
1.圓的對稱性
(1)圓是軸對稱圖形,它的對稱軸是直徑所在的直線。
(2)圓是中心對稱圖形,它的對稱中心是圓心。
(3)圓是旋轉對稱圖形。
2.垂徑定理
(1)垂直於弦的直徑平分這條弦,且平分這條弦所對的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直於弦且平分弦所對的兩條弧。
平分弧的直徑,垂直平分弧所對的弦。
3.圓心角的度數等於它所對弧的度數。圓周角的度數等於它所對弧度數的一半。
(1)同弧所對的圓周角相等。
(2)直徑所對的圓周角是直角;圓周角為直角,它所對的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個圓周角、兩個圓心角、兩條弦心距五對量中只要有一對量相等,其餘四對量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過兩點的圓的圓心一定在兩點間連線段的中垂線上。
(2)不在同一直線上的三點確定一個圓,圓心是三邊中垂線的交點,它到三個點的距離相等。
(直角三角形的外心就是斜邊的中點。)
6.直線與圓的位置關係。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個交點,直線與圓相交;直線與圓只有一個交點,直線與圓相切;直線與圓沒有交點,直線與圓相離。
四.圓和圓
1.兩個圓沒有公共點且每個圓的點都在另一個圓的外部時,叫做這兩個圓的外離。
2.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的外部,叫做兩個圓的外切。
3.兩個圓有兩個交點,叫做兩個圓的相交。
4.兩個圓有唯一的公共點且除了這個公共點外,每個圓上的點都在另一個圓的內部,叫做兩個圓的內切。
5.兩個圓沒有公共點且每個圓的點都在另一個圓的內部時,叫做這兩個圓的內含。
五.正多邊形和圓
1.正多邊形的概念:各邊相等,各角也相等的多邊形叫做正多邊形。
2.正多邊形與圓的關係:
(1)將一個圓n(n≥3)等分(可以藉助量角器),依次連結各等分點所得的多邊形是這個圓的內接正多邊形。
(2)這個圓是這個正多邊形的外接圓。
國中數學工作總結 篇10
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函式特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函式記憶順口溜
1三角函式記憶口訣
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函式的名稱的變化:“變”是指正弦變餘弦,正切變餘切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小於零,所以右邊符號為負,所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個字口訣的`意思就是說:第一象限內任何一個角的四種三角函式值都是“+”;第二象限內只有正弦是“+”,其餘全部是“-”;第三象限內只有正切是“+”,其餘全部是“-”;第四象限內只有餘弦是“+”,其餘全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、餘弦指的是對應象限三角函式為正值的名稱。口訣中未提及的都是負值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函式為正值。
3三角函式順口溜
三角函式是函式,象限符號坐標註。函式圖像單位圓,周期奇偶增減現。
同角關係很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字一,連結頂點三角形。向下三角平方和,倒數關係是對角,
頂點任意一函式,等於後面兩根除。誘導公式就是好,負化正後大化小,
變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函式判。兩角和的餘弦值,化為單角好求值,
餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。
計算證明角先行,注意結構函式名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加餘弦想餘弦,一減餘弦想正弦,冪升一次角減半,升冪降次它為范;
三角函式反函式,實質就是求角度,先求三角函式值,再判角取值範圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
國中數學工作總結 篇11
本屆九年級學生基礎高低參差不齊,有的基礎較牢,成績較好。當然也有個別學生沒有養成良好的學習習慣、行為習慣。這樣要因材施教,使他們在各自原有的基礎上不斷發展進步。從考試情況來看:優等生占8%,學習發展生占55%。總體情況分析:學生兩極分化十分嚴重,優等生比例偏小,學習發展生所占比例太大,其中發展生大多數對學習熱情不高,不求上進。而其中的優等生大多對學習熱情高,但對問題的分析能力、計算能力、概括能力存在嚴重的不足,尤其是所涉及的知識拓展和知識的綜合能力方面不夠好,學生反應能力弱。
根據以上情況分析:產生嚴重兩極分化的主要原因是學生在學生基礎太差,學習習慣差,許多學生不會進行知識的梳理,同時學生面臨畢業和升學的雙重壓力等,致使許多學生產生了厭學心理。為了徹底解決了以上問題,應據實際情況,創新課堂教學模式,推行“自主互動”教學法,真正讓學生成為課堂的主人,體驗到“我上學,我快樂;我學習,我提高”。首先從培養學生的興趣入手,分類指導,加大平日課堂的要求及其它的有力措施,平日認真備課、批改作業,做好優生優培和學習困難生轉化工作。數學基本概念的教學對於學生學好數學是很重要的。在複習中,既要注意概念的科學性,又要注意概念形成的階段性。由於概念是逐步發展的,因此要特別注意遵循循序漸進,由淺入深的原則。對於某些概念不能一次就透徹地揭示其涵義,也不應把一些初步的概念絕對化。在教學中要儘可能做到通俗易懂,通過對分析、比較、抽象、概括,使學生形成概念,並注意引導學生在學習,生活和勞動中套用學過的概念,以便不斷加深對概念的理解和提高運用數學知識的能力。在平日講課中學會對比。要在區別的基礎上進行記憶,在掌握時應進行對比,抓住本質、概念特徵,加以記憶。激發學生學習數學的興趣,幫助學生形成概念,獲得知識和技能,培養觀察和分析推理能力,培養學生實事求是、嚴肅認真的科學態度和科學的學習方法。所以在複習中在加強指導和練習,加大對學生所學知識的檢查,搞好今學期數學課的“單元綜合課”模式探索和自考工作,並做好及時的講評和反饋學生情況。
加強課堂教學方式方法管理,把課堂時間還給學生,把學習的主動權還給學生,使課堂教學真正成為教師指導下學生自主學習、自主探究和合作交流的場所。講全面,提倡以學定教,以學定講,努力增強講授的針對性、實效性,努力減少多餘的講授,不著邊際的指導和毫無意義的提問,從嚴把握課堂學、講、練的時間結構,根據學科特點和不同課型確定適宜講授時間,嚴格控制講授時間和價值不大的師生對話時間。
國中數學工作總結 篇12
一、師德方面:加強修養,塑造師德
我始終認為作為一名教師應把“師德”放在一個重要的位置上,因為這是教師的立身之本。“學高為師,身正為范”,這個道理古今皆然。從踏上講台的第一天,我就時刻嚴格要求自己,力爭做一個有崇高師德的人。我始終堅持給學生一個好的師範,希望從我這走出去的都是合格的學生,都是一個個大寫的“人”。為了給自己的學生一個好的表率,同時也是使自己陶冶情操,加強修養,課餘時間我閱讀了大量的書籍,不斷提高自己水平。今後我將繼續加強師德方面的修養,力爭在這一方面有更大的提高。
二、教學方面:虛心求教,強化自我
擔任兩個班的數學教學的工作任務是艱巨的,在實際工作中,那就得實幹加巧幹。對於一名數學教師來說,加強自身業務水平,提高教學質量無疑是至關重要的。隨著歲月的流逝,伴著我教學天數的增加,我越來越感到我知識的匱乏,經驗的缺少。面對講台下那一雙雙渴望的眼睛,每次上課我都感到自己責任之重大。為了儘快充實自己,使自己教學水平有一個質的飛躍,我從以下幾個方面對自身進行了強化。
首先是從教學理論和教學知識上。我不但自己訂閱了三四種教學雜誌進行教學參考,而且還借閱大量有關教學理論和教學方法的書籍,對於裡面各種教學理論和教學方法儘量做到博採眾家之長為己所用。在讓先進的理論指導自己的教學實踐的同時,我也在一次次的教學實踐中來驗證和發展這種理論。
其次是從教學經驗上。由於自己教學經驗有限,有時還會在教學過程中碰到這樣或那樣的問題而不知如何處理。因而我虛心向老教師學習,力爭從他們那裡儘快增加一些寶貴的教學經驗。我個人應付和處理課堂各式各樣問題的能力大大增強。
最後我做到“不恥下問”教學互長。從另一個角度來說,學生也是老師的“教師”。由於學生接受新知識快,接受信息多,因此我從和他們的交流中亦能豐富我的教學知識。
三、考勤紀律方面
我嚴格遵守學校的各項規章制度,不遲到、不早退、有事主動請假。在工作中,尊敬領導、團結同事,能正確處理好與領導同事之間的關係。平時,勤儉節約、任勞任怨、對人真誠、熱愛學生、人際關係和諧融洽,從不鬧無原則的糾紛,處處以一名人民教師的要求來規範自己的言行,毫不鬆懈地培養自己的綜合素質和能力。
四、業務進修方面
隨著新課程改革對教師業務能力要求的提高,本人在教學之餘,還擠時間自學本科和積極學習各類現代教育技術。
五、不足之處
反思一年多的工作,自己在一些細節工作上還存在著不足,特別是學生對作業本的保管、潛能生作業的書寫缺乏指導和嚴格要求。在今後的`工作中,應充分注重工作中的細節,儘量使自己的工作做得紮實。
總之,在這學期的教學工作中收穫了很多,提高了很多,同時也感受到了自己的不足。在今後的工作中,應不斷提高自己的業務能力、充實自己的業務理論水平、提高自己在學生管理方面的能力、注重細節工作,一如既往的兢兢業業,勤奮鑽研,儘量使自己的各項工作做得更紮實、更完善、更有效、更實在。
