國中數學研修工作總結集錦 篇1
通過培訓的學習,使我認識到當前課改的目的和意義,也使自己對課改有了深刻的認識,也大大提高了自己對本學科的理論素養。現將這次培訓體會總結如下:
一、業務學習
加強學習,提高思想認識,樹立新的理念。堅持每周的政治學習和業務學習,緊緊圍繞學習新課程,構建新課程,嘗試新教法的目標,不斷更新教學觀念。注重把學習新課程標準與構建新理念有機的結合起來。通過學習新的《課程標準》,認識到新課程改革既是挑戰,又是機遇。將理論聯繫到實際教學工作中,解放思想,更新觀念,豐富知識,提高能力,以全新的素質結構接受新一輪課程改革浪潮的“洗禮”。
二、新課改
通過學習新的《課程標準》,使自己逐步領會到“一切為了人的發展”的教學理念。樹立
了學生主體觀,貫徹了民主教學的思想,構建了一種民主和諧平等的新型師生關係,使尊重學生人格,尊重學生觀點,承認學生個性差異,積極創造和提供滿足不同學生學習成長條件的理念落到實處。將學生的發展作為教學活動的出發點和歸宿。重視了學生獨立性,自主性的培養與發揮,收到了良好的效果。
三、教學研究
教學工作是學校各項工作的中心,也是檢驗一個教師工作成敗的關鍵。一學期來,在堅持抓好新課程理念學習和套用的同時,我積極探索教育教學規律,充分運用學校現有的.教育教學資源,大膽改革課堂教學,加大新型教學方法使用力度,取得了明顯效果,具體表現在:
(一)發揮教師為主導的作用
1 、備課深入細緻。平時認真研究教材,多方參閱各種資料,力求深入理解教材,準確把握難重點。在制定教學目的時,非常注意學生的實際情況。教案編寫認真,並不斷歸納總結經驗教訓。
2 、注重課堂教學效果。針對初三年級學生特點,以愉快式教學為主,不搞滿堂灌,堅持學生為主體,教師為主導、教學為主線,注重講練結合。在教學中注意抓住重點,突破難點。
3 、堅持參加校內外教學研討活動,不斷汲取他人的寶貴經驗,提高自己的教學水平。經常向經驗豐富的教師請教並經常在一起討論教學問題。聽公開課多次,自己執教二節公開課,尤其本學期,自己執教的公開課,學校領導和教師們給我提出了不少寶貴的建議,使我明確了今後講課的方向和以後數學課該怎么教和怎么講。
4 、在作業批改上,認真及時,力求做到全批全改,重在訂正,及時了解學生的學習情況,以便在輔導中做到有的放矢。
四、工作中存在的問題
1 、教材挖掘不深入。
2 、教法不靈活,不能吸引學生學習,對學生的引導、啟發不足。
3 、新課標下新的教學思想學習不深入。對學生的自主學習,合作學習,缺乏理論指導。
4 、差生末抓在手。由於對學生的了解不夠,對學生的學習態度、思維能力不太清楚。上課和複習時該講的都講了,學生掌握的情況怎樣,教師心中無數。導致了教學中的盲目性。 5 、教學反思不夠。
五、今後努力的方向
1 、加強學習,學習新課標下新的教學思想。
2 、學習新課標,挖掘教材,進一步把握知識點和考點。
3 、多聽課,學習同科目教師先進的教學方法的教學理念。
4 、加強轉差培優力度。
5 、加強教學反思,加大教學投入。
國中數學研修工作總結集錦 篇2
通過這段時間的培訓學習,使我深刻認識到學習的必要性和重要性。使我認識到當前課改的目的和意義,也使自己對課改有了深刻的認識,也大大提高了自己對本學科的理論素養。現將這次培訓體會總結如下:
一、通過研修使我的教學觀念得到進一步的更新
有機會來參加這次培訓,有機會來充實和完善自己,我自豪,我榮幸。但更多感到的是責任、是壓力!回首這次的培訓,真是內容豐富,形式多樣,效果明顯。培訓中有各級教育專家的專題報告,有一線教師的專題講座,有學員圍繞專題進行的各種行動學習,還有我回校後的教育教學實踐。這次的培訓學習,對我既有觀念上的洗禮,也有理論上的提高,既有知識上的積澱,也有教學技藝的增長。這是收穫豐厚的一次培訓,也是促進我教學上不斷成長的一次培訓。
