國中數學工作坊個人的研修總結範文 篇1
一、全新的研修,全新的體驗。
20xx年xx月xx日,全省一百多名數學教師齊聚濟南,開展為期10天的集中加分散的研修學習。 晚上的破冰活動,使每一個人都能感覺到,這100名教師都是全省國中數學界最優秀的代表。這其中有多位齊魯名師、山東優秀教師、山東創新人物、全國優秀教師、全國課改實驗先進教師,更不乏山東教學能手、山東省特級教師、省優質課一等獎獲得者等等,很多教師不僅在數學上赫赫有名,也有很多班級管理方面的省級專家。後面的研修,也進一步證明了這是一個紮實務實的教師團隊。
各級培訓,越來越科學、務實,越來越需要耗費精力,這大家都是早有心理準備的。但本次培訓中精力付出之大,還是遠遠超過了每一個人的預期。對於我來說,很渴望聽到專家醍醐灌頂是的指點,也很希望學習別人先進的經驗。但開始培訓後,卻沒有和我想像的一樣——聽報告和觀摩優秀課例,而是從一開始就在做任務培訓。整個培訓都是圍繞著一個課例打磨展開和結束的。“三次備課、兩輪打磨、4段視頻製作、多個文本撰寫”,從問題選擇到問題澄清,從課例選擇到基於研究主題的一次次策劃,從教學設計的不斷完善到課堂觀察量表的細細斟酌,從課堂前台的關注到背後理論的不斷深入,從任務分擔到共同完成製作。一個不一樣的研修,使我們感受到了很多從未有過的體驗,給了我們許多不一樣的思考和震撼。
二、艱巨的任務,共同的成果。
這次研修,是一次基於提高校本研修實效性的體驗式的範例學習,這次研修,是一次基於任務完成的研修。29日上午,高研班舉行了簡短而又隆重的開班典禮。齊魯師範學院副院長陳小言、山東省中國小師訓乾訓中心主任畢詩文、副主任劉文華、省中國小教師遠程研修項目執行主任蔣敦傑、山東省中國小教師遠程研修國中項目主任梁承鋒和省基礎教育課程研究中心副主任李紅婷教授等領導和專家出席了本次高研班開班儀式。開幕式上,專家和領導就明確的指出這次高級研修班的任務是為20xx年全省國中數學教師全員遠程研修開發課例資源。
開幕式只有20分鐘,很快就進入了任務培訓狀態。專家的報告大多是指向如何開展工作的,第一天培訓就顯示了任務的緊張。上午蔣教授的報告《教師研修轉型與省骨幹高級研修》到12點,下午首都師範大學王尚志教授《國中數學教學幾個問題》到5:30,晚上樑承鋒教授《20xx國中骨幹教師高級研修目標任務與課例研究變式套用》到了10:30儘管專家們都在強調如何開展工作,如何重要和辛苦,我們還是沒有進入狀態。但王尚志教授的報告,讓大家很興奮,他探討的問題很實在,和一線教師的思考很接近,我們大多數人都不是第一次聽王教授的報告,但看得出這次報告還是給大家帶來了很多思考和收益。而且後續的工作證明,王尚志教授的報告給大家的工作起了很好的指導作用。
第二天上午首席專家李紅婷教授為大家作了題為《課例研究問題與研究任務——以“課例打磨”為載體的教學改進思路》的報告,李教授從教師培訓方式的轉型、專家型教師的成長路徑、課例與課例設計、課例研究問題與研究問題、觀課與評課等幾個方面作了深入的解讀。下午兩位參加過課例研修教師的現身說法,讓大家不但明白了基本流程和思路,也意識到了責任之大和任務之重。
伴隨著兩天的報告,是大家對關注問題的討論和澄清。很快,我們六個組各自確定了自己的研究主題,並進行了去偽存真式的剝離和澄清,並撰寫了各自的研修計畫。首席專家李紅婷教授的指導是非常重要的,而且貫穿任務全過程。李教授的指導具體、清楚,高屋建瓴而且不厭其煩,從早上到深夜,還處理著一些其他的工作,給大家帶來了很大的感動。
更多的時間留給了以小組為單位的工作團隊。我們小組由16位教師組成,有四位來自濱州,有三位來自東營,有九位來自煙臺。其中由來自煙臺市芝罘區教科研中心的林光老師任組長,由來自濱州市北鎮中學實驗國中部的邢成雲老師和萊州市實驗中學張延芳老師任指導老師,由來自東營市育才中學的劉江老師任組內專家,根據工作需要,組內又分為4個任務小組。
每一項任務都被分解為幾個部分來討論和撰寫,然後再合成討論,再經指導教師、組內專家把關後,再提交李教授審核,然後再審核定稿。課例打磨計畫的制定,讓大家完全進入了工作狀態,也了解了理論研究、行動研究和載體呈現的重要性。授課任務由煙臺三中分校的曲曉媛老師承擔,她自我封閉了一天進行獨立一備,其他人則對a視頻腳本進行了細緻的研討,為便於在網路上呈現這個遞進的過程,我們進行了錄音和會議記錄,想保持這個課例打磨的真實過程。在二備的過程中,大家各抒己見,充分討論,很快達成了共識,二備很順利,b腳本也很順利完成了第一稿。
第一段集中研修,7天很快結束了。我們才發現自己的節奏是那么緊張。基本上是房間、餐廳和工作室,每天從早上到深夜。多數人連樓也沒有走出去。第二階段是分散研修和錄課的時間。但每天大家還是第一時間上網交流和學習。儘管錄課是在煙臺,大家還是克服困難參加了實地的課堂觀察。
12月21日,大家重聚濟南,進行了觀課交流,錄製b視頻和d視頻,完成了網路記錄和呈現任務,並撰寫了課例學習導引等,最終一個完整的課例打磨資源,在大家的共同努力下順利完成。回顧整個過程,我們不得不說,每一項工作成果無不都是大家共同智慧的結晶。每個小過程,我們組內都進行詳細而明確的分工,而且這種分工特別重視彼此的互助性。每位教師都非常積極認真的完成各自的任務和協助任務。任務是艱巨的,但結果也是令人振奮的。
三、不同的體會,共同的收穫。
(一)這次研修,給了大家太多的感慨。
教學設計、上課、聽課、評課本是教師最經常的工作,卻因沒有明確的問題引領,沒有客觀的觀察統計,沒有必要的理性思考,沒有更深一步的行動和理論跟進,使我們的校本研修擺脫不了低效的困境,也浪費了老師們的時間,也使得大家的水平和課堂教學質量得不到提高。聚焦問題,不僅需要理論的學習和思考,更需要真實、客觀和科學的關注,更需要行動研究和逐步的'跟進踐行,在堅決問題中,成長自己,促進學生。
(二)這次研修,給了大家太多的感動。
參加研修的教師,大多是學校里的中堅力量,身兼多職,但大家對待這項工作,無不盡心盡力,尤其在當討論的時候,都願意把自己的觀點拿出來,與別人分享,闡述自己的理由。彼此真誠的交流,常讓人有無聲處聞驚雷的感覺。與會的工作人員,也都儘可能的為別人服務。各位專家,尤其是李紅婷教授更是耐心指導,精益求精。可以說,研修中,每一個人感動著別人的同時,也被別人感動著。雅斯貝爾斯說:“教育就是一朵雲推動另一朵雲,一棵樹搖動另一棵樹,一個靈魂喚醒另一個靈魂。”研修也正是這樣。我們有理由相信,教育戰線上不乏執著的追夢人,不乏具有高尚情懷和追求的教育工作者。
(三)這次研修,給了大家太多的收穫。
雖然整個研修,都是圍繞任務展開的。但服務他人的同時,更成就的是自己。在課例打磨的過程中,每一位教師都有自己的收穫。有的開闊了思路,有的提升了理論,有的淨化了心靈。同時,也結交了很多業內同行。其實,同伴的交流是最大的財富。有一種收穫,可以穿透時空,長久的留在記憶里,那就是精神的成長和彼此的感動。
(四)這次研修,給了大家更多的思考。
日常教學研究,應該聚焦於教學有關的各類現實存在的問題,應該注意反覆開放和聚焦,在解決和研究中,不斷提出新的問題和實際的行動跟進研究。
我們感覺到,廣大的一線教師都是有強烈的教育責任感、使命感和教育情懷的,對教育教學的追求是大家共同的心愿。通過本次高研班研修,我們認識到其實大道至簡,道不遠人。
國中數學工作坊個人的研修總結範文 篇2
1 過兩點有且只有一條直線
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的餘角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連線的所有線段中,垂線段最短
7 平行公理 經過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內錯角相等,兩直線平行
11 同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內錯角相等
14 兩直線平行,同旁內角互補
15 定理 三角形兩邊的和大於第三邊
16 推論 三角形兩邊的差小於第三邊
17 三角形內角和定理 三角形三個內角的和等於180
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等於和它不相鄰的兩個內角的和
20 推論3 三角形的一個外角大於任何一個和它不相鄰的內角
國中數學工作坊個人的研修總結範文 篇3
把一元二次方程化成ax2+bx+c的一般形式,然後把各項係數a, b, c的值代入求根公式就可得到方程的根。
公式法
公式:x=[-b±√(b2-4ac)]/2a
當Δ=b2-4ac>0時,求根公式為x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(兩個不相等的實數根)
當Δ=b2-4ac=0時,求根公式為x1=x2=-b/2a(兩個相等的實數根)
當Δ=b2-4ac<0時,求根公式為x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a
例3.用公式法解方程 2x2-8x=-5
解:將方程化為一般形式:2x2-8x+5=0
∴a=2, b=-8,c=5
b2-4ac=(-8)2-4×2×5=64-40=24>0
∴x= (4±√6)/2
∴原方程的解為x?=(4+√6)/2,x?=(4-√6)/2.
大家不知道的是兩個複數根在國中數學的學習中理解為無實數根。
國中數學工作坊個人的研修總結範文 篇4
一元一次方程定義
通過化簡,只含有一個未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬於整式方程,即方程兩邊都是整式。
一元指方程僅含有一個未知數,一次指未知數的次數為1,且未知數的係數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,並且a≠0)叫一元一次方程的標準形式。這裡a是未知數的係數,b是常數,x的次數必須是1。
即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的係數不為0。
一元一次方程的五個核心問題
一、什麼是等式?1+1=1是等式嗎?
表示相等關係的式子叫做等式,等式可分三類:第一類是恆等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恆等式,如2+4=6,a+b=b+a等都是恆等式;第二類是條件等式,也就是方程,這類等式只能取某些數值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。
一個等式中,如果等號多於一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。
等式與代數式不同,等式中含有等號,代數式中不含等號。
等式有兩個重要性質1)等式的兩邊都加上或減去同一個數或同一個整式,所得結果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數除數不為零,所得結果仍然是一個等式。
二、什麼是方程,什麼是一元一次方程?
含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數,兩者缺一不可。
只含有一個未知數,並且含未知數的式子都是整式,未知數的次數是1,係數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式後才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡後,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。
凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。
三、等式有什麼牛掰的基本性質嗎?
將方程中的某些項改變符號後,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質1。
移項時不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會顯得簡便些。
去分母,將未知數的係數化為1,則是依據等式的基本性質2進行的。
四、等式一定是方程嗎?方程一定是等式嗎?
等式與方程有很多相同之處。如都是用等號連線的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說,等式包含方程;反過來,方程並不包含所有的等式。如,13+5=18,18-13=5都屬於等式,但它們並不是方程。因此,等式一定是方程的說法是不對的。
五、"解方程"與"方程的解"是一回事兒嗎?