國中數學工作總結 篇13
一.有理數
知識網路:
概念、定義:
1、大於0的數叫做正數(positive number)。
2、在正數前面加上負號“-”的數叫做負數(negative number)。
3、整數和分數統稱為有理數(rational number)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。
7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大於0,0大於負數,正數大於負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13、有理數減法法則
減去一個數,等於加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等於0的數,等於乘這個數的倒數。
20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最後加減;
(2)同級運算,從左到右進行;
(3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)
註:黑體字為重要部分
二.整式的加減
知識網路:
概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的係數(coefficient)。
3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly
term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。
6、把多項式中的同類項合併成一項,叫做合併同類項。
合併同類項後,所得項的係數是合併前各同類項的係數的和,且字母部分不變。
7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;
8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合併同類項。
三.一元一次方程
知識網路:
概念、定義:
1、列方程時,要先設字母表示未知數,然後根據問題中的相等關係,寫出還有未知數的等式——方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。
3、分析實際問題中的數量關係,利用其中的等量關係列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。
6、把等式一邊的某項變號後移到另一邊,叫做移項。
7、套用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%
售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
四.圖形初步認識
知識網路:
概念、定義:
1、我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的.各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。
8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。
簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連線兩點間的線段的長度,叫做這兩點的距離(distance)。
14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。
17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary
angle),即其中的每一個角是另一個角的餘角。
18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary
angle),即其中一個角是另一個角的補角
19、等角的補角相等,等角的餘角相等。
國中數學工作總結 篇14
數軸
11 有向直線
在科學技術和日常生活中,為了區別一條直線的兩個不同方向,可以規定其中一方向為正向,另一方向為負相
規定了正方向的直線,叫做有向直線,讀作有向直線l
12 數軸
我們把數軸上任意一點所對應的實數稱為點的坐標
對於每一個坐標(實數),在數周上可以找到唯一的點與之對應這就是直線的坐標化
數軸上任意一條有向線段的數量等於它的終點坐標與起點坐標的差任意一條有向線段的長度等於它兩個斷電坐標差的絕對值
上面的內容是國中數學知識點之數軸,相信同學們看過以後都可以很好的掌握了吧。如果想要了解更多更全的國中數學知識就來關注吧。
國中數學知識點總結:平面直角坐標系
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
國中數學知識點:平面直角坐標系的構成
對於平面直角坐標系的構成內容,下面我們一起來學習喔。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
國中數學工作總結 篇15
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。(二)平方差公式1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。2.因式分解,必須進行到每一個多項式因式不能再分解為止。(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。上面兩個公式叫完全平方公式。(2)完全平方式的形式和特點①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這裡只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)=(m+n)(a+b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於一次項的係數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:①列出常數項分解成兩個因數的積各種可能情況;②嘗試其中的哪兩個因數的和恰好等於一次項係數.3.將原多項式分解成(x+q)(x+p)的形式.(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的.分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.(九)含有字母係數的一元一次方程1.含有字母係數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的係數,b是常數項。這個方程就是一個含有字母係數的一元一次方程。
含有字母係數的方程的解法與以前學過的只含有數字係數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。1.分式2.二次根式3.三角形4.一次函式5.四邊形6.相似7.簡單機率統計
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。(二)平方差公式1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。上面兩個公式叫完全平方公式。(2)完全平方式的形式和特點①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這裡只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於一次項的係數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:①列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項係數.3.將原多項式分解成(x+q)(x+p)的形式.(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.(九)含有字母係數的一元一次方程1.含有字母係數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的係數,b是常數項。這個方程就是一個含有字母係數的一元一次方程。
含有字母係數的方程的解法與以前學過的只含有數字係數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
國中數學工作總結 篇16
三角形的知識點
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關係:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連線一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
9、三角形內角和定理:三角形三個內角的和等於180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等於和它不相鄰的兩個內角和
推論3三角形的一個外角大於任何一個和它不相鄰的內角;三角形的內角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等於與它不相鄰的兩個內角和;
(3)三角形的一個外角大於與它不相鄰的任一內角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點、概念總結