二、拓寬了視野,開闊了眼界
觀看學習視頻使我領略到了教育專家和名師的風采,專家和名師的課程深入淺出,鮮活生動的教學案例讓我們感到就在自己身邊。案例背後的思考與解讀,更是讓我們深受啟發、大開眼界,引起深層次的反思。
遠程研修平台上的同行們都在積極努力地學習,看著他們發表文章和評論,我得到了很多的啟發和實用性的建議和意見,我為自身的淺薄與不足感到羞愧,認識到加強學習的重要性與緊迫性。遠程研修的過程中,我一直抱著向其他老師學習的態度參與,學習他們的經驗,結合自己的教學來思考,反思自己的教學。
三、提高能力,完善自我
網上的專業學科學習和聽取同行們優秀的示範課使我從根本上改變了我原先的傳統教學模式,更給我帶來了新的教學觀念、教學方式和教學理念。這使我對以往在教學中的困惑豁然開朗,教學思路靈活了,對自己的課堂教學也有了新的目標和方向:首先在課堂的'設計上一定要力求新穎,講求實效性,不能為了圖熱鬧,活動多多而沒有實質內容;教師的語言要有親和力,要和學生站在同一高度,甚至蹲下身來看學生,充分尊重學生;在課堂上,教師只起一個引導的作用,不可以在焦急之中代替學生去解決問題,要尊重學生的主體地位;教師可以設定問題引導學生,但是不能全靠問題來牽引學生,讓學生跟著老師走等。在以後的教學工作中,我也會以高質量的課堂要求自己,不斷提高教學能力,完善自我。四、反思不足,努力改進
通過遠程研修,使我學到了很多東西,這對我來說是一個極大的提高。同時,我也重新審視自我,更清醒地認識到自己知識的匱乏、淺陋,也看清了過去的自己:安於現狀、自滿自足,缺乏終身學習的意識,工作中容易被俗念束縛,惰性大,缺少有價值的嘗試探索;我深深地感到自己在工作中存在著許多不足,因此,我決定在以後的工作中努力改進:
1、藉助遠程研修,多學習、多交流,使自己的知識面不斷擴大,使自己的業務水平更上一層樓,以更好的適應新課程教學和時代的挑戰。
2、教學的藝術不在於傳授本領而在於激勵、喚醒、鼓舞。新課標的指導下,教什麼、教多少、如何教等問題得到了進一步明確。教學的宗旨是要激發學生的學習興趣。
3、認真備課、上課,合理設計學案、教案,精心設計練習題,有效地進行分層教學,使所有的學生都不掉隊,讓他們成為真正的智慧型人才。
4、教學方法要靈活多樣,在教學中創設生動的知識情景,促進學生知識、能力、智力、情感意志獲得儘可能大的發展,提高學習效能。在教學中應該堅持以科學的態度和方法,努力減輕學生負擔,儘量讓學生消除畏難情緒。讓學生明白一個事實,那就是課堂上只要積極大膽的參與了各個教學活動,就是最大的成功和可喜的進步。
5、“愛孩子是教師的天職”,愛是教育的源泉,愛學生就可以給學生一個健康的思想,良好的學習心態,所以,我們都應關心愛護每一位學生,使他們在我們的呵護下茁壯成長。
6、教師每時每刻都要學習,所以,我將在今後的工作之餘加強教育理論和教學方法的學習和研究,多讀一些有價值的教育書籍,努力提高自己的整體素質。一份耕耘,一分收穫,相信在以後的工作中,我會更努力,在學習和思考並沒有停止。在今後的工作中努力改善自身,勇敢迎接更多挑戰。
國中數學研修工作總結集錦 篇3
通過幾個月的網上研修學習,我接觸到了專家學者們的教育新理念,學習了不少優秀教師的課堂教學設計,同時還與班內的一線教師們進行了充分的交流,收穫頗多。可以說這次網上研修內容很深刻,研修的效果將影響深遠。作為一個農村中學教師的我深深感到學習的重要性,在今後的教學中,我將立足於自己的本職工作,加強理論學習,轉變教育教學觀念,積極實踐新課改,鋪設好自己的專業化發展之路。我個人感覺在這次學習中收穫很多,盤點收穫主要有以下幾個方面:
首先,教師要尊重、關心、信任學生。