方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。
國中數學工作坊個人的研修總結範文 篇5
20xx年12月17到19號,我區數學課堂大比武活動在祝陽二中舉行,3天的比賽時間裡,18位數學老師為我們展示了18節精彩紛呈的數學課堂。師生之間和諧默契的配合,科學合理的教學流程,良好的教學效果,無不體現著我區國中數學教師較高的專業水平。雖然是賽課,但老師們的課堂少了花架子,實實在在的專注於創設適合學生認知規律的學習背景,新課程的理念已深深的植入我區數學教師的內心,學生為課堂主體得到了很好的落實。3天的聽課,使我收穫很大,先將個人感想總結如下:
3天的教學內容如下:
12月17號:八年級上冊6。1第二課時不等式的基本性質12月18號:八年級上冊6。2第一課時不等式的解和解集12月19號:八年級上冊6。2第二課時一元一次不等式及解法我想以課堂流程為主線,從以下幾個方面進行總結:
一、學習目標:
使用學案的老師都將學習目標放在了學案的第一環節,在講課過程中有3位老師一開始就出示學習目標,有5位老師放在導課之後出示目標,有2位老師放在課堂小結前出示學習目標,有八位老師沒有提及學習目標。出示目標的老師方式也不一樣,有的老師讓學生讀一遍,有的老師自己讀完,有的老師象徵性的突出這一環節,馬上帶過。從效果看,出示目標對提高課堂效益沒有太大意義,尤其是放在課堂的開始出示目標,學生對本節課的數學概念、方法,思想並不熟悉,學生讀過之後就會忘記,學生也不會時刻想著學習目標指導自己學習,時間白白浪費。從設計目標內容看,多數老師設計學習目標科學合理,但也存在一些問題:一是目標表述籠統,如“培養學生自主探索與合作交流的能力”,要細化為:會與同伴交流解題感想。如“提高學生分析問題解決問題的能力,培養學生的學習興趣”,這是教學目標,不是學習目標,那節課不都有這樣的目標,成萬能目標了;二是學習目標中不能出現“培養學生合情推理能力”這樣的目標,誰培養,是老師,老師是主語,其實是教學目標與學習目標混了。
二、課堂導入
參加講課的老師使用了三種導課方式:
1、複習導課。複習等式的基本性質得到不等式的基本性質;複習方程的解得到不等式的解;複習一元一次方程的定義得到一元一次不等式的定義;複習一元一次方程的解法步驟得到一元一次不等式的解法步驟。
2、探究法導課。仿照等式的基本性質2,把不等式的兩邊同乘以或除以同一個數,讓學生個人選擇一些數代入研究,發現有三種情況:不等號方向不變(兩邊同乘以或除以一個正數);不等號變成等號(兩邊同乘以零);不等號方向改變(兩邊同乘以或除以一個負數)。實驗得到了結論。
3、創設情境導課。情景導航中的飛機最多還能裝載多少頂帳篷;麵包車限載7人;高速路限速100邁;至少答對幾道題。貼近生活激發興趣。
第一天6位老師都從回顧等式的基本性質入手,引入不等式的基本性質的探究,為相似知識之間的類比做好鋪墊,導課方式合情合理,效果不錯。
第二天學習不等式的解及解集,教材設計了有關直升飛機運載災物資的情景,有兩位老師使用了這個情景導入新課;汶口一中的范義堅老師以乘坐的麵包車來參加賽課,麵包車的載客量和在行程中看到的限速牌的情景導入新課;李新剛老師設計了購物情景導入新課;十四中的趙培義老師設計了競賽得分的情景導入新課;一位老師沒有設計導課環節,直接給出自學指導,學生自學。
第三天21中的高鳳老師設計了一個關於讀書的情景導入課題,另有3位老師從回顧一元一次方程入手,引入課題;兩位老師沒有設計課堂導入環節,直接出示探究指導,讓學生自主學習新知識。
從效果看,課堂的開始設計情景導入環節,這是師生交流的開始,尤其是賽課,面對的是陌生的學生,設計一個學生熟悉或是感興趣的情景,對於提升學生的學習熱情,拉近師生之間的距離,活躍課堂氣氛,激發學生的求知慾望很有效果。但是在創設情景時,不要形式上的貼近現實,如導課時有教師“如果我們學校捐贈10頂帳篷,這架飛機能一次運走嗎?”,看上去聯繫我們學校了,貼近我們了,豈不知我們學校哪有帳篷,又扯遠了
三、探究新知環節
參加講課的老師非常重視學生的自主學習、合作探究的學習方式,設計了非常生動的探究情景,比較合理的自學指導,指導學生如何小組探究、如何反饋,如何評價。此環節充分體現了我區國中教師對新課改理念的理解,老師們已把傳統的填鴨式教學模式徹底拋棄,新的探究式教學已深入人心。實驗中學的董海濤老師在教授不等式的基本性質時,首先回顧等式的基本性質,然後出示一組不等式,學生類比等式的基本性質得到了不等式的基本性質1,然後董老師大膽讓學生猜想不等式是否還有其他性質,學生類比猜想“不等式的兩邊同時乘以或除以一個不為零的數或整式,不等號的方向不變”這一看似合理但有錯誤的結論。董老師告訴學生,猜想不一定正確,猜想後還需有科學合理的推理、論證才可以判斷它是否正確。(這一步讓學生大膽去猜想非常智慧,為學生自然類比出性質提供了舞台,當然是在學生不能提前看書的基礎上),董老師鼓勵學生想辦法驗證自己的猜想。學生運用代入不同數值的方法發現,同乘正數和負數是不同的,乘以負數,不等號的方向要改變,所以對於乘法,要分類討論,學生得到了不等式2和3。這種設計,符合知識的發展,生成規律,即讓學生自主掌握了知識,又讓學生學會了很重要的解決問題的方法(對比一些老師的讓學生自主學習,那數學的“過程”自然也就淹沒了,學生不經歷這一過程,得到的知識淺多了)。十五中的邱玉榮老師在教授不等式的解法兩個例題時,通過較為簡單的例題1讓學生感知類比方程的解法可以求不等式的解集,邱老師放手讓學生自己試著解例題2,相當多的學生能成功的得到不等式的正確解集,且步驟合理。邱老師讓學生通過板演展示,學生評價等方式完善方法和步驟,達到讓所有學生掌握的目的。這種方式,能讓中等以上的學生通過自主學習,感受到成功的樂趣,也體現了邱老師分層教學的理念。
出現的問題
1、不等式基本性質的探究過程大體分幾種情況:
(1)性質1、2、3一塊得出;
(2)性質1、2、3分別得出;
(3)性質1、2一塊得出,然後探究性質3;
(4)性質1先得出,然後探究性質2、3一塊得出;
通過課堂觀察,第四種情況符合知識發生髮展規律,符合學生認識規律,自然生成,其他均有人為硬性的痕跡,是按照成人的思維來設計,不夠自然流暢。
另外,性質1的探究過程沒有按>0,<0研究,性質2為什麼沒按呢?再就是缺乏對“等於零”的情形的研究,分析不全面。
再有,教師安排學生自學課本和學案,一定時間後讓學生回答性質1、2、3,就算是對性質的探究過程了。讓學生看課本總結性質1、2、3,流於形式,沒有探究的味,假探究,學生看課本總結那不是鼓勵學生背課本、讀原文,自己總結么?教師的引導有如何體現??2、合作交流的時機不當
一上課,出示引例後問“直升飛機最多能裝載多少頂帳篷?”,此問題一出,立即讓學生進行交流討論,是時機嗎?有必要嗎?教師要思考“什麼時候讓學生合作交流?”
3、有的老師對小組合作只作為一個形式運用,沒有考慮實際價值。如沒有設定探究解決的問題或設定的問題很隨便。一位老師讓學生在數軸上畫不等式x<2的解集時,問學生2在數軸化實點還是虛點,學生集體回答畫虛點,老師又說“同學們討論一下為什麼畫虛點?”這樣的討論有點多餘,因為這是前一節課學生熟練掌握的內容;有的老師在學生合作學習開始前沒有交代好方法和注意事項,小組合作學習開始後不停地補充,這樣就很容易打斷學生的思路。有的老師沒有給足夠的時間合作學習,很短的時間後就讓學生反饋或自己進行總結,這樣就達不到小組合作解決問題的目的。有的老師在反饋小組合作學習的成果時,只選擇組長來說,這樣不能調動所有學生的學習熱情;
四、訓練鞏固環節所有講課的老師都特別重視訓練鞏固,精心設計了形式多樣,緊扣當節課所學知識點,易於掌握重點和突破難點的訓練題組。老師讓學生通過自主練習,暴露出存在的問題,然後通過形式豐富的反饋加以糾正。
這一環節存在的問題有:
1、有的老師設計的題組難度跨度大,沒有充分考慮學生的認知水,講解例題之前最好先做一些基礎性的題目,為例題的順利解決做一個台階;2、教師講評前要仔細審查學生板演的情況
如學生板書“x—5<—3”,把“—”號看做乘號“●”了,但按此乘號“●”做得很好,教師講評時不問青紅皂白,直接批死,造成“冤假錯案”,其實該生是平時學習不錯的優秀生,致使該學生看錯了,而且看錯的原因也是教師的課件不清楚所致。
3、在反饋環節,老師指名課代表、班長、組長等,因為他們大都是優等生,樣本不具有代表性,不能反映出學生存在的問題;學生板演時,老師不敢讓學生暴露錯誤,學生一旦出錯,老師馬上對其訂正,錯誤沒能呈獻給所有學生,具有代表性的錯誤不能有效訂正。讓學生在數軸上表示解集時,應讓學生自己畫數軸,自己標數字,教師一般不要提前畫好數軸,只等學生來完成剩下的任務
4、拓展不當,如拓展“已知x≥m且x為正數,確定實數m的範圍。”,與本節課時內容關聯性不強。
5、在數軸上表示不等式的解集時,有教師在數軸與所標線內塗上陰影,意指陰影部分是解集,與課本不符。
五、課堂小結
在課堂小結環節,老師們大都提出“本節課你有什麼收穫”或“本節課你學到了什麼”這樣的問題,然後讓學生總結,學生大都總結出一節課所學到的知識點,以及在做題中出現的錯誤進行總結。有兩位老師的總結涉及到了當堂課的數學方法和思想。老師們注重了所授知識的概括、歸納及總結,對解決問題的方法,對所學知識的套用及價值的總結有所淡化,也沒有涉及到對學生情感、學習態度和存在問題的總結。
六、學案
講課的18位教師,有16位老師使用了學案,但學案的設計質量參差不齊,有的學案個個環節齊全,重點突出學習指導,訓練題組有創新,當堂檢測設計科學合理。印象最深的是道朗一中的李新剛老師設計的學案,徵得李老師的同意後將他設計的學案附在後面,請大家參考。
學案存在的問題有:
1、1、有的學案沒有標註課題,顯得不完整
2、2、有的老師將學案設計成訓練題,沒有體現上課的過程
3、3、有的老師設計的學案設計成了教案的`形式,出現教學目標、教學過程等詞語,學案設計不規範
4、4、有的學案內容空洞,沒有實用性,老師發給學生學案後,沒有套用。
七、關於達標檢測
18位老師都設計了當堂達標這一環節,達標檢測題進行了精心設計,題型包括選擇、填空、解答與計算,題型豐富。特別是增加了選擇題的比重,中考選擇題分值占50%,老師們著眼中考,從這裡看出我區數學老師豐富的教學經驗。
存在問題:
有的老師設計的題量太多,有一位老師設計了11道題目;有個別老師設計的題目難度偏大;有的老師因課堂時間安排不合理,課堂檢測沒有完成,導致沒有反饋和訂正,有很多老師因前面的環節不緊湊,導致拖堂,有的拖堂達到近10分鐘。
八、課件
講課的18位老師都使用了教學課件,老師的的課件製作的各有特色,能極大地提高課堂效益,多數老師在使用過程中得心應手,說明我區的數學課堂課件的使用已非常普及。
存在問題:
個別老師操作不熟練,不能及時翻頁、跳頁;過早地呈現後面的內容,退不回去了;對比度不強,許多文字、符號看不清。
國中數學工作坊個人的研修總結範文 篇6
一、工作目標:
開學初,根據學校的工作計畫,結合本組的特點,經過全組教師的討論,確定了工作目標和具體措施,明確樹立集體質量意識,信息資源共享,把校本研修活動和教學實踐結合起來,工作要點有:(1)組織教師認真學習教育理論,提高教師的理論素質。(2)抓好本學科各項教學基礎工作,從整體最佳化出發,加強教學工作的五個環節(備課、上課、作業、輔導、考查)的管理,提高課堂教學效率。(3)積極開展教學科研,用教育科學指導教學。(4)組織公開教學,開展聽課和評課活動。(5)關心培養青年教師,使之早日成為教學骨幹。各備課組長在最佳化過程、減輕負擔、提高質量的前提下,提出本學期的工作重點。初一抓好起始階段數學學習習慣的養成;初二抓好“平幾”基礎教學,培養數學素質;初三多角度訓練學生的思維品質,提高數學解題能力。圍繞目標,教研組有計畫,有內容積極展開工作。
二、組風建設:
我們國中數學組每位教師有富有強烈的事業心和責任感,嚴謹治學,七年級的兩位教師為了抓好起始年級學生的思想品質,提高數學成績,培養良好習慣,他們新老結對,集體備課,老教師無私奉獻,新教師虛心好學,集思廣益,通力合作。組內兩位教師上匯報課,全體教師都能當好參謀,提出建議;初二年級班級大,學生多,課程難,他們輔導學生非常耐心,遇到問題總是共同探討,經常互相交流,取長補短,激發學生學習興趣,挖掘非智力因素,努力縮小落後面,教學效果較好;初三畢業班的教師惜時如金,分秒必爭,他們經常一起研究提高數學複習課教學質量的方法和措施。每位教師都十分注重自我提高,不斷給自己加壓,以便更好地從事教學工作,在進行繁重的教學工作的同時,個別教師還潛心研究,自覺反思。不斷地總結與提高,教研風氣濃厚。數學組形成了一個團結勤奮,銳意進取的集體,充分體現了教研組的整體能力。
三、做好常規檢查,強化教學管理
在鼓勵教師們創造性工作的同時,不放鬆對教學常規的指導和監督。本學期,教研組配合教務處共進行兩次教學常規工作檢查,內容包括是否寫教案,是否寫教學反思和教後記,作業批改是否及時,認真等方面,檢查結果令人滿意。
四、 開展及參加校本研修活動情況
堅持每周進行研修活動,每次活動事先都經過精心準備,定內容、定時間、講實效,多次組織學習教育理論和本學科的教學經驗,充實教師的現代教育理論和學科知識。
1、開學初,我們積極準備小課題的校級結題工作。《合作互助 激發情感型學困生的數學學習興趣》的個案研究自州級課題立項以來,參與本課題的幾位老師做了大量工作,為這次校級結題做好了充分準備,從而在學校順利結題,並拿到了結題證書。
2、在準備小課題結題的同時,我們數學組的老師又在為新一輪的小課題立項做前期準備。在這期間,先在組內進行討論、分析,針對自己在教學中存在的普遍問題進行論證,然後確立課題,本學期我們的研究課題是《數學課堂練習優選活用的有效性研究》。參與課題的老師結合這一課題,查閱資料,上網搜尋,進行理論學習。然後制定研修計畫,研修方案等,做好一系列課題研究的'相關工作。
3、因為《合作互助 激發情感型學困生的數學學習興趣》的個案研究是昌吉州立項課題,所以在三月下旬又準備州級結題工作,整理資料,完善結題報告,上報材料。組內老師也希望這一課題能在昌吉州結題。
4、三月份,數學組四位老師又參加了縣教研室組織的教師技能大賽,參賽教師有唐偉華、崔圓新、張桂榮、馬海燕。參賽項目有說課、評課、板書設計三項。其中唐偉華、崔圓新分別獲得說課與板書設計的二等獎,張桂榮、馬海燕分別獲得說課與評課的三等獎。
5、四月結合小課題研究開展了兩次研修活動。一是八年級數學四課活動,由馬春麗、楊天慧、米存三位老師承擔主講。他們根據活動內容提前做好準備,備課、說課、上課、聽評課,本次四課活動的主題是如何優選課堂練習,從而使練習更有效。通過活動,馬春麗、米存兩位老師在上課時的主題鮮明,針對性強,能緊扣課題體現課題研究的主體性。第二次是小課題研究的階段性反思,就這一課題的研究前一階段的工作進行總結反思,然後提出修改、完善的建議或意見,為下一階段的研究做好鋪墊工作。
6、五月份的兩次研修活動分別是小課題研究案例分析與九年級數學同課異構活動。案例分析主要針對自己在前期課題實施過程中遇到的問題或課堂實踐事件進行分析、交流。這次活動有一定的效果。九年級數學同課異構有九年級的三位老師承擔,他們都做了充分的準備,同樣是一節二次函式的專題複習課,可三位老師因為不同的構思,上出了不同的風格,尤其能夠凸顯小課題的主體研究內容。所設計的練習具有一定的代表性,尤其對即將中考的學生來說,非常有效,無論是基礎性、典型性、靈活性、開放性、綜合性、技巧性都能融在一起,這樣及訓練學生的邏輯思維,又能訓練學生的發散思維。何玲與馬海燕老師尤其在學生學習方法與解題方法方面給學生的指導是非常的細心、到位。這些題目的訓練使學生在解題過程中能夠做到融會貫通,觸類旁通的效果。
7、最後的兩次活動分別是數學教師說課交流與小課題研究總結。對於說課,咱們老師不是很熟悉,說課可分為課前說可與課後說課,這兩者是有明顯不同的,對公開課嚴格把關,要求每一節公開課前都經過備課組的老師多次的研究和修改,每堂公開課後,全組的老師都進行認真的評課,我們組的老師對評課向來非常認真,從不避醜,不走過場,不管你的資格有多老,你有多年輕,大家能本著對事不對人的原則,對有研究性的問題、有爭議的問題都能暢所欲言,儘管有時爭論的很激烈,但道理是越辯越明的,組內課題研究教研課六次,每位教師聽棵都在10節以上,大家通過爭議都很有收穫,以此推動本組的教研氛圍。儘管日常教育教學工作十分繁忙,但老師們仍十分重視教育科研,積極參加學校組織的各類教育教學活動。
五、將培優補差工作落實到了實處
本學期,我組各位老師更是兢兢業業,認真負責,每天都有老師在進行補差和培優,力爭使不同程度的學生得到了不同的進步和發展;各位老師,目的是使一些基礎較好,但學習不紮實又很粗心的學生能在學習考試中發揮出自己真實的水平;補差計畫:根據我校班制的特點,我們的補差工作每天都在抓,不僅給他們補文化課,最主要的是轉變他們的學習態度,卸掉他們思想上的包袱,使他們能夠輕鬆,自覺的學習,真正達到補課的效果。
六、教研組建設的構想:
1、新課標與教育理論的學習與鑽研還要加強;
2、課堂教學設計、研究、效果方面還要深入研究;
3、全組走出去聽課;
4、“培優、輔中、穩差”的方法方式還有待完善;
5、青年教師多上公開課。
時光的腳步帶領我們走過了一個充實而忙碌的學期。總結過去,展望未來,我們清醒地認識到身上肩負的重任,探索之路任重而道遠,我們只有不斷學習,不斷地開拓進取,迎接更大的挑戰。
國中數學工作坊個人的研修總結範文 篇7
基於質數定義的基礎之上而建立的問題有很多世界級的難題,如哥德巴赫猜想等。
質數
質數又稱素數。指在一個大於1的自然數中,除了1和此整數自身外,不能被其他自然數整除的數。
素數在數論中有著很重要的地位。比1大但不是素數的數稱為合數。1和0既非素數也非合數。質數是與合數相對立的兩個概念,二者構成了數論當中最基礎的定義之一。
算術基本定理證明每個大於1的正整數都可以寫成素數的乘積,並且這種乘積的形式是唯一的。這個定理的重要一點是,將1排斥在素數集合以外。如果1被認為是素數,那么這些嚴格的闡述就不得不加上一些限制條件。
概念
只有1和它本身兩個約數的自然數,叫質數(Prime Number)。(如:由2÷1=2,2÷2=1,可知2的約數只有1和它本身2這兩個約數,所以2就是質數。與之相對立的是合數:“除了1和它本身兩個約數外,還有其它約數的數,叫合數。”如:4÷1=4,4÷2=2,4÷4=1,很顯然,4的約數除了1和它本身4這兩個約數以外,還有約數2,所以4是合數。)
100以內的質數有2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,在100內共有25個質數。
註:1既不是質數也不是合數。因為它的約數有且只有1這一個約數。
國中數學工作坊個人的研修總結範文 篇8
1、弧長公式
n°的圓心角所對的弧長l的計算公式為L=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長.
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側面積,其中l是圓錐的母線長,r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經過切點的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等於弦與切線夾的弧所對的圓周角.
一、選擇題
1.(20__o珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側面積為
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點:圓柱的計算.
分析:圓柱的側面積=底面周長×高,把相應數值代入即可求解.
解答:解:圓柱的側面積=2π×3×4=24π.
故選A.
點評:本題考查了圓柱的計算,解題的關鍵是弄清圓柱的側面積的計算方法.
2.(20__o廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交於點E,且AC=2,AE=,CE=1.則弧BD的長是
A.B.C.D.
考點:垂徑定理;勾股定理;勾股定理的逆定理;弧長的計算.
分析:連線OC,先根據勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函式的定義求出∠A的度數,故可得出∠BOC的度數,求出OC的長,再根據弧長公式即可得出結論.