一、平行四邊形的定義、性質及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質:
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質:矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的.對角線互相垂直,並且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等於兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質及判定
1、定義:有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形
2、性質:
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直於底的梯形是直角梯形
2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行於三角形的第三邊並等於第三邊的一半;梯形的中位線平行於梯形的兩底並等於兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連線任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
九、多邊形
1、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
4、多邊形的對角線:連線多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。
6、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質
多邊形內角和公式:n邊形的內角和等於(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等於n·180°-(n-2)·180°=360°
(2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等於n·180°
10、多邊形對角線的條數:
(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形
(2)n邊形共有n(n-3)/2條對角線
圓知識點、概念總結
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
推論1①(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等於定長的點的集合
5、圓的內部可以看作是圓心的距離小於半徑的點的集合
6、圓的外部可以看作是圓心的距離大於半徑的點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等。
11、定理:圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
13、切線的判定定理:經過半徑的外端並且垂直於這條半徑的直線是圓的切線
14、切線的性質定理:圓的切線垂直於經過切點的半徑
15、推論1經過圓心且垂直於切線的直線必經過切點
16、推論2經過切點且垂直於切線的直線必經過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等於內對角
19、如果兩個圓相切,那么切點一定在連心線上
20、①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-rr)
④兩圓內切d=R-r(R>r)⑤兩圓內含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結各分點所得的多邊形是這個圓的內接正n邊形
(2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24、正n邊形的每個內角都等於(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
27、正三角形面積√3a/4a表示邊長
28、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長計算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內公切線長=d-(R-r)外公切線長=d-(R+r)
32、定理:一條弧所對的圓周角等於它所對的圓心角的一半
33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35、弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r
國中數學工作總結 篇17
列出方程(組)解套用題的一般步驟是:
1審題:弄清題意和題目中的已知數、未知數;
2找等量關係:找出能夠表示套用題全部含義的一個(或幾個)相等關係;3設未知數:據找出的相等關係選擇直接或間接設定未知數4列方程(組):根據確立的等量關係列出方程5解方程(或方程組),求出未知數的值;6檢驗:針對結果進行必要的檢驗;
7作答:包括單位名稱在內進行完整的答語。
一,行程問題
基本概念:行程問題是研究物體運動的,它研究的'是物體速度、時間、行程三者之間的關係。基本公式路程=速度×時間;路程÷時間=速度;路程÷速度=時間關鍵問題:確定行程過程中的位置.相遇問題:速度和×相遇時間=相遇路程
追擊問題:追擊時間=路程差÷速度差流水問題:順水行程=(船速+水速)×順水時間逆水行程=(船速-水速)×逆水時間順水速度=船速+水速逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2水速=(順水速度-逆水速度)÷2
二、利潤問題
現價=原價*折扣率
折扣價=現價/原價*100%
每件商品的利潤=售價-進貨價=利潤率*進價毛利潤=銷售額-費用
利潤率=(售價--進價)/進價*100%標價=售價=現價進價=售價-利潤售價=利潤+進價
三、計算利息的基本公式
儲蓄存款利息計算的基本公式為:利息=本金×存期×利率
稅率=應納數額/總收入*100%
本息和=本金+利息
稅後利息=本金*存期*利率*(1-稅率)稅後利息=利息*稅率
利率-利息/存期/本金/*100%利率的換算:
年利率、月利率、日利率三者的換算關係是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意與存期相一致。利潤與折扣問題的公式利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅後利息=本金×利率×時間×(1-20%)
四、濃度問題
溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量
五、增長率問題
若平均增長(下降)數百分率為x,增長(或下降)前的是a,增長(或下降)n次後的量是b,則它們的數量關係可表示為:a(1+x)n=b或a(1-x)=bn
六、工程問題
工作效率=總工作量/工作時間工作時間=總工作量/工作效率
七、賽事,票價問題
賽事
單循環賽:n(n-1)/2
淘汰賽:n個球隊,比賽場數為n-1場次票價則對應的不一樣的賽制乘以對應的單價。
國中數學工作總結 篇18
一直以來,在試卷講評課的上法上總存在著一些困惑。例如,試卷上的錯題因人而異,如何上能照顧到全體,將每位學生出錯的問題解決?通過這次培訓我認識到,我們沒有足夠的時間面面俱到的講解,在一定的時間內想面面俱到,那么每個題目也只是蜻蜓點水,一節課下來真正沉澱到頭腦中的知識寥寥無幾。今後的試卷講評課我打算按照下面的思路來上,請劉老師多批評指正。
一、考試之後教師要做好測試分析,並充分備課。
通過測試分析,首先,弄清學生集中出錯的題目,找出學生的共性問題,並針對這些共性的問題展開備課。備課要備學生出錯的原因,試卷講評時如何對這些問題講解與完善。其次,弄清每位學生的得分,對於成績波動大的同學通過談話等方式及時了解情況並幫助解決困難。
二、下發試卷,學生自己糾錯。
給學生自己糾錯的機會,將能自己改正或通過小組合作改正的題目在試卷講評前改過來。
三、訂正答案,進一步改錯。
給學生標準答案,在答案的引導下,學生進一步尋找解題思路,完善解題步驟,查找丟分原因,加深對知識的理解。
四、重點題、錯題重點講解。
經過兩輪的改錯之後學生存留下的問題已經很少,教師試卷講評時就要解決這些遺留問題、重點題、錯題。對於這些問題可以通過分類講解、同類知識串講、變式訓練、一題多解、多個知識點上串下聯等方式講透。經過尋根問底,可使學生對不明確的知識點加深理解,再認識,然後鞏固練習。這個過程下來同時可複習到多個知識點,建立知識體系,拓展學生思維。
五、方法總結。
圍繞一個知識點講解之後,要讓學生總結解題思想、方法,掌握答題技巧。需要時可讓學生簡記。
六、解答疑問。
通過學生提出疑問,大家共同解答,完善學生對知識的認識。
近幾年教基礎年級,所以感覺上章節複習課較多,專題複習課很少。我們學校的章節複習課與劉老師的“出示問題,引出知識”是一致的。通過問題的解決實現知識點的複習。
通過聽兩位韓老師的課我感覺有幾處大的收穫:
一、要想實現高效課堂,教師首先高效備課。從兩位老師對題目的選取上能看到她們備課的用心。值得學習。
二、充分放手給學生,讓學生思考、解決問題、總結方法。教師適時點撥。
三、重要知識點、思想、方法及時簡記。“好腦子不如爛筆頭”,的確如此。根據艾賓浩斯的遺忘規律,一節課下來學到的知識點總在慢慢遺忘,如果課堂上不把關鍵點記錄下來的話,回過頭來複習時頭腦中的知識漏洞難以得到修繕。
通過這次學習我感覺收穫很大,希望劉老師多組織類似活動幫助年輕教師成長。同時對於這次培訓的膚淺認識希望劉老師多批評指正。謝謝!