因為良好的師生關係是學好數學的前提。尊重、關心、信任學生,和學生友好相處是營造和諧課堂氛圍的基礎,在教學活動中,教師與學生在心理上形成一種穩定,持續的關係,不僅是在知識、能力上的交往,也是情感心靈上的溝通、交流,首要的是教師要對學生關心、信任、尊重。
其次,教師要立足課堂,在實踐中提升自身價值。
課堂是教師體現自身價值的主陣地,在今後的教學中,我將努力將所學的新課程理念套用到課堂教學實踐中,立足“用活新老教材,實踐新理念。”力求讓我的數學教學更具特色,形成獨具風格的教學模式,更好地體現素質教育的要求,提高數學教學質量。
第三、在教學中不失時機地培養學生的自學能力。
引導學生克服心理障礙,樹立自信心,在學生取得點滴成績時予以表揚,讓他們覺得自己能行。有了自信心,他們對難題就有了挑戰性,這樣他們才會積極主動進行學習。為了培養學生的自學能力,需要幫助學生髮展自學技能。課堂上我有意識對學生的進行合作訓練。在小組合作過程中,教師要扮演小組角色,承擔小組任務,同時有目的地在小組活動中示範合作技巧和協調教學活動,確保小組專注於學習目標,使小組成員在教師言傳身教帶領下逐步學會合作的技能。
另外,我感觸最深的一點是作為傳道授業的老師,只有不斷的更新自己的知識,不斷提高自身素質,不斷的完善自己,才能教好學生。如果自身散漫,怎能要求學生認真?要提高我們的自身素質,就要求我們自身不斷網上研修,不斷開闢新教法。摒棄舊的教學方法,把先進的教學模式引入課堂,自覺地走進新課程。
作為一個具有30多年教年的老教師,我見慣了“老師教,學生學;老師講,學生聽”這種固定的教學模式,這種教學模式限制了學生的發展,壓抑了學生學習的熱情,不能煥發學生的潛能。通過網上研修學習,“合作學習”、“主動探究”、“師生互動”、“生生互動”等新型的教學模式為課堂注入了生機與活力。通過網上研修我認識到:這些新的教學模式給學生更加自由的學習空間,體現了以學生為本的理念,老師要自覺地把新的教學模式引入課堂,改變課堂的面貌,使課堂氣氛活躍;教學民主,學生的學習熱情才會高漲;師生關係才能融洽。才能充分體現素質教育的根本目標。這也是新課改向我們提出的課題。
通過這次網上研修,我懂得了網路的.重要性;讓我懂得了如何運用網路資源。在教學設計過程中,我依據教育教學原理、科學的方法,研究、探索教和學系統中各要素之間的本質聯繫,然後對教學內容、教學媒體、教學策略和教學評價等要素進行具體計畫。另外,我在教學中,鼓勵學生收集身邊有關的數學問題,在課堂上開闢一片互相交流、互相討論關注問題的天地。讓學生學得更輕鬆也讓學生能夠更多的參與到課堂之中得到更多的操作技巧。同時,課堂上我重視德育的滲透工作,讓學生在學習數學知識的同時,陶冶他們愛自然、愛科學、愛祖國、愛勞動的思想情操,樹立關心生態環境等的思想,促進學生全面發展和個性培養。通過努力,我根據數學學科的特點,迎合學生好奇心強的特性,大膽地進行課堂改革。把課堂與生活拉近,以形式多樣的探究活動為主,讓數學課的範圍擴大到生活的方方面面。通過這樣的資料互動形式把課堂教學與社會生活聯繫起來,體現數學來源於社會又套用於社會的一面。以此實現素質教育的根本目標。
國中數學研修工作總結集錦 篇4
1、通過猜想,驗證,計算得到的定理:
(1)全等三角形的判定定理:
(2)與等腰三角形的相關結論:
①等腰三角形兩底角相等(等邊對等角)
②等腰三角形頂角的平分線,底邊上的中線,底邊上的高互相重合(三線合一)
③有兩個角相等的三角形是等腰三角形(等角對等邊)
(3)與等邊三角形相關的結論:
①有一個角是60°得等腰三角形是等邊三角形
②三個角都相等的三角形是等邊三角形
③三條邊都相等的三角形是等邊三角形
(4)與直角三角形相關的結論:
①勾股定理:在直角三角形中,兩直角邊的平方和等於斜邊的平方
②勾股定理逆定理:在一個三角形中兩直角邊的平方和等於斜邊的平方,那么這個三角形一定是直角三角形
③HL定理:斜邊和一條直角邊對應相等的兩個三角形全等
④在三角形中30°角所對的直角邊等於斜邊的一半
2、兩條特殊線
(1)線段的垂直平分線
①線段的垂直平分線上的點到線段兩邊的距離相等互為逆定理{
②到一條線段兩個端點距離相等的點在這條線段的垂直平分線上
③三角形的三條垂直平分線交於一點,並且這一點到這三個頂點的距離相等
(2)角平分線
①角平分線上的點到這個角的兩邊距離相等互為逆定理{
②在一個角的內部,並且到這個角的兩邊距離相等的的點,在這個角的角平分線上
3、命題的逆命題及真假
①在兩個命題中,如果一個命題的條件與結論是另一個命題的結論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題
②如果一個定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理
③反正法:從否定命題的結論入手,並把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設不成立,所以肯定了命題的結論,使命題獲得了證明
第二章一元二次方程
1、一元二次方程:只含有一個未知數X的整式方程,並且可以化成aX?+bX+C=0(a≠0)形式稱它為一元二次方程
aX?+bX+C=0(a≠0)→一般形式
aX?叫二次項bX叫一次項C叫常數項a叫二次項係數b叫一次項係數
2、一元二次方程解法:
(1)配方法:(X±a)?=b(b≥0)註:二次項係數必須化為1
(2)公式法:aX?+bX+C=0(a≠0)確定a,b,c的值,計算b?-4ac≥0
若b?-4ac>0則有兩個不相等的實根,若b?-4ac=0則有兩個相等的實根,若b?-4ac<0則無解
若b?-4ac≥0則用公式X=-b±√b?-4ac/2a註:必須化為一般形式
(3)分解因式法
①提公因式法:ma+mb=0→m(a+b)=0
平方差公式:a?-b?=0→(a+b)(a-b)=0
②運用公式法:{
完全平方公式:a?±2ab+b?=0→(a±b)?=0
③十字相乘法
例題:X?-2X-3=0
1/111
×}X?的係數為1則可以寫成{常數項係數為3則可寫成{
1/-31-3
--------
-3+1=-2交叉相乘在相加求值,值必須等於一次項係數
(X+1)(X-3)=o
國中數學研修工作總結集錦 篇5
1、弧長公式
n°的圓心角所對的弧長l的計算公式為L=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數,R是扇形的半徑,l是扇形的弧長.
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側面積,其中l是圓錐的母線長,r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經過切點的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等於弦與切線夾的弧所對的圓周角.
一、選擇題
1.(20__o珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側面積為
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點:圓柱的計算.
分析:圓柱的側面積=底面周長×高,把相應數值代入即可求解.
解答:解:圓柱的側面積=2π×3×4=24π.
故選A.