解答:解:連線OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
國中數學工作坊個人的研修總結範文 篇9
列出方程(組)解套用題的一般步驟是:
1審題:弄清題意和題目中的已知數、未知數;
2找等量關係:找出能夠表示套用題全部含義的一個(或幾個)相等關係;3設未知數:據找出的相等關係選擇直接或間接設定未知數4列方程(組):根據確立的等量關係列出方程5解方程(或方程組),求出未知數的值;6檢驗:針對結果進行必要的檢驗;
7作答:包括單位名稱在內進行完整的答語。
一,行程問題
基本概念:行程問題是研究物體運動的,它研究的'是物體速度、時間、行程三者之間的關係。基本公式路程=速度×時間;路程÷時間=速度;路程÷速度=時間關鍵問題:確定行程過程中的位置.相遇問題:速度和×相遇時間=相遇路程
追擊問題:追擊時間=路程差÷速度差流水問題:順水行程=(船速+水速)×順水時間逆水行程=(船速-水速)×逆水時間順水速度=船速+水速逆水速度=船速-水速
靜水速度=(順水速度+逆水速度)÷2水速=(順水速度-逆水速度)÷2
二、利潤問題
現價=原價*折扣率
折扣價=現價/原價*100%
每件商品的利潤=售價-進貨價=利潤率*進價毛利潤=銷售額-費用
利潤率=(售價--進價)/進價*100%標價=售價=現價進價=售價-利潤售價=利潤+進價
三、計算利息的基本公式
儲蓄存款利息計算的基本公式為:利息=本金×存期×利率
稅率=應納數額/總收入*100%
本息和=本金+利息
稅後利息=本金*存期*利率*(1-稅率)稅後利息=利息*稅率
利率-利息/存期/本金/*100%利率的換算:
年利率、月利率、日利率三者的換算關係是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意與存期相一致。利潤與折扣問題的公式利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅後利息=本金×利率×時間×(1-20%)
四、濃度問題
溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量
五、增長率問題
若平均增長(下降)數百分率為x,增長(或下降)前的是a,增長(或下降)n次後的量是b,則它們的數量關係可表示為:a(1+x)n=b或a(1-x)=bn
六、工程問題
工作效率=總工作量/工作時間工作時間=總工作量/工作效率
七、賽事,票價問題
賽事
單循環賽:n(n-1)/2
淘汰賽:n個球隊,比賽場數為n-1場次票價則對應的不一樣的賽制乘以對應的單價。
國中數學工作坊個人的研修總結範文 篇10
對於本學期教研組工作,簡要總結如下:
一、工作進展情況
本學期我校數學組成員由上學期的7人減為6人,雖然人數減少了,但是工作量並沒有減輕,反而加大了,同時,工作質量也沒有因為人員變動降低了,反而還在原有的基礎上提升了。
總而言之,本學期的教研工作進展順利,不但超額完成了學期初工作計畫內的事情,還圓滿完成了校級、縣級甚至是市級安排的臨時任務。
二、主要成績
1.接待實習生及置換生兩批次總計3人次。
2.批閱教案800餘次(平均每位教師每周7節次)。
3.集體備課次總計12次,平均每位教師主備2次。
4.公開課達9次,包括實習生在內,平均每人一次。
5.參與網路培訓、校內外外出培訓活動達29人次,其中網路培訓達18次,平均每人三次(含國家級西南大學中國小教師學科培訓6人次,市級遠程培訓之“評好課”專題6人次、縣級信息技術培訓6人次),校外培訓學習4人次,省級2人次,縣級2人次;校內培訓7人次。
6.參與校內外聽評課100餘次,平均每人進20餘次。
7.參加校內課賽1人次,獲獎1人次。
8.開展學生活動兩項,分別是數學基礎知識競賽和數學手抄報大賽,數學基礎知識競賽覆蓋全校學生,參與度達100%,發放獎金800餘元;數學手抄報參與學生80餘人,參與度近20%,發放獎金400餘元。
三、經驗及體會
經驗總結:教師是知識的傳承者,教師的素養決定著學生的未來,因此,本學期在教研工作方面,我主要著手加強教師專業素養的提高,嚴格按照上級要求對本組教師的教案進行認真細緻的批閱,認真組織本組教師積極開張集體備課活動以及聽評課活動。而興趣是學生學習最好的老師,因此,我又通過開張數學知識競賽、數學手抄報等活動激發了學生學習數學的熱情,為學生創造了良好的數學學習氛圍。
體會:教師專業素養的提高與業務水平的提高,有利於學生在數學課堂上聽到更精彩生動的課,學生學習興趣的提高又可以影響教師教育教學的積極心態,因此,兩者是相輔相成,互相促進的,往後還必須加這方面的研究。
四、存在問題
1.組內成員的教學理論水平曾次不齊,導致全校數學教育教學質量在不同年級,不同班級之間都存在差異。
2.組內成員的工作積極性沒有完全調動,儘管有所改觀,但仍需努力。
3.組內成員的專業成長速度緩慢,課後對專業知識的自我提升完善觀念欠缺。
五、今後努力的方向
1.繼續積極開展各項師生活動,豐富師生課餘生活。
2.繼續落實各級相關要求,努力完善組內各項規章制度。
3.加強組內成員的理論學習,不斷提高組內成員的業務水平。
4.努力創建和諧平等的教學工作環境,加強與其他學科教師的溝通協作。
5.努力爭取各種大小培訓活動,強化隊伍建設。
國中數學工作坊個人的研修總結範文 篇11
數軸
⒈數軸的概念
規定了原點,正方向,單位長度的直線叫做數軸。
注意:⑴數軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數軸的三要素,三者缺一不
可;⑶同一數軸上的單位長度要統一;⑷數軸的三要素都是根據實際需要規定的。
2.數軸上的點與有理數的關係
⑴所有的有理數都可以用數軸上的點來表示,正有理數可用原點右邊的點表示,負有理數可用原點左邊的點表示,0用原點表示。
⑵所有的有理數都可以用數軸上的點表示出來,但數軸上的點不都表示有理數,也就是說,有理數與數軸上的點不是一一對應關係。(如,數軸上的點π不是有理數)
3.利用數軸表示兩數大小
⑴在數軸上數的大小比較,右邊的數總比左邊的數大;
⑵正數都大於0,負數都小於0,正數大於負數;
⑶兩個負數比較,距離原點遠的數比距離原點近的數小。
4.數軸上特殊的(小)數
⑴最小的自然數是0,無的自然數;
⑵最小的正整數是1,無的正整數;
⑶的負整數是-1,無最小的負整數
5.a可以表示什麼數
⑴a>0表示a是正數;反之,a是正數,則a>0;
⑵a0時,-a0(負數的相反數是正數)
當a=0時,-a=0,(0的相反數是0)
國中數學工作坊個人的研修總結範文 篇12
各級領導對這次研修給予了高度重視和支持。為做好遠程研修培訓的組織和管理工作,更有效探討分散學習教學管理的方法,鹿寨教研室於8月15日下午召開參加遠程培訓的各學科班主任、簡報編寫組成員會議,會議討論並確定了對於XX年年秋季遠程研修培訓的實施方案和班主任工作要求,並對分散學習過程中的一些細節和可能存在的問題,組織各班主任分組進行深入的探討,各班主任積極發言,為培訓順利開展獻計獻策,積極尋求解決問題的辦法,在思想上和工作環節上都提出了明確的要求,各班級分4個小組學習,小組長“網上檢查,電話督促”的工作方法,為XX年年秋季遠程研修培訓工作順利的開展提供了有利的保障。緊接著在8月19日下午,國中0602班40多位學員懷著喜悅的心情聚在實驗中學會議室召開了XX年年秋季遠程研修培訓的動員大會。會上,班主任詳細講解了XX年年秋季遠程研修培訓的學習目的與要求。隨後,學員們進行了充分地交流和討論,大家分擔著存在的困難、分享著能參加這個難得的學習機會的喜悅。最後大家表示,一定會合理安排時間,克服一切困難,做到學習、工作兩不誤。
在學習過程中,班主任通過上網、電話、聊天等途徑及時了解各學員的情況,對存在的問題督促其改正,在後階段發現有的老師沒有按時完成作業,就分別給學校領導打電話督促其完成作業,至學習結束我們班全體學員基本都按規定完成了作業(有三個特例除外—這三個老師由於種種原因已經轉到其他科目的培訓)。對好的現象給予及時表揚,如羅曉萍老師作為我們班的簡報編輯員,在第一階段結束後,自己覺得自己在簡報的編輯中還有一些技術性的知識未掌握好,覺得自己所編輯的簡報與別人的還有一些差距,於是聯繫到上一期的簡報編輯,利用暑假最後兩天時間不遠幾十公里趕到縣城向那位老師請教,回到家後還自己不斷地練習排版、編輯圖片等等,正是有了她的不懈努力,我們班的簡報才能多次進入課程簡報中的簡報攬勝。
指導老師梁華亮老師在研修過程中,對我們學員的作業及時的批改和鼓勵,促使我們班的學員學習熱情一直高漲。因此整個學習過程中,我們學員儘管遇到了諸多困難,如停電、電腦上不了網、電腦不夠用、遇上上級的各種檢查、出差等等,但我們的學員都能想盡辦法解決,有的從鄉下專程到縣城上網學習,有的白天沒辦法進行學習,就利用深夜時間進行學習,有的甚至買電腦上網專程為遠研學習,研修學習已經成為我們生活的.一部分,正如陶玉蓮老師在班級交流中說到“越是缺少監督的學習,越是真正意義上的學習。”學員們種種克服困難的辦法和精神真的很令我們感動,其中表現比較突出的有:羅曉萍、馮愛英、鄧劍、韋水蘭、陸漢華等。
正因為有了領導的重視和支持,班主任的跟蹤學習,學員們的主動,在研修專家的指導下,我們班的學員在理論知識、學習狀態、教學技能上等方面都有了很大的收穫,多次得到專家組的好評。在這個知識舞動的平台上,我們所有參加研修的學員們累並快樂著!我們的目標只有一個:為了孩子的明天!
在此我代表我們廣西鹿寨縣國中數學0602班全體學員對新課程學科遠程研修課程團隊的專家們表示衷心的感謝!我們鹿寨國中數學教育一定會因為有你們的指導而更精彩!
國中數學工作坊個人的研修總結範文 篇13
中考數學知識點:分式混合運算法則
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);乘法進行化簡,因式分解在先,分子分母相約,然後再行運算;加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;變號必須兩處,結果要求最簡.
分式混合運算法則:
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);
乘法進行化簡,因式分解在先,分子分母相約,然後再行運算;
加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結果要求最簡.
中考數學二次根式的加減法知識點總結
二次根式的加減法
知識點1:同類二次根式
(Ⅰ)幾個二次根式化成最簡二次根式以後,如果被開方數相同,這幾個二次根式叫做同類二次根式,如這樣的二次根式都是同類二次根式。
(Ⅱ)判斷同類二次根式的方法:(1)首先將不是最簡形式的二次根式化為最簡二次根式以後,再看被開方數是否相同。(2)幾個二次根式是否是同類二次根式,只與被開方數及根指數有關,而與根號外的因式無關。
知識點2:合併同類二次根式的方法
合併同類二次根式的理論依據是逆用乘法對加法的分配律,合併同類二次根式,只把它們的係數相加,根指數和被開方數都不變,不是同類二次根式的不能合併。
知識點3:二次根式的加減法則
二次根式相加減先把各個二次根式化成最簡二次根式,再把同類二次根式合併,合併的方法為係數相加,根式不變。
知識點4:二次根式的混合運算方法和順序
運算方法是利用加、減、乘、除法則以及與多項式乘法類似法則進行混合運算。運算的順序是先乘方,後乘除,最後加減,有括弧的先算括弧內的。
知識點5:二次根式的加減法則與乘除法則的區別
乘除法中,係數相乘,被開方數相乘,與兩根式是否是同類根式無關,加減法中,係數相加,被開方數不變而且兩根式須是同類最簡根式。
中考數學知識點:直角三角形
★重點★解直角三角形
☆內容提要☆
一、三角函式
1.定義:在Rt△ABC中,∠C=Rt∠,則sinA=;cosA=;tgA=;ctgA=.