國中數學工作總結 篇19
相關的角:
1、對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。
2、互為補角:如果兩個角的和是一個平角,這兩個角做互為補角。
3、互為餘角:如果兩個角的和是一個直角,這兩個角叫做互為餘角。
4、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。
注意:互余、互補是指兩個角的數量關係,與兩個角的位置無關,而互為鄰補角則要求兩個角有特殊的位置關係。
角的性質
1、對頂角相等。
2、同角或等角的餘角相等。
3、同角或等角的補角相等。
國中數學工作總結 篇20
一、角的定義
“靜態”概念:有公共端點的兩條射線組成的圖形叫做角。
“動態”概念:角可以看作是一條射線繞其端點從一個位置旋轉到另一個位置所形成的圖形。
如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大於直角小於平角的角叫做鈍角;大於0小於直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、餘角、補角的概念和性質:
概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。
如果兩個角的和是一個直角,那么這兩個角叫做互為餘角。
說明:互補、互余是指兩個角的數量關係,沒有位置關係。
性質:同角(或等角)的餘角相等;
同角(或等角)的補角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規和直尺)。
五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。
常見考法
(1)考查與時鐘有關的問題;(2)角的計算與度量。
誤區提醒
角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。
【典型例題】(20xx雲南曲靖)從3時到6時,鐘錶的時針旋轉角的度數是
【答案】3時到6時,時針旋轉的是一個周角的1/4,故是90度,本題選C.
國中數學工作總結 篇21
圓周角知識點
1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)
2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半。
3、推論:
1)在同圓或等圓中,相等的圓周角所對的弧相等。
2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構成直角,有900圓周角可構成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)
4、圓內接四邊形的性質定理:圓內接四邊形的對角互補。(任意一個外角等於它的內對角)
補充:
1、兩條平行弦所夾的弧相等。
2、圓的兩條弦1)在圓外相交時,所夾角等於它所對的兩條弧度數差的一半。2)在圓內相交時,所夾的角等於它所夾兩條弧度數和的一半。
3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。
平均數中位數與眾數知識點
1、數據13,10,12,8,7的平均數是10
2、數據3,4,2,4,4的眾數是4
3、數據1,2,3,4,5的中位數是3
有理數知識點
1、大於0的數叫做正數。
2、在正數前面加上負號“-”的數叫做負數。
3、整數和分數統稱為有理數。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸。
5、在直線上任取一個點表示數0,這個點叫做原點。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。
7、由絕對值的定義可知:
一個正數的絕對值是它本身;
一個負數的絕對值是它的相反數;
0的絕對值是0。
8、正數大於0,0大於負數,正數大於負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13、有理數減法法則:減去一個數,等於加上這個數的相反數。
14、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值向乘。任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。
20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
國中數學工作總結 篇22
時間飛逝,回望開學初的計畫,深感“做事的過程就是結果,努力能帶動效率。”這學期我們數學教研組的工作在三個備課組長及全組數學教師的努力下基本完成了工作任務。
現總結如下:
一、突出研課特色,以公開課為平台,提升教研組教師學習能力通過學校各項活動,我們教師課堂教學水平有很大提高,三個備課組長以學生學段不同,科學合理地進行教學工作,我們強化數學教研組建設,積極發揮教研組備課組的團隊合作力量,走了教研組教學研究特色化,便於提高我們教師教學水平,要求每位教師認真鑽研教材,探討教法,並積極地落實到自己的'教學中。通過骨幹教師帶動青年教師觀課議課評課,提升教師對教學各項能力,並議課中,及時發現一些“共同”問題,緊鑼密鼓地開展研究,並探討解決教學共性問題以及教師教學個人問題,一定程度上有效的提高了教師相互學習能力。
二、多種培訓及教學研修,提升教研組教師素養學校創造機會提高教師的業務學習能力。選派優秀教師積極參加外出跟崗培訓,回來後上好匯報課,實現資源共享。聯繫溫州市送教下鄉活動,縣常規培訓活動,市縣中考複習說明培訓,多個角度,多個平台,進行了教師業務和素養培訓,效果顯著。
三、豐富活動,提高數學教研組綜合能力整合教學活動,展開備課組特點的個性行動研究,在教研中,我們階段交流活動,解決研究過程遇到的問題。九年級進行二輪專題複習研究,由王大團老師做公開課,並在課題組員和全體數學組展開研討,提高了二輪專題複習研究的有效性。七八年級對如何處理培優和教學相宜聯繫,平時更針對性的,更有效的進行教學整合,使培優和教學雙贏。這學期各年段積極組織學生參加生活中的數學的初賽與複賽,並獲得多個一、二、三等獎獎項,成果喜人。
四、發揮備課組長領導力,加強集體備課通過教研組平台,要求備課組長細化、最佳化備課組各項常規工作,發揮教師的積極性,有計畫地開展教研組下達各項數學教學活動。以教研組為單位進行教學研究,發揮備課組的優勢,把教研組作為一個有力的團體,打團隊仗,讓每一位教師在團隊中發揮自己的潛能,凝聚智慧,創造智慧。
五、教研工作的不足之處教研組內教師多,改變提升教研組教師教學水平,還是有很大距離,改變教師教學方式和教學觀念也有困難,教研組教師平均年齡較大,在專業上開始進入了疲倦期,如何激發老師們的工作激情,快速度過工作倦怠期,進入新一輪工作激情期,這是我們教研組面臨的一個問題。經驗型的老教師過多,也給我們帶來了很大工作壓力,從教研活動的公開課到試卷命題等等,活動熱情和投入嚴重不足,每次活動的執行力都會阻礙重重,因此各備課組長壓力極大。
最後,感謝大家這幾年在工作上的大力支持,我們教研組的工作,是見證大家的共同成長,讓我們收穫各自的精彩,同時也成就我們作為數學大組的集體榮譽!再次,感謝有你們!
價方式,讓學生的個性得到自由健康的發展,從而形成肯定的自我意識。
3、加強教學研究,充分發揮教科研活動對常規教學的輔助功能。一是把集體備課、聽課、評課落到實處,加強教師間的交流與合作,真正實現腦力資源的共享。二是加強學習,參加各級新課程培訓和遠程教育培訓等各種學習活動,進一步更新教育理念。堅持閱讀每期《中史參》、《歷史教學》和《歷史研究》等權威學術期刊,了解最新史學動態,並將這些思路和方法及時運用到教學中去,大大提高了教育思想水平和教學水平。三是撰寫了《對新課標下歷史課堂教學的認識》、《如何發揮中學歷史教學的素質教育功能》等教學和學習心得。針對教輔市場良莠不齊的現狀,我用一年時間編寫了一套教輔用書,由黃河出版社發行,得到同行的廣泛好評。
4、擔任班主任工作期間,我建立了一套行之有效的管理方法,教育學生樹立遠大理想,培養學生集體觀念和合作進取意識,用發展的眼光看待學生,以平常心態對待後進生,對學生曉之以理、動之以情,因勢利導,變消極因素為積極因素,從而使學生形成了積極的人生態度,樹立了正確的人生價值觀。
三、一蓑煙雨任平生——繼續我的執著與勤奮。
一分春華,一分秋實。付出心血與汗水,也收穫著充實和沉甸甸的情感,我所教班級的學生,學習興趣濃厚,成績突出。教學之路仍在腳下延伸,作為教學之路上的蹉跎前行者,不求夏花之燦爛,但求秋葉之靜美。在以後的工作中,我將保持自己的勤奮和執著,把自己的工作做的更好。
國中數學工作總結 篇23
誘導公式的本質
所謂三角函式誘導公式,就是將角n(/2)的三角函式轉化為角的三角函式。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函式的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函式值與的三角函式值之間的關係:
sin=-sin
cos=-cos
tan=tan
cot=cot
公式三: 任意角與 -的三角函式值之間的關係:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函式值之間的關係:
sin=sin
cos=-cos
tan=-tan
cot=-cot
國中數學工作總結 篇24
圓柱體要領:如果用垂直於軸的兩個平面去截圓柱面,那么兩個截面和圓柱面所圍成的幾何體叫做直圓柱,簡稱圓柱。
圓柱體的定義
1、旋轉定義法:一個長方形以一邊為軸順時針或逆時針旋轉一周,所經過的空間叫做圓柱體。
2、平移定義法:以一個圓為底面,上或下移動一定的距離,所經過的空間叫做圓柱體。
性質 1.圓柱的兩個圓面叫底面,周圍的面叫側面,一個圓柱體是由兩個底面和一個側面組成的。
2.圓柱體的兩個底面是完全相同的兩個圓面。兩個底面之間的距離是圓柱體的高。
3.圓柱體的側面是一個曲面,圓柱體的側面的展開圖是一個長方形或正方形。
圓柱的側面積=底面周長x高,即:
S側面積=Ch=2πrh
底面周長C=2πr=πd
圓柱的表面積=側面積+底面積x2=2πr2+Ch=2πr(r+h)
4.圓柱的體積=底面積x高
即 V=S底面積×h=(π×r×r)h
5.等底等高的圓柱的體積是圓錐的3倍 6.圓柱體可以用一個平行四邊形圍成
圓柱的表面積= 圓柱的表面積=側面積+底面積x2
6.把圓柱沿底面直徑分成兩個同樣的部分,每一個部分叫半圓柱。這時與原來的圓柱比較,體積不變、表面積增加兩個直徑X高的長方形。
7.圓柱的軸截面是直徑x高的長方形,橫截面是與底面相同的圓。
國中數學工作總結 篇25
1.不在同一直線上的三點確定一個圓
2.垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等於定長的點的集合
5.圓的內部可以看作是圓心的距離小於半徑的點的集合
6.圓的外部可以看作是圓心的距離大於半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等。
11.定理圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
12. ①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
13.切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線
14.切線的性質定理圓的切線垂直於經過切點的半徑
15.推論1經過圓心且垂直於切線的直線必經過切點
16.推論2經過切點且垂直於切線的直線必經過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等於內對角
19.如果兩個圓相切,那么切點一定在連心線上
20. ①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-rr)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的.內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24.正n邊形的每個內角都等於(n-2)×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對的圓周角等於它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
國中數學工作總結 篇26
我是一名普普通通的中學數學教師,我覺得作為一個好老師,首先要愛他們,包容他們,我相信好學生是夸出來的,我不是神,只是一個普通的人,或許在工作中也有這樣那樣的失誤,但我會努力去關愛他們。對如何有效教學形成了獨特的見解。
1、培養積極探究習慣,發展求異思維能力。
在教學中,構建數感的理解、體會,要引導學生仁者見仁,智者見智,大膽,各抒己見。在思考辯論中,教師穿針引線,巧妙點撥,以促進學生在激烈的爭辯中,在思維的碰撞中,得到語言的升華和靈性的開發。教師應因勢利導,讓學生對問題充分思考後,學生根據已有的經驗,知識的積累等發表不同的見解,對有分歧的問題進行辯論。
通過辯論,讓學生進一步認識了自然,懂得了知識無窮的,再博學的人也會有所不知,體會學習是無止境的道理。這樣的課,課堂氣氛很活躍,其間,開放的課堂教學給了學生更多的自主學習空間,教師也毫不吝惜地讓學生去思考,爭辯,真正讓學生在學習中體驗到了自我價值。這一環節的設計,充分讓學生表述自己對數學的理解和感悟,使學生理解和表達,輸入和輸出相輔相成,真正為學生的學習提供了廣闊的舞台。
2、注意新課導入新穎。
“興趣是最好的老師”。在教學中,我十分注重培養和激發學生的學習興趣。譬如,在導入新課,讓學生一上課就能置身於一種輕鬆和諧的環境氛圍中,而又不知不覺地學數學。我們要根據不同的課型,設計不同的導入方式。可以用多媒體展示課文的畫面讓學生進入情景;也可用講述故事的方式導入,採用激發興趣、設計懸念……引發設計,比起簡單的講述更能激發學生的靈性,開啟學生學習之門。
雖然在工作中我們取得了一些成績,但是這離我們所追求的目標還有很長的路要走。集體備課、研修活動培養了教師理解和把握教材的能力,喚醒了教師推進新課程的意識,中學數學研修正在逐漸由“經驗型”向“反思型”和“研究型”群體發展。在我們看來,課改與教研是一個永恆不變的主題,我們還要把教後記只注重對具體實踐結果的粗淺回顧,提高到對實踐本身的深入反思,使“研”更有深度;同時有效地利用數學教師的部落格,與同行交流思想,為學生提供服務!