2.特殊角的三角函式值:
0°30°45°60°90°
sinα
cosα
tgα/
ctgα/
3.互余兩角的三角函式關係:sin(90°-α)=cosα;…
4.三角函式值隨角度變化的關係
5.查三角函式表
二、解直角三角形
1.定義:已知邊和角(兩個,其中必有一邊)→所有未知的邊和角。
2.依據:①邊的關係:
②角的關係:A+B=90°
③邊角關係:三角函式的定義。
注意:儘量避免使用中間數據和除法。
三、對實際問題的處理
1.俯、仰角:
2.方位角、象限角:
3.坡度:
4.在兩個直角三角形中,都缺解直角三角形的條件時,可用列方程的辦法解決。
國中數學工作坊個人的研修總結範文 篇14
橢圓知識:平面內與兩定點F1、F2的距離的和等於常數2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。
橢圓的第一定義
即:│PF1│+│PF2│=2a
其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。
長軸為 2a; 短軸為 2b。
橢圓的第二定義
平面內到定點F的距離與到定直線的距離之比為常數e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數為小於1的正數) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。
橢圓的其他定義
根據橢圓的一條重要性質,也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內與兩定點的連線的斜率之積是常數k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等於-1。
簡單幾何性質
1、範圍
2、對稱性:關於X軸對稱,Y軸對稱,關於原點中心對稱。
3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)
4、離心率:e=c/a
5、離心率範圍 0
知識歸納:離心率越大橢圓就越扁,越小則越接近於圓。
國中數學知識點總結:平面直角坐標系
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
國中數學知識點:平面直角坐標系的構成
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
國中數學知識點:點的坐標的性質
點的坐標的性質
建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的'。
國中數學知識點:因式分解的一般步驟
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個範圍內因式分解,應該是指在有理數範圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
國中數學知識點:因式分解
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關係:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①係數是整數時取各項最大公約數
②相同字母取最低次冪
③係數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括弧化成單括弧
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括弧外
⑦括弧內同類項合併。
國中數學工作坊個人的研修總結範文 篇15
時間單位換算
1世紀=100年1年=12月
大月(31天)有:135781012月
小月(30天)的有:46911月
平年2月28天,閏年2月29天
平年全年365天,閏年全年366天
1日=24小時1時=60分
1分=60秒1時=3600秒
重量單位換算
1噸=1000千克
1千克=1000克
1千克=1公斤
人民幣單位換算
1元=10角
1角=10分
1元=100分
體(容)積單位換算
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升
1立方厘米=1毫升
1立方米=1000升
面積單位換算
1平方千米=100公頃
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
1平方厘米=100平方毫米
長度單位換算
1千米=1000米1米=10分米
1分米=10厘米1米=100厘米
1厘米=10毫米
和差問題的公式
(和+差)÷2=大數
(和-差)÷2=小數
和倍問題
和÷(倍數-1)=小數
小數×倍數=大數
(或者和-小數=大數)
利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
折扣=實際售價÷原售價×100%(折扣0註:方程有兩個不等的實根
b2-4ac拋物線標準方程y2=2pxy2=-2pxx2=2pyx2=-2py
直稜柱側面積S=c*h斜稜柱側面積S=c"*h
正稜錐側面積S=1/2c*h"正稜台側面積S=1/2(c+c")h"圓台側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l
弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r
錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜稜柱體積V=S"L註:其中,S"是直截面面積,L是側棱長柱體體積公式V=s*h圓柱體V=pi*r2h
擴展閱讀:
國中數學工作坊個人的研修總結範文 篇16
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:
①在同一平面
②兩條數軸
③互相垂直
④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向。
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
國中數學知識點:平面直角坐標系的構成。
對於平面直角坐標系的構成內容,下面我們一起來學習喔。
平面直角坐標系的構成。
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
國中數學工作坊個人的研修總結範文 篇17
一、學情分析的目標:
(1)進一步培養良好的數學行為習慣和學習習慣。
(2)加強學風建設,培養學習數學的興趣,明確學習任務,注重學法指導,提高學習效率。
(3)培養學生獲得知識和技能,培養觀察和分析推理的能力,培養學生實事求是,嚴肅認真的科學態度和學習方法。
二、學情分析的內容:
主要包括學生學習起點狀態的分析、學生潛在狀態的分析兩部分。學生起點狀態的分析主要從三個維度展開:知識維度,指學生的認知基礎;技能維度,指學生已有的學習能力;素質維度,指學生的學習態度、學習習慣、意志品質……學生潛在狀態的分析,主要指學生可能發生的狀況與可能的發展。下面我就國中數學課作學情分析,敬請各位老師斧正。
在我的數學教學中,我認為學生的數學基礎影響學生的學習興趣,九年級任務重,學習進度快,兩級分化嚴重,學生學習主動性不夠,學生學習習慣有待提高。學生除了需要學習數學,還要學習其它科目,時間有限,需要我們教師教會學生解題方法以提高速度。
三、學情分析的方法:
1.學生的熱點問題要善於剖析
我們捕捉到的來自學生中間的信息,可能非常凌亂,成因也可能會很複雜,與數學教學的聯繫或許未必緊密,不可能把捕捉到的所有信息簡單地堆砌到課堂教學中去。這就需要教師學會用實事求是的觀點、方法,耐心分析、遴選出與思想數學結合最緊密、最有代表性的學生熱點。分清哪些是積極的、哪些是消極的
2.用心捕捉學生熱點問題
學生在為人處事的生活實踐中,常常會對某一事物或某一問題表現出極大的關注和傾向,這種關注點和傾向性構成了學生的熱點,成為把脈學情的捷徑。數學課是一門思維較強的課程,準確把握學生學習中的熱點問題,有助於增強教學的實效性和針對性。
做好學生的思想工作,闡明中考競爭的嚴峻形勢,讓學生有憂患意識,從而調動學習的積極性。多與各科教師聯繫,及時了解學生動態,接受科任老師的建議。多與家長交流,形成合力,共同督促學生學習,使其進步。學生進行深刻的自我反思,對自己的學習提出具體的要求,促成每個學生形成適合自己的良好學習方法。
國中數學工作坊個人的研修總結範文 篇18
三角和的公式
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
倍角公式
tan2A = 2tanA/(1-tan2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin2 A =2Cos2 A-1 =1-2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)3;
cos3A = 4(cosA)3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
三角函式特殊值
α=0° sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
α=15°(π/12) sinα=(√6-√2)/4 cosα=(√6+√2)/4 tαnα=2-√3 cotα=2+√3 secα=√6-√2 cscα=√6+√2
α=22.5°(π/8) sinα=√(2-√2)/2 cosα=√(2+√2)/2 tαnα=√2-1 cotα=√2+1 secα=√(4-2√2) cscα=√(4+2√2)
a=30°(π/6) sinα=1/2 cosα=√3/2 tαnα=√3/3 cotα=√3 secα=2√3/3 cscα=2
α=45°(π/4) sinα=√2/2 cosα=√2/2 tαnα=1 cotα=1 secα=√2 cscα=√2
α=60°(π/3) sinα=√3/2 cosα=1/2 tαnα=√3 cotα=√3/3 secα=2 cscα=2√3/3
α=67.5°(3π/8) sinα=√(2+√2)/2 cosα=√(2-√2)/2 tαnα=√2+1 cotα=√2-1 secα=√(4+2√2) cscα=√(4-2√2)
α=75°(5π/12) sinα=(√6+√2)/4 cosα=(√6-√2)/4 tαnα=2+√3 cotα=2-√3 secα=√6+√2 cscα=√6-√2
α=90°(π/2) sinα=1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=1
α=180°(π) sinα=0 cosα=-1 tαnα=0 cotα→∞ secα=-1 cscα→∞
α=270°(3π/2) sinα=-1 cosα=0 tαnα→∞ cotα=0 secα→∞ cscα=-1
α=360°(2π) sinα=0 cosα=1 tαnα=0 cotα→∞ secα=1 cscα→∞
三角函式記憶順口溜
1三角函式記憶口訣
“奇、偶”指的是π/2的倍數的奇偶,“變與不變”指的是三角函式的名稱的變化:“變”是指正弦變餘弦,正切變餘切。(反之亦然成立)“符號看象限”的含義是:把角α看做銳角,不考慮α角所在象限,看n·(π/2)±α是第幾象限角,從而得到等式右邊是正號還是負號。
以cos(π/2+α)=-sinα為例,等式左邊cos(π/2+α)中n=1,所以右邊符號為sinα,把α看成銳角,所以π/2<(π/2+α)<π,y=cosx在區間(π/2,π)上小於零,所以右邊符號為負,所以右邊為-sinα。
2符號判斷口訣
全,S,T,C,正。這五個字口訣的`意思就是說:第一象限內任何一個角的四種三角函式值都是“+”;第二象限內只有正弦是“+”,其餘全部是“-”;第三象限內只有正切是“+”,其餘全部是“-”;第四象限內只有餘弦是“+”,其餘全部是“-”。
也可以這樣理解:一、二、三、四指的角所在象限。全正、正弦、正切、餘弦指的是對應象限三角函式為正值的名稱。口訣中未提及的都是負值。
“ASTC”反Z。意即為“all(全部)”、“sin”、“tan”、“cos”按照將字母Z反過來寫所占的象限對應的三角函式為正值。
3三角函式順口溜
三角函式是函式,象限符號坐標註。函式圖像單位圓,周期奇偶增減現。
同角關係很重要,化簡證明都需要。正六邊形頂點處,從上到下弦切割;
中心記上數字一,連結頂點三角形。向下三角平方和,倒數關係是對角,
頂點任意一函式,等於後面兩根除。誘導公式就是好,負化正後大化小,
變成銳角好查表,化簡證明少不了。二的一半整數倍,奇數化余偶不變,
將其後者視銳角,符號原來函式判。兩角和的餘弦值,化為單角好求值,
餘弦積減正弦積,換角變形眾公式。和差化積須同名,互餘角度變名稱。
計算證明角先行,注意結構函式名,保持基本量不變,繁難向著簡易變。
逆反原則作指導,升冪降次和差積。條件等式的證明,方程思想指路明。
萬能公式不一般,化為有理式居先。公式順用和逆用,變形運用加巧用;