國中數學工作總結 篇27
國中數學長方形的中考知識點集錦
長方形也就是我們所說的矩形,是基礎的平面圖形。
長方形
有一個角是直角的平行四邊形叫做長方形 (rectangle)。又叫矩形。
長方形長與寬的定義:
第一種意見:長方形長的那條邊叫長,短的那條邊叫寬。
第二種意見:和水平面同方向的叫做長,反之就叫做寬。長方形的長和寬是相對的,不能絕對的說“長比寬長”,但習慣地講,長的為長,短的為寬。
長方形的性質
①兩條對角線相等;
②兩條對角線互相平分;
③兩組對邊分別平行;
④兩組對邊分別相等 ;
⑤四個角都是直角;
⑥有2條對稱軸(正方形有4條)。
以上的內容是長方形的性質及定義,請大家做好筆記了。
國中數學工作總結 篇28
1.對稱軸:如果一個圖形沿某條直線摺疊後,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。
2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。
(2)角平分線上的點到角兩邊距離相等。
(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。
(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
(5)軸對稱圖形上對應線段相等、對應角相等。
3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)
4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。
5.等腰三角形的判定:等角對等邊。
6.等邊三角形角的特點:三個內角相等,等於60°,
7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。
有一個角是60°的等腰三角形是等邊三角形
有兩個角是60°的三角形是等邊三角形。
8.直角三角形中,30°角所對的直角邊等於斜邊的一半。
9.直角三角形斜邊上的中線等於斜邊的一半。
本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑑賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。
國中數學工作總結 篇29
通過研修學習,我接觸到了專家學者們的教育新理念,同時還與班內的一線教師們進行了充分的交流,可以說這次網上研修內容很深刻,研修的效果影響深遠。下面我談談一些體會。
首先,教師要尊重、關心、信任學生。因為良好的師生關係是學好數學的前提。尊重、關心、信任學生,和學生友好相處是營造和諧課堂氛圍的基礎,在教學活動中,教師與學生在心理上形成一種穩定,持續的關係,不僅是在知識、能力上的交往,也是情感心靈上的溝通、交流。 其次,教師要立足課堂,將所學的新課程理念套用到課堂教學實踐中,力求讓我的數學教學更具特色,形成獨具風格的教學模式,更好地體現素質教育的'要求,提高數學教學質量。
第三、培養學生的學習興趣,樹立其自信心,在學生取得點滴成績時予以表揚,讓他們覺得自己能行。有了自信心,他們對難題就有了挑戰性,這樣他們才會積極主動進行學習。同時培養學生的自學能力,幫助學生髮展自學技能。課堂上我有意識對學生的進行合作訓練。在小組合作過程中,教師要承擔小組任務,同時有目的地在小組活動中示範,協調教學活動,確保小組專注於學習目標,使小組成員在教師帶領下逐步學會合作的技能。
第四運用網路資源,豐富自己的教學內容。在教學設計過程中,
對教學內容、教學媒體、教學策略和教學評價等要素進行具體計畫,使自己的課堂多姿多彩。
第五課堂上重視德育工作,讓學生在學習數學知識的同時,陶冶他們愛自然、愛科學、愛祖國、愛勞動的思想情操,樹立關心生態環境等的思想,促進學生全面發展和個性培養。
總之,今後,自己一定更新觀念,不斷嘗試新的教學方法,努力提高自己的業務水平和教學能力。精心設計每堂課,做一名學生最喜歡的老師。
國中數學工作總結 篇30
一、問題提出
多數人的眼裡,數學是一門比較難學的學科。特別是新課程改革後,數學新增加了很多內容,相當多的一部分學生向老師抱怨說數學課本的內容和知識點那么多,老是記不住,學過就忘了。有的還說課本里的內容太簡單了,能看懂,但是到考試的時候不會做題,題目跟學過的知識點聯繫不起來。老師也說,想不明白明明很簡單的題目搞不懂為什麼學生不會做,教學相當的被動。為了更好地指導老師教學和學生學習數學,我們設計了一份關於數學的學習興趣,學習習慣,學習態度,學習信心和新課程改革的調查問卷。
二.調查研究
(1)調查對象
針對可能會出現不同的情況,我們對六年級的部分學生進行了抽樣調查。
(2)調查結果和分析
(一)對待數學的興趣與態度
從調查數據可以看出來,42.80%的同學對數學用著濃厚的興趣,他們都認為數學是一門有趣,有挑戰性的學科。這對數學老師無形是一個鼓舞,大家都知道興趣是最好的老師。這證明數學相對於其他學科來說,自有吸引學生的特性,只要好好的引導,適當的處理教材的內容,很多學生還是願意學,並且學好它的,但不可否認,由於數學理論性和邏輯性很強,教科書相對枯燥,在實際生活中難以用到,這也造成相當多的一部分學生不喜歡學數學,不過隨著新課程的改革,數學教科書的例子已經越來越多採用現實生活的例子,這對提高學生學數學的興趣有一定的幫助。
學生對數學的興趣主要取決於學生自己的數學基礎。能否培養他們的興趣,這將對教學的成功與否具有非常重要的意義。影響學生學習數學興趣的因素是多方面的:有學生本身的因素,也有老師的因素,也有課本本身的因素。
在調查中,對數學有興趣的學生,17.74%是因為“數學有趣”,23.91%是因為“數學與生活聯繫緊密,將來有很多地方可以用到”,11.57%的學生是因為覺得“數學有我想從事的事業和理想”,38.82%的學生是因為感到“數學可以鍛鍊邏輯思維”,只有7.97%的學生是因為“老師講得好”才喜歡。調查的問卷中可以體現出,學生對數學是否感興趣,取決於能否讓學生感到數學有用和能否可以鍛鍊他們的邏輯思維。
對數學沒有興趣的學生,38.00%的學生認為“數學太難”,30.75%的學生是因為“以前沒學好,基礎不好”,9.75%的學生是因為數學跟自己理想從事的方向太遠了,只有8.00%的學生認為數學沒有多大用處,13.50%的學生回答是因為“老
師教得不好”。因此,如何扭轉學生對數學的看法以至改變這種現狀,這將是教師必須認真對待的教學問題。這就要求教師備課要充分,上課語言要簡潔易懂,將課本的重難點講解透徹,把握到位;加強學生的基礎訓練,使學生對基礎知識做到融會貫通。
(二)學生對數學知識的歸納情況。
由調查數據可以看出,絕大部分學生對書本中的小結都是持肯定的態度的,也就是說每一章的小結或多或少都會對學生有一定的幫助,但是我們應該怎樣去看待這個小結,怎樣去對待每一章或是每一個知識點的小結歸納,從第一組數據我們可以看到有32.58%的學生覺得書本中總結得還可以,有44.19%的學生覺得總結得不夠,有10.49%的學生覺得很難把這些總結轉化為自己的知識,還有12.73%的同學就是沒什麼感覺,而從第二組數據里可以看到,能夠真正自己把知識總結出來又轉化為自己的知識的只有11.57%的同學,這也就意味著我們老師要在學完每一章或是每一個知識點之後幫學生總結歸納相關的知識,使之形成一個系統的知識結構,便於學生對知識的理解和掌握。
(三)學生對數學的學習習慣。
由調查數據可以看出,目前絕大多數學生在數學學習的時間安排上都不是那么的有規律,每天都安排時間複習的學生幾乎是沒有,好像有一種“即興”學習的感覺,那也從另外一個方面反映了當前的中學生學習負擔比較重,他們不但需要學習數學這一科,還要學很多的科目,那我們應該怎樣來解決這個問題呢首先就是要減輕學生的負擔,實行真正的素質教學.其次就是要從學生方面加以突破,因為時間都是自己擠出來的,那就需要我們老師教會學生解題的方法以提高學生的解題速度
三.小結
調查問卷主要反映出以下幾個問題:
(1)相當多的一部分學生喜歡數學,覺得數學是有趣的一門學科,但是學起來覺得有一定的難度。
(2)相當多的學生不注重課本知識,課後少做習題,甚至不做習題。
(3)沒有形成良好的學習數學的習慣,基本沒有做到課前預習,課堂上認真聽課,課後複習的學習三步曲。
(4)由於種種原因,學生上課聽課的質量不高。
(5)學習數學的積極性不夠高,效率不高。
(6)沒有形成系統的學習習慣,不善於總結,歸納出一套自己的學習數學的方法。
(7)新課程標準的課本知識跳躍性大,習題難度大,內容多,學生難以消化吸收。
四、建議
針對目前數學學習現狀,為了進一步提高學生的學習成績,教師必須幫助學生完善學習過程。
(1)教師要指導學生進行預習,使他們養成每節新課前都要進行預習的習慣,從而了解下節課教師上課的內容提高聽課效率。
(2)教師要指導學生採用科學的學習方法,提高學習效率。要培養學生課後先看書再完成作業的學習習慣,真正理解上節課老師所講的內容,再運用掌握的知識去完成作業加以鞏固,使每個學生都能自覺地採用科學的方法進行學習。
(3)教師要採用適當的方法提高學生學習的積極性、主動性,使學生做到對老師批改的作業要及時了解,對做錯的題目要認真、及時訂正。同時要培養學生養成嚴謹的學習態度,杜絕“治標不治本”的訂正方法。對於學習中出現的問題要認真思考,決不輕易放過。
(4)教師要指導學生養成系統複習的學習習慣。只有這樣,才能在各種測驗中臨危不懼,瀟灑應對。靠臨時“抱佛腳”去應付測驗是無法真正提高學習成績的。(5)教師要引導學生樹立正確的學習動機,從思想上扭轉部分學生的觀念,幫助他們培養良好的學習動機,使他們能主動養成積極的學習。
(6)教師應探索新課程教學模式,積極穩妥推進新課程改革。
國中數學工作總結 篇31
1.有理數:
(1)凡能寫成形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類:①②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線。
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0?a+b=0?a、b互為相反數。
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數—小數>0,小數—大數<0。
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數。
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a—b=a+(—b)。
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,。
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(—a)n=—an或(a—b)n=—(b—a)n,當n為正偶數時:(—a)n=an或(a—b)n=(b—a)n。
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位。
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運算法則:先乘方,後乘除,最後加減。
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題。
體驗數學發展的一個重要原因是生活實際的需要。激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
國中數學工作總結 篇32
考點1
相似三角形的概念、相似比的意義、畫圖形的放大和縮小。
考核要求:
(1)理解相似形的概念;
(2)掌握相似圖形的特點以及相似比的意義,能將已知圖形按照要求放大和縮小。
考點2
平行線分線段成比例定理、三角形一邊的平行線的有關定理
考核要求:理解並利用平行線分線段成比例定理解決一些幾何證明和幾何計算。
注意:被判定平行的一邊不可以作為條件中的對應線段成比例使用。
考點3
相似三角形的概念
考核要求:以相似三角形的概念為基礎,抓住相似三角形的特徵,理解相似三角形的定義。
考點4
相似三角形的判定和性質及其套用
考核要求:熟練掌握相似三角形的判定定理(包括預備定理、三個判定定理、直角三角形相似的判定定理)和性質,並能較好地套用。
考點5
三角形的重心
考核要求:知道重心的定義並初步套用。
考點6
向量的有關概念
考點7
向量的加法、減法、實數與向量相乘、向量的線性運算
考核要求:掌握實數與向量相乘、向量的線性運算
考點8
銳角三角比(銳角的正弦、餘弦、正切、餘切)的概念,30度、45度、60度角的三角比值。
考點9
解直角三角形及其套用
考核要求:
(1)理解解直角三角形的意義;
(2)會用銳角互余、銳角三角比和勾股定理等解直角三角形和解決一些簡單的實際問題,尤其應當熟練運用特殊銳角的三角比的值解直角三角形。
考點10
函式以及函式的定義域、函式值等有關概念,函式的表示法,常值函式