一加餘弦想餘弦,一減餘弦想正弦,冪升一次角減半,升冪降次它為范;
三角函式反函式,實質就是求角度,先求三角函式值,再判角取值範圍;
利用直角三角形,形象直觀好換名,簡單三角的方程,化為最簡求解集。
國中數學工作坊個人的研修總結範文 篇19
其實角的大小與邊的長短沒有關係,角的大小決定於角的兩條邊張開的程度。
角的靜態定義
具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
角的動態定義
一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號
角的符號:∠
角的種類
在動態定義中,取決於旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大於0°,小於90°的角叫做銳角。
直角:等於90°的角叫做直角。
鈍角:大於90°而小於180°的角叫做鈍角。
平角:等於180°的角叫做平角。
優角:大於180°小於360°叫優角。
劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。
角周角:等於360°的角叫做周角。
負角:按照順時針方向旋轉而成的角叫做負角。
正角:逆時針旋轉的角為正角。
0角:等於零度的角。
特殊角
餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。
對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。
鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關係的兩個角,互為鄰補角。
內錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的
內側,並且在第三條直線的兩側,那么這樣的一對角叫做內錯角(alternateinteriorangle)。如:∠1和∠6,∠2和∠5
同旁內角:兩個角都在截線的同一側,且在兩條被截線之間,具有這樣位置關係的一對角互為同旁內角。如:∠1和∠5,∠2和∠6
同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側,具有這樣位置關係的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外錯角:兩條直線被第三條直線所截,構成了八個角。如果兩個角都在兩條被截線的外側,並且在截線的兩側,那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。
同旁外角:兩個角都在截線的同一側,且在兩條被截線之外,具有這樣位置關係的一對角互為同旁外角。如:∠4和∠8,∠3和∠7
終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬於集合:
A{bb=k_360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
國中數學工作坊個人的研修總結範文 篇20
通過培訓的學習,使我認識到當前課改的目的和意義,也使自己對課改有了深刻的認識,也大大提高了自己對本學科的理論素養。現將這次培訓體會總結如下:
一、業務學習
加強學習,提高思想認識,樹立新的理念。堅持每周的政治學習和業務學習,緊緊圍繞學習新課程,構建新課程,嘗試新教法的目標,不斷更新教學觀念。注重把學習新課程標準與構建新理念有機的結合起來。通過學習新的《課程標準》,認識到新課程改革既是挑戰,又是機遇。將理論聯繫到實際教學工作中,解放思想,更新觀念,豐富知識,提高能力,以全新的素質結構接受新一輪課程改革浪潮的“洗禮”。
二、新課改
通過學習新的《課程標準》,使自己逐步領會到“一切為了人的發展”的教學理念。樹立
了學生主體觀,貫徹了民主教學的思想,構建了一種民主和諧平等的新型師生關係,使尊重學生人格,尊重學生觀點,承認學生個性差異,積極創造和提供滿足不同學生學習成長條件的理念落到實處。將學生的發展作為教學活動的出發點和歸宿。重視了學生獨立性,自主性的培養與發揮,收到了良好的效果。
三、教學研究
教學工作是學校各項工作的中心,也是檢驗一個教師工作成敗的關鍵。一學期來,在堅持抓好新課程理念學習和套用的同時,我積極探索教育教學規律,充分運用學校現有的.教育教學資源,大膽改革課堂教學,加大新型教學方法使用力度,取得了明顯效果,具體表現在:
(一)發揮教師為主導的作用
1 、備課深入細緻。平時認真研究教材,多方參閱各種資料,力求深入理解教材,準確把握難重點。在制定教學目的時,非常注意學生的實際情況。教案編寫認真,並不斷歸納總結經驗教訓。
2 、注重課堂教學效果。針對初三年級學生特點,以愉快式教學為主,不搞滿堂灌,堅持學生為主體,教師為主導、教學為主線,注重講練結合。在教學中注意抓住重點,突破難點。
3 、堅持參加校內外教學研討活動,不斷汲取他人的寶貴經驗,提高自己的教學水平。經常向經驗豐富的教師請教並經常在一起討論教學問題。聽公開課多次,自己執教二節公開課,尤其本學期,自己執教的公開課,學校領導和教師們給我提出了不少寶貴的建議,使我明確了今後講課的方向和以後數學課該怎么教和怎么講。
4 、在作業批改上,認真及時,力求做到全批全改,重在訂正,及時了解學生的學習情況,以便在輔導中做到有的放矢。
四、工作中存在的問題
1 、教材挖掘不深入。
2 、教法不靈活,不能吸引學生學習,對學生的引導、啟發不足。
3 、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導。
4 、差生末抓在手。由於對學生的了解不夠,對學生的學習態度、思維能力不太清楚。上課和複習時該講的都講了,學生掌握的情況怎樣,教師心中無數。導致了教學中的盲目性。 5 、教學反思不夠。
五、今後努力的方向
1 、加強學習,學習新課標下新的教學思想。
2 、學習新課標,挖掘教材,進一步把握知識點和考點。
3 、多聽課,學習同科目教師先進的教學方法的教學理念。
4 、加強轉差培優力度。
5 、加強教學反思,加大教學投入。
國中數學工作坊個人的研修總結範文 篇21
1、通過猜想,驗證,計算得到的定理:
(1)全等三角形的判定定理:
(2)與等腰三角形的相關結論:
①等腰三角形兩底角相等(等邊對等角)
②等腰三角形頂角的平分線,底邊上的中線,底邊上的高互相重合(三線合一)
③有兩個角相等的三角形是等腰三角形(等角對等邊)
(3)與等邊三角形相關的結論:
①有一個角是60°得等腰三角形是等邊三角形
②三個角都相等的三角形是等邊三角形
③三條邊都相等的三角形是等邊三角形
(4)與直角三角形相關的結論:
①勾股定理:在直角三角形中,兩直角邊的平方和等於斜邊的平方
②勾股定理逆定理:在一個三角形中兩直角邊的平方和等於斜邊的平方,那么這個三角形一定是直角三角形
③HL定理:斜邊和一條直角邊對應相等的兩個三角形全等
④在三角形中30°角所對的直角邊等於斜邊的一半
2、兩條特殊線
(1)線段的垂直平分線
①線段的垂直平分線上的點到線段兩邊的距離相等互為逆定理{
②到一條線段兩個端點距離相等的點在這條線段的垂直平分線上
③三角形的三條垂直平分線交於一點,並且這一點到這三個頂點的距離相等
(2)角平分線
①角平分線上的點到這個角的兩邊距離相等互為逆定理{
②在一個角的內部,並且到這個角的兩邊距離相等的的點,在這個角的角平分線上
3、命題的逆命題及真假
①在兩個命題中,如果一個命題的條件與結論是另一個命題的結論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題
②如果一個定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理
③反正法:從否定命題的結論入手,並把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設不成立,所以肯定了命題的結論,使命題獲得了證明
第二章一元二次方程
1、一元二次方程:只含有一個未知數X的整式方程,並且可以化成aX?+bX+C=0(a≠0)形式稱它為一元二次方程
aX?+bX+C=0(a≠0)→一般形式
aX?叫二次項bX叫一次項C叫常數項a叫二次項係數b叫一次項係數
2、一元二次方程解法:
(1)配方法:(X±a)?=b(b≥0)註:二次項係數必須化為1
(2)公式法:aX?+bX+C=0(a≠0)確定a,b,c的值,計算b?-4ac≥0
若b?-4ac>0則有兩個不相等的實根,若b?-4ac=0則有兩個相等的實根,若b?-4ac<0則無解
若b?-4ac≥0則用公式X=-b±√b?-4ac/2a註:必須化為一般形式
(3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a?-b?=0→(a+b)(a-b)=0
②運用公式法:{
完全平方公式:a?±2ab+b?=0→(a±b)?=0
③十字相乘法
例題:X?-2X-3=0
1/111
×}X?的係數為1則可以寫成{常數項係數為3則可寫成{
1/-31-3
--------
-3+1=-2交叉相乘在相加求值,值必須等於一次項係數
(X+1)(X-3)=o
國中數學工作坊個人的研修總結範文 篇22
誘導公式的本質
所謂三角函式誘導公式,就是將角n(/2)的三角函式轉化為角的三角函式。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函式的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函式值與的三角函式值之間的關係:
sin=-sin
cos=-cos
tan=tan
cot=cot
公式三: 任意角與 -的三角函式值之間的關係:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函式值之間的關係:
sin=sin
cos=-cos
tan=-tan
cot=-cot
國中數學工作坊個人的研修總結範文 篇23
圓的知識:平面上一條線段,繞它的一端旋轉360°,留下的軌跡叫圓。
圓心:
(1)如定義(1)中,該定點為圓心
(2)如定義(2)中,繞的那一端的端點為圓心。
(3)圓任意兩條對稱軸的交點為圓心。
(4) 垂直於圓內任意一條弦且兩個端點在圓上的線段的二分點為圓心。
註:圓心一般用字母O表示
直徑:通過圓心,並且兩端都在圓上的線段叫做圓的直徑。直徑一般用字母d表示。
半徑:連線圓心和圓上任意一點的線段,叫做圓的半徑。半徑一般用字母r表示。
圓的直徑和半徑都有無數條。圓是軸對稱圖形,每條直徑所在的直線是圓的對稱軸。在同圓或等圓中:直徑是半徑的2倍,半徑是直徑的二分之一.d=2r或r=d/2。
圓的半徑或直徑決定圓的大小,圓心決定圓的位置。
圓的周長:圍成圓的曲線的長度叫做圓的周長,用字母C表示。
圓的周長與直徑的比值叫做圓周率。
圓的周長除以直徑的商是一個固定的數,把它叫做圓周率,它是一個無限不循環小數(無理數),用字母π表示。計算時,通常取它的近似值,π≈3.14。
直徑所對的圓周角是直角。90°的圓周角所對的弦是直徑。
圓的面積公式:圓所占平面的大小叫做圓的面積。πr,用字母S表示。
一條弧所對的圓周角是圓心角的二分之一。
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距也相等。
在同圓或等圓中,如果兩條弧相等,那么他們所對的圓心角相等,所對的弦相等,所對的弦心距也相等。
國中數學工作坊個人的研修總結範文 篇24
1、正數和負數的有關概念
(1)正數:比0大的數叫做正數;
負數:比0小的數叫做負數;
0既不是正數,也不是負數。
(2)正數和負數表示相反意義的量。
2、有理數的概念及分類
3、有關數軸
(1)數軸的三要素:原點、正方向、單位長度。數軸是一條直線。
(2)所有有理數都可以用數軸上的點來表示,但數軸上的點不一定都是有理數。
(3)數軸上,右邊的數總比左邊的數大;表示正數的點在原點的右側,表示負數的點在原點的左側。
(2)相反數:符號不同、絕對值相等的兩個數互為相反數。
若a、b互為相反數,則a+b=0;
相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。
(3)絕對值最小的數是0;絕對值是本身的數是非負數。
4、任何數的絕對值是非負數。
最小的正整數是1,最大的負整數是-1。
5、利用絕對值比較大小
兩個正數比較:絕對值大的那個數大;
兩個負數比較:先算出它們的絕對值,絕對值大的反而小。
6、有理數加法
(1)符號相同的兩數相加:和的符號與兩個加數的符號一致,和的絕對值等於兩個加數絕對值之和.
(2)符號相反的兩數相加:當兩個加數絕對值不等時,和的符號與絕對值較大的加數的符號相同,和的絕對值等於加數中較大的絕對值減去較小的絕對值;當兩個加數絕對值相等時,兩個加數互為相反數,和為零.
(3)一個數同零相加,仍得這個數.
加法的交換律:a+b=b+a
加法的結合律:(a+b)+c=a+(b+c)
7、有理數減法:減去一個數,等於加上這個數的相反數。
8、在把有理數加減混合運算統一為最簡的形式,負數前面的加號可以省略不寫.
例如:14+12+(-25)+(-17)可以寫成省略括弧的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”
9、有理數的乘法
兩個數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。
第一步:確定積的符號第二步:絕對值相乘
10、乘積的符號的確定
幾個有理數相乘,因數都不為0時,積的符號由負因數的個數確定:當負因數有奇數個時,積為負;
當負因數有偶數個時,積為正。幾個有理數相乘,有一個因數為零,積就為零。
11、倒數:乘積為1的兩個數互為倒數,0沒有倒數。
正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個數符號一定相同)
倒數是本身的只有1和-1。
國中數學工作坊個人的研修總結範文 篇25
三角形的知識點
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三角形的分類
3、三角形的三邊關係:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
4、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5、中線:在三角形中,連線一個頂點和它的對邊中點的線段叫做三角形的中線。
6、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7、高線、中線、角平分線的意義和做法
8、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
9、三角形內角和定理:三角形三個內角的和等於180°
推論1直角三角形的兩個銳角互余
推論2三角形的一個外角等於和它不相鄰的兩個內角和
推論3三角形的一個外角大於任何一個和它不相鄰的內角;三角形的內角和是外角和的一半
10、三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11、三角形外角的性質
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等於與它不相鄰的兩個內角和;
(3)三角形的一個外角大於與它不相鄰的任一內角;
(4)三角形的外角和是360°。
四邊形(含多邊形)知識點、概念總結
一、平行四邊形的定義、性質及判定
1、兩組對邊平行的四邊形是平行四邊形。
2、性質:
(1)平行四邊形的對邊相等且平行
(2)平行四邊形的對角相等,鄰角互補
(3)平行四邊形的對角線互相平分
3、判定:
(1)兩組對邊分別平行的四邊形是平行四邊形
(2)兩組對邊分別相等的四邊形是平行四邊形
(3)一組對邊平行且相等的四邊形是平行四邊形
(4)兩組對角分別相等的四邊形是平行四邊形
(5)對角線互相平分的四邊形是平行四邊形
4、對稱性:平行四邊形是中心對稱圖形
二、矩形的定義、性質及判定
1、定義:有一個角是直角的平行四邊形叫做矩形
2、性質:矩形的四個角都是直角,矩形的對角線相等
3、判定:
(1)有一個角是直角的平行四邊形叫做矩形
(2)有三個角是直角的四邊形是矩形
(3)兩條對角線相等的平行四邊形是矩形
4、對稱性:矩形是軸對稱圖形也是中心對稱圖形。
三、菱形的定義、性質及判定
1、定義:有一組鄰邊相等的平行四邊形叫做菱形
(1)菱形的四條邊都相等
(2)菱形的.對角線互相垂直,並且每一條對角線平分一組對角
(3)菱形被兩條對角線分成四個全等的直角三角形
(4)菱形的面積等於兩條對角線長的積的一半
2、s菱=爭6(n、6分別為對角線長)
3、判定:
(1)有一組鄰邊相等的平行四邊形叫做菱形
(2)四條邊都相等的四邊形是菱形
(3)對角線互相垂直的平行四邊形是菱形
4、對稱性:菱形是軸對稱圖形也是中心對稱圖形
四、正方形定義、性質及判定
1、定義:有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形
2、性質:
(1)正方形四個角都是直角,四條邊都相等
(2)正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
(3)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形
(4)正方形的對角線與邊的夾角是45°
(5)正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形
3、判定:
(1)先判定一個四邊形是矩形,再判定出有一組鄰邊相等
(2)先判定一個四邊形是菱形,再判定出有一個角是直角
4、對稱性:正方形是軸對稱圖形也是中心對稱圖形
五、梯形的定義、等腰梯形的性質及判定
1、定義:一組對邊平行,另一組對邊不平行的四邊形是梯形。兩腰相等的梯形是等腰梯形。一腰垂直於底的梯形是直角梯形
2、等腰梯形的性質:等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等
3、等腰梯形的判定:兩腰相等的梯形是等腰梯形;同一底上的兩個角相等的梯形是等腰梯形;兩條對角線相等的梯形是等腰梯形
4、對稱性:等腰梯形是軸對稱圖形
六、三角形的中位線平行於三角形的第三邊並等於第三邊的一半;梯形的中位線平行於梯形的兩底並等於兩底和的一半。
七、線段的重心是線段的中點;平行四邊形的重心是兩對角線的交點;三角形的重心是三條中線的交點。
八、依次連線任意一個四邊形各邊中點所得的四邊形叫中點四邊形。
九、多邊形
1、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
2、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
3、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
4、多邊形的對角線:連線多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
5、多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。
6、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
8、公式與性質
多邊形內角和公式:n邊形的內角和等於(n-2)·180°
9、多邊形外角和定理:
(1)n邊形外角和等於n·180°-(n-2)·180°=360°
(2)邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等於n·180°
10、多邊形對角線的條數:
(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形
(2)n邊形共有n(n-3)/2條對角線
圓知識點、概念總結
1、不在同一直線上的三點確定一個圓。
2、垂徑定理:垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
推論1①(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3、圓是以圓心為對稱中心的中心對稱圖形
4、圓是定點的距離等於定長的點的集合
5、圓的內部可以看作是圓心的距離小於半徑的點的集合
6、圓的外部可以看作是圓心的距離大於半徑的點的集合
7、同圓或等圓的半徑相等
8、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等。
11、定理:圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
12、①直線L和⊙O相交d
②直線L和⊙O相切d=r
③直線L和⊙O相離d>r
13、切線的判定定理:經過半徑的外端並且垂直於這條半徑的直線是圓的切線
14、切線的性質定理:圓的切線垂直於經過切點的半徑
15、推論1經過圓心且垂直於切線的直線必經過切點
16、推論2經過切點且垂直於切線的直線必經過圓心
17、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
18、圓的外切四邊形的兩組對邊的和相等,外角等於內對角
19、如果兩個圓相切,那么切點一定在連心線上
20、①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-rr)
④兩圓內切d=R-r(R>r)⑤兩圓內含dr)
21、定理:相交兩圓的連心線垂直平分兩圓的公共弦
22、定理:把圓分成n(n≥3):
(1)依次連結各分點所得的多邊形是這個圓的內接正n邊形
(2)經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24、正n邊形的每個內角都等於(n-2)×180°/n
25、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26、正n邊形的面積Sn=pnrn/2p表示正n邊形的周長
27、正三角形面積√3a/4a表示邊長
28、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29、弧長計算公式:L=n兀R/180
30、扇形面積公式:S扇形=n兀R^2/360=LR/2
31、內公切線長=d-(R-r)外公切線長=d-(R+r)
32、定理:一條弧所對的圓周角等於它所對的圓心角的一半
33、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
35、弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r
國中數學工作坊個人的研修總結範文 篇26
正稜錐是稜錐的一種,具備著所有稜錐的性質和定理。
正稜錐
如果一個稜錐的底面是正多邊形,且頂點在底面的射影是底面的中心,這樣的稜錐叫正稜錐。
正稜錐的性質
(1)正稜錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正稜錐的斜高);
(2)正稜錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正稜錐的高、側棱、側棱在底面內的射影也組成一個直角三角形;
(3)正稜錐的側棱與底面所成的角都相等;正稜錐的側面與底面所成的二面角都相等;
(4)正稜錐的側面積:如果正稜錐的底面周長為c,斜高為h’,那么它的側面積是 s=1/2ch‘。
特別地,側棱與底面邊長相等的正三稜錐叫做正四面體。
國中數學工作坊個人的研修總結範文 篇27
教學之路仍在腳下延伸,作為教學之路上的蹉跎前行者,不求夏花之燦爛,但求秋葉之靜美。在以後的工作中,我將保持自己的勤奮和執著,把自己的工作做的更好。 在中學任職以來,我本著以重實際、勤鑽研、求實效的工作原則,以培養學生創新精神和實踐能力為重點,以新課程改革為契機,最佳化教學常規,深化課堂教學改革,大力推行素質教育,求真、務實、創新、高效地工作著,現將教學工作總結如下:
一、一片冰心在玉壺——樹立新的教育理念,堅定教書育人信念。
教育事業乃民族大業,振興教育人人有責,素質教育和新課程改革對中學教育提出新的要求,學生成為教育的中心,愛成為教師職業道德的核心,也成為教書育人的根本途徑,因此,我確立了“一切為了人的發展”的教育理念,明確了“用真摯的愛教育每一個學生”,用適合每個學生的方法教育學生的教學工作目標。
二、衣帶漸寬終不悔——我的教學工作。
任職期間,我在堅持抓好新課程理念套用的同時,大膽改革課堂教學,探索新的教學方法,具體表現在:
1、進一步最佳化教學常規,充分發揮老師的主導作用。圍繞著“什麼是有效的歷史教學?怎樣才能提高課堂教學的有效性?”這一問題,我作了認真思考和分析,明確了教學思路和重點,一是在備課上下功夫,為此,我繼續鑽研和解讀新課程標準、考綱和新教材,繼續分析、了解學情,關注學生的知識基礎、思想動態,備課做到知識點準確全面,知識體系簡明科學,授課方式藝術多變,感染力強,使課堂教學集知識性、藝術性、思想性於一體,從而激發了學生的學習興趣,有效調動了學生的學習積極性,大大提高了課堂效率。二是在鞏固訓練上設底線。即精心設計課後作業和單元檢測,定時定量訓練,全批全改,然後通過講評使學生不僅查缺補漏,明確了知識,而且掌握了高質量完成試卷的技巧和方法,提高了解決問題的能力。
2、調動學生積極性,突出學生的主體地位。如何突出學生的主體地位?我從調動學生的學習積極性入手,因為積極性提高了,學生才會真正投入到學習中來,做到自主學習與合作探究,才會主動發現問題和解決問題。為此,在備課時,考慮學生的知識儲備和興趣點,設計出激發學生興趣和激活學生思維的問題;課堂上與學生建立平等、民主的學伴關係,給自己的教學風格定位為親切、風趣、激情、廣博,這就是採取多鼓勵、少批評的評
國中數學工作坊個人的研修總結範文 篇28
一直以來,在試卷講評課的上法上總存在著一些困惑。例如,試卷上的錯題因人而異,如何上能照顧到全體,將每位學生出錯的問題解決?通過這次培訓我認識到,我們沒有足夠的時間面面俱到的講解,在一定的時間內想面面俱到,那么每個題目也只是蜻蜓點水,一節課下來真正沉澱到頭腦中的知識寥寥無幾。今後的試卷講評課我打算按照下面的思路來上,請劉老師多批評指正。
一、考試之後教師要做好測試分析,並充分備課。
通過測試分析,首先,弄清學生集中出錯的題目,找出學生的共性問題,並針對這些共性的問題展開備課。備課要備學生出錯的原因,試卷講評時如何對這些問題講解與完善。其次,弄清每位學生的得分,對於成績波動大的同學通過談話等方式及時了解情況並幫助解決困難。
二、下發試卷,學生自己糾錯。
給學生自己糾錯的機會,將能自己改正或通過小組合作改正的題目在試卷講評前改過來。
三、訂正答案,進一步改錯。
給學生標準答案,在答案的引導下,學生進一步尋找解題思路,完善解題步驟,查找丟分原因,加深對知識的理解。
四、重點題、錯題重點講解。
經過兩輪的改錯之後學生存留下的問題已經很少,教師試卷講評時就要解決這些遺留問題、重點題、錯題。對於這些問題可以通過分類講解、同類知識串講、變式訓練、一題多解、多個知識點上串下聯等方式講透。經過尋根問底,可使學生對不明確的知識點加深理解,再認識,然後鞏固練習。這個過程下來同時可複習到多個知識點,建立知識體系,拓展學生思維。
五、方法總結。
圍繞一個知識點講解之後,要讓學生總結解題思想、方法,掌握答題技巧。需要時可讓學生簡記。
六、解答疑問。
通過學生提出疑問,大家共同解答,完善學生對知識的認識。近幾年教基礎年級,所以感覺上章節複習課較多,專題複習課很少。我們學校的章節複習課與劉老師的“出示問題,引出知識”是一致的。通過問題的解決實現知識點的複習。
國中數學工作坊個人的研修總結範文 篇29
通過幾個月的網上研修學習,我接觸到了專家學者們的教育新理念,學習了不少優秀教師的課堂教學設計,同時還與班內的一線教師們進行了充分的交流,收穫頗多。可以說這次網上研修內容很深刻,研修的效果將影響深遠。作為一個農村中學教師的我深深感到學習的重要性,在今後的教學中,我將立足於自己的本職工作,加強理論學習,轉變教育教學觀念,積極實踐新課改,鋪設好自己的專業化發展之路。我個人感覺在這次學習中收穫很多,盤點收穫主要有以下幾個方面:
首先,教師要尊重、關心、信任學生。
因為良好的師生關係是學好數學的前提。尊重、關心、信任學生,和學生友好相處是營造和諧課堂氛圍的基礎,在教學活動中,教師與學生在心理上形成一種穩定,持續的關係,不僅是在知識、能力上的交往,也是情感心靈上的溝通、交流,首要的是教師要對學生關心、信任、尊重。
其次,教師要立足課堂,在實踐中提升自身價值。
課堂是教師體現自身價值的主陣地,在今後的教學中,我將努力將所學的新課程理念套用到課堂教學實踐中,立足“用活新老教材,實踐新理念。”力求讓我的數學教學更具特色,形成獨具風格的教學模式,更好地體現素質教育的要求,提高數學教學質量。
第三、在教學中不失時機地培養學生的自學能力。
引導學生克服心理障礙,樹立自信心,在學生取得點滴成績時予以表揚,讓他們覺得自己能行。有了自信心,他們對難題就有了挑戰性,這樣他們才會積極主動進行學習。為了培養學生的自學能力,需要幫助學生髮展自學技能。課堂上我有意識對學生的進行合作訓練。在小組合作過程中,教師要扮演小組角色,承擔小組任務,同時有目的地在小組活動中示範合作技巧和協調教學活動,確保小組專注於學習目標,使小組成員在教師言傳身教帶領下逐步學會合作的技能。