考核要求:
(1)通過實例認識變數、自變數、因變數,知道函式以及函式的定義域、函式值等概念;
(2)知道常值函式;
(3)知道函式的表示方法,知道符號的意義。
考點11
用待定係數法求二次函式的解析式
考核要求:
(1)掌握求函式解析式的方法;
(2)在求函式解析式中熟練運用待定係數法。
注意求函式解析式的步驟:一設、二代、三列、四還原。
考點12
畫二次函式的圖像
考核要求:
(1)知道函式圖像的意義,會在平面直角坐標系中用描點法畫函式圖像
(2)理解二次函式的圖像,體會數形結合思想;
(3)會畫二次函式的大致圖像。
考點13
二次函式的圖像及其基本性質
考核要求:
(1)藉助圖像的直觀、認識和掌握一次函式的性質,建立一次函式、二元一次方程、直線之間的聯繫;
(2)會用配方法求二次函式的頂點坐標,並說出二次函式的有關性質。
注意:
(1)解題時要數形結合;
(2)二次函式的平移要化成頂點式。
考點14
圓心角、弦、弦心距的概念
考核要求:清楚地認識圓心角、弦、弦心距的概念,並會用這些概念作出正確的判斷。
考點15
圓心角、弧、弦、弦心距之間的關係
考核要求:認清圓心角、弧、弦、弦心距之間的關係,在理解有關圓心角、弧、弦、弦心距之間的關係的定理及其推論的基礎上,運用定理進行初步的幾何計算和幾何證明。
考點16
垂徑定理及其推論
垂徑定理及其推論是圓這一板塊中最重要的知識點之一。
考點17
直線與圓、圓與圓的位置關係及其相應的數量關係
直線與圓的位置關係可從與之間的關係和交點的個數這兩個側面來反映。在圓與圓的位置關係中,常需要分類討論求解。
考點18
正多邊形的有關概念和基本性質
考核要求:熟悉正多邊形的有關概念(如半徑、邊心距、中心角、外角和),並能熟練地運用正多邊形的基本性質進行推理和計算,在正多邊形的計算中,常常利用正多邊形的半徑、邊心距和邊長的一半構成的直角三角形,將正多邊形的計算問題轉化為直角三角形的計算問題。
考點19
畫正三、四、六邊形。
考核要求:能用基本作圖工具,正確作出正三、四、六邊形。
考點20
確定事件和隨機事件
考核要求:
(1)理解必然事件、不可能事件、隨機事件的概念,知道確定事件與必然事件、不可能事件的關係;
(2)能區分簡單生活事件中的必然事件、不可能事件、隨機事件。
考點21
事件發生的可能性大小,事件的機率
考核要求:
(1)知道各種事件發生的可能性大小不同,能判斷一些隨機事件發生的可能事件的大小並排出大小順序;
(2)知道機率的含義和表示符號,了解必然事件、不可能事件的機率和隨機事件機率的取值範圍;
(3)理解隨機事件發生的頻率之間的區別和聯繫,會根據大數次試驗所得頻率估計事件的機率。
注意:
(1)在給可能性的大小排序前可先用“一定發生”、“很有可能發生”、“可能發生”、“不太可能發生”、“一定不會發生”等詞語來表述事件發生的可能性的大小;
(2)事件的機率是確定的常數,而機率是不確定的,可是近似值,與試驗的次數的多少有關,只有當試驗次數足夠大時才能更精確。
考點22
等可能試驗中事件的機率問題及機率計算
考核要求:
(1)理解等可能試驗的概念,會用等可能試驗中事件機率計算公式來計算簡單事件的機率;
(2)會用枚舉法或畫“樹形圖”方法求等可能事件的機率,會用區域面積之比解決簡單的機率問題;
(3)形成對機率的初步認識,了解機會與風險、規則公平性與決策合理性等簡單機率問題。
注意:
(1)計算前要先確定是否為可能事件;
(2)用枚舉法或畫“樹形圖”方法求等可能事件的機率過程中要將所有等可能情況考慮完整。
考點23
數據整理與統計圖表
考核要求:
(1)知道數據整理分析的意義,知道普查和抽樣調查這兩種收集數據的方法及其區別;
(2)結合有關代數、幾何的內容,掌握用折線圖、扇形圖、條形圖等整理數據的方法,並能通過圖表獲取有關信息。
國中數學工作總結 篇33
橢圓知識:平面內與兩定點F1、F2的距離的和等於常數2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。
長軸為 2a; 短軸為 2b。
橢圓的第二定義
平面內到定點F的距離與到定直線的距離之比為常數e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數為小於1的正數) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。
橢圓的其他定義
根據橢圓的一條重要性質,也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內與兩定點的連線的斜率之積是常數k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等於-1。
簡單幾何性質
1、範圍
2、對稱性:關於X軸對稱,Y軸對稱,關於原點中心對稱。
3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率範圍 0
知識歸納:離心率越大橢圓就越扁,越小則越接近於圓。
國中數學知識點總結:平面直角坐標系
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
國中數學知識點:平面直角坐標系的構成
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
國中數學知識點:點的坐標的性質
點的坐標的性質
建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的'。
國中數學知識點:因式分解的一般步驟
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個範圍內因式分解,應該是指在有理數範圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
國中數學知識點:因式分解
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關係:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①係數是整數時取各項最大公約數
②相同字母取最低次冪
③係數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括弧化成單括弧
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括弧外
⑦括弧內同類項合併。