另外,我感觸最深的一點是作為傳道授業的老師,只有不斷的更新自己的知識,不斷提高自身素質,不斷的完善自己,才能教好學生。如果自身散漫,怎能要求學生認真?要提高我們的自身素質,就要求我們自身不斷網上研修,不斷開闢新教法。摒棄舊的教學方法,把先進的教學模式引入課堂,自覺地走進新課程。
作為一個具有30多年教年的老教師,我見慣了“老師教,學生學;老師講,學生聽”這種固定的教學模式,這種教學模式限制了學生的發展,壓抑了學生學習的熱情,不能煥發學生的潛能。通過網上研修學習,“合作學習”、“主動探究”、“師生互動”、“生生互動”等新型的教學模式為課堂注入了生機與活力。通過網上研修我認識到:這些新的教學模式給學生更加自由的學習空間,體現了以學生為本的理念,老師要自覺地把新的教學模式引入課堂,改變課堂的面貌,使課堂氣氛活躍;教學民主,學生的學習熱情才會高漲;師生關係才能融洽。才能充分體現素質教育的根本目標。這也是新課改向我們提出的課題。
通過這次網上研修,我懂得了網路的.重要性;讓我懂得了如何運用網路資源。在教學設計過程中,我依據教育教學原理、科學的方法,研究、探索教和學系統中各要素之間的本質聯繫,然後對教學內容、教學媒體、教學策略和教學評價等要素進行具體計畫。另外,我在教學中,鼓勵學生收集身邊有關的數學問題,在課堂上開闢一片互相交流、互相討論關注問題的天地。讓學生學得更輕鬆也讓學生能夠更多的參與到課堂之中得到更多的操作技巧。同時,課堂上我重視德育的滲透工作,讓學生在學習數學知識的同時,陶冶他們愛自然、愛科學、愛祖國、愛勞動的思想情操,樹立關心生態環境等的思想,促進學生全面發展和個性培養。通過努力,我根據數學學科的特點,迎合學生好奇心強的特性,大膽地進行課堂改革。把課堂與生活拉近,以形式多樣的探究活動為主,讓數學課的範圍擴大到生活的方方面面。通過這樣的資料互動形式把課堂教學與社會生活聯繫起來,體現數學來源於社會又套用於社會的一面。以此實現素質教育的根本目標。
國中數學工作坊個人的研修總結範文 篇30
1.不在同一直線上的三點確定一個圓
2.垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
推論1 ①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等於定長的點的集合
5.圓的內部可以看作是圓心的距離小於半徑的點的集合
6.圓的外部可以看作是圓心的距離大於半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等。
11.定理圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
12. ①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 d>r
13.切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線
14.切線的性質定理圓的切線垂直於經過切點的半徑
15.推論1經過圓心且垂直於切線的直線必經過切點
16.推論2經過切點且垂直於切線的直線必經過圓心
17.切線長定理從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等於內對角
19.如果兩個圓相切,那么切點一定在連心線上
20. ①兩圓外離 d>R+r
②兩圓外切 d=R+r
③兩圓相交 R-rr)
④兩圓內切 d=R-r(R>r) ⑤兩圓內含dr)
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的.內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
23.定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
24.正n邊形的每個內角都等於(n-2)×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為 360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
29.弧長計算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內公切線長= d-(R-r) 外公切線長= d-(R+r)
32.定理 一條弧所對的圓周角等於它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所 對的弦是直徑
35.弧長公式 l=a*r a是圓心角的弧度數r >0 扇形面積公式 s=1/2*l*r
國中數學工作坊個人的研修總結範文 篇31
1、多項式
有有限個單項式的代數和組成的式子,叫做多項式。
多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。
單項式可以看作是多項式的特例
把同類單項式的係數相加或相減,而單項式中的字母的乘方指數不變。
在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合併同類項後,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。
2、多項式的值
任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連線起來的式子。
3、多項式的恆等
對於兩個一元多項式fx、gx來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恆等的記為fx==gx,或簡記為fx=gx。
性質1如果fx==gx,那么,對於任一個數值a,都有fa=ga。
性質2如果fx==gx,那么,這兩個多項式的個同類項係數就一定對應相等。
4、一元多項式的根
一般地,能夠使多項式fx的值等於0的未知數x的值,叫做多項式fx的根。
多項式的加、減法,乘法
1、多項式的加、減法
2、多項式的乘法
單項式相乘,用它們係數作為積的係數,對於相同的字母因式,則連同它的指數作為積的一個因式。
3、多項式的乘法
多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個數的和與這兩個數的差的積等於這兩個數的平方差。
國中數學工作坊個人的研修總結範文 篇32
平方差公式:a^2;-b^2;=(a+b)(a-b);
完全平方公式:a^2;±2ab+b^2;=(a±b)^2;;
注意:能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍。
立方和公式:a^3;+b^3;=(a+b)(a^2;-ab+b^2;);
立方差公式:a^3;-b^3;=(a-b)(a^2;+ab+b^2;);
完全立方公式:a^3;±3a^2;b+3ab^2;±b^3;=(a±b)^3;.
其他公式:(1)a^3;+b^3;+c^3;+3abc=(a+b+c)(a^2;+b^2;+c^2;-ab-bc-ca)
例如:a^2; +4ab+4b^2; =(a+2b)^
國中數學工作坊個人的研修總結範文 篇33
通過研修學習,我接觸到了專家學者們的教育新理念,同時還與班內的一線教師們進行了充分的交流,可以說這次網上研修內容很深刻,研修的效果影響深遠。下面我談談一些體會。
首先,教師要尊重、關心、信任學生。因為良好的師生關係是學好數學的前提。尊重、關心、信任學生,和學生友好相處是營造和諧課堂氛圍的基礎,在教學活動中,教師與學生在心理上形成一種穩定,持續的關係,不僅是在知識、能力上的交往,也是情感心靈上的溝通、交流。 其次,教師要立足課堂,將所學的新課程理念套用到課堂教學實踐中,力求讓我的數學教學更具特色,形成獨具風格的教學模式,更好地體現素質教育的'要求,提高數學教學質量。
第三、培養學生的學習興趣,樹立其自信心,在學生取得點滴成績時予以表揚,讓他們覺得自己能行。有了自信心,他們對難題就有了挑戰性,這樣他們才會積極主動進行學習。同時培養學生的自學能力,幫助學生髮展自學技能。課堂上我有意識對學生的進行合作訓練。在小組合作過程中,教師要承擔小組任務,同時有目的地在小組活動中示範,協調教學活動,確保小組專注於學習目標,使小組成員在教師帶領下逐步學會合作的技能。
第四運用網路資源,豐富自己的教學內容。在教學設計過程中,
對教學內容、教學媒體、教學策略和教學評價等要素進行具體計畫,使自己的課堂多姿多彩。
第五課堂上重視德育工作,讓學生在學習數學知識的同時,陶冶他們愛自然、愛科學、愛祖國、愛勞動的思想情操,樹立關心生態環境等的思想,促進學生全面發展和個性培養。
總之,今後,自己一定更新觀念,不斷嘗試新的教學方法,努力提高自己的業務水平和教學能力。精心設計每堂課,做一名學生最喜歡的老師。
國中數學工作坊個人的研修總結範文 篇34
一.行程問題
行程問題要點解析
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關係。基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間關鍵問題:確定行程過程中的位置相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)追擊問題:追擊時間=路程差÷速度差(寫出其他公式)流水問題:順水行程=(船速+水速)×順水時間逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速逆水速度=船速-水速靜水速度=(順水速度+逆水速度)÷2水速=(順水速度-逆水速度)÷2基本題型:已知路程(相遇問題、追擊問題)、時間(相遇時間、追擊時間)、速度(速度和、速度差)中任意兩個量,求出第三個量。
二、利潤問題
每件商品的利潤=售價-進貨價毛利潤=銷售額-費用
利潤率=(售價--進價)/進價*100%
三、計算利息的基本公式
儲蓄存款利息計算的基本公式為:利息=本金×存期×利率利率的換算:
年利率、月利率、日利率三者的換算關係是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意與存期相一致。利潤與折扣問題的公式利潤=售出價-成本利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%漲跌金額=本金×漲跌百分比折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅後利息=本金×利率×時間×(1-20%)
四、濃度問題
溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量五、增長率問題
若平均增長(下降)數百分率為x,增長(或下降)前的是a,增長(或下降)n次後的量是b,則它們的數量關係可表示為:a(1x)b或a(1x)b
國中數學工作坊個人的研修總結範文 篇35
1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的餘角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連線的所有線段中,垂線段最短7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大於第三邊16推論三角形兩邊的差小於第三邊
17三角形內角和定理三角形三個內角的和等於180°18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等於和它不相鄰的兩個內角的和20推論3三角形的一個外角大於任何一個和它不相鄰的內角21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,並且每一個角都等於60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等於60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等於30°那么它所對的直角邊等於斜邊的一半38直角三角形斜邊上的中線等於斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關於某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關於某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關係a2+b2=c2,那么這個三角形是直角三角形
48定理四邊形的內角和等於360°49四邊形的外角和等於360°
50多邊形內角和定理n邊形的內角的和等於(n-2)×180°51推論任意多邊的外角和等於360°
52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質定理1正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1關於中心對稱的兩個圖形是全等的
72定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那么這兩個圖形關於這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半82梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性質如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行於三角形的第三邊
89平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比97性質定理2相似三角形周長的比等於相似比98性質定理3相似三角形面積的比等於相似比的平方
99任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合103圓的外部可以看作是圓心的距離大於半徑的點的集合104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的.兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等
116定理一條弧所對的圓周角等於它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形120定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線123切線的性質定理圓的切線垂直於經過切點的半徑124推論1經過圓心且垂直於切線的直線必經過切點125推論2經過切點且垂直於切線的直線必經過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等於它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
(n2)180139正n邊形的每個內角都等於
n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
pnrn141正n邊形的面積Sn=p表示正n邊形的周長
2142正三角形面積
32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,
k(n2)180360化為(n-2)(k-2)=4因此
n144弧長計算公式:L=
nR180nR2LR145扇形面積公式:S扇形==
3602146內公切線長=d-(R-r)外公切線長=d-(R+r)
公式分類及公式表達式
乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根與係數的關係:X1+X2=-b/aX1*X2=c/a註:韋達定理判別式
b2-4ac=0註:方程有兩個相等的實根b2-4ac>0註:方程有兩個不等的實根b2-4ac