點評:本題考查了圓柱的計算,解題的關鍵是弄清圓柱的側面積的計算方法.
2.(20__o廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交於點E,且AC=2,AE=,CE=1.則弧BD的長是
A.B.C.D.
考點:垂徑定理;勾股定理;勾股定理的逆定理;弧長的計算.
分析:連線OC,先根據勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函式的定義求出∠A的度數,故可得出∠BOC的度數,求出OC的長,再根據弧長公式即可得出結論.
解答:解:連線OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
國中數學研修工作總結集錦 篇6
一、圓
1、圓的有關性質
在一個平面內,線段OA繞它固定的一個端點O旋轉一周,另一個端點A隨之旋轉所形成的圖形叫圓,固定的端點O叫圓心,線段OA叫半徑。
由圓的意義可知:
圓上各點到定點(圓心O)的距離等於定長的點都在圓上。
就是說:圓是到定點的距離等於定長的點的集合,圓的內部可以看作是到圓。心的距離小於半徑的點的集合。
圓的外部可以看作是到圓心的距離大於半徑的點的集合。連結圓上任意兩點的線段叫做弦,經過圓心的弦叫直徑。圓上任意兩點間的部分叫圓弧,簡稱弧。
圓的任意一條直徑的兩個端點分圓成兩條弧,每一條弧都叫半圓,大於半圓的弧叫優弧;小於半圓的弧叫劣弧。由弦及其所對的弧組成的圓形叫弓形。
圓心相同,半徑不相等的兩個圓叫同心圓。
能夠重合的兩個圓叫等圓。
同圓或等圓的半徑相等。
在同圓或等圓中,能夠互相重合的弧叫等弧。
二、過三點的圓
l、過三點的圓
過三點的圓的作法:利用中垂線找圓心
定理不在同一直線上的三個點確定一個圓。
經過三角形各頂點的圓叫三角形的外接圓,外接圓的圓心叫外心,這個三角形叫圓的內接三角形。
2、反證法
反證法的三個步驟:
①假設命題的結論不成立;
②從這個假設出發,經過推理論證,得出矛盾;
③由矛盾得出假設不正確,從而肯定命題的結論正確。
例如:求證三角形中最多只有一個角是鈍角。
證明:設有兩個以上是鈍角
則兩個鈍角之和>180°
與三角形內角和等於180°矛盾。
∴不可能有二個以上是鈍角。
即最多只能有一個是鈍角。
三、垂直於弦的直徑
圓是軸對稱圖形,經過圓心的每一條直線都是它的對稱軸。
垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的兩條弧。
推理1:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對兩條弧。
弦的垂直平分線經過圓心,並且平分弦所對的兩條弧。
平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一個條弧。
推理2:圓兩條平行弦所夾的弧相等。
四、圓心角、弧、弦、弦心距之間的關係
圓是以圓心為對稱中心的中心對稱圖形。
實際上,圓繞圓心旋轉任意一個角度,都能夠與原來的圖形重合。
頂點是圓心的角叫圓心角,從圓心到弦的距離叫弦心距。
定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦心距相等。
推理:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩條弦的弦心距中,有一組量相等,那么它們所對應的其餘各組量都分別相等。
五、圓周角
頂點在圓上,並且兩邊都和圓相交的角叫圓周角。
推理1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等。
推理2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑。
推理3:如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形。
由於以上的定理、推理,所添加輔助線往往是添加能構成直徑上的圓周角的輔助線。
六、圓的判定性質
1.不在同一直線上的三點確定一個圓。
2.垂徑定理 垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
推論2 圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點的距離等於定長的點的集合
5.圓的內部可以看作是圓心的距離小於半徑的點的集合
6.圓的外部可以看作是圓心的距離大於半徑的點的集合
7.同圓或等圓的半徑相等
8.到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
9.定理 在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦 相等,所對的弦的弦心距相等
10.推論 在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩 弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等。
11定理 圓的內接四邊形的對角互補,並且任何一個外角都等於它 的內對角
12.①直線L和⊙O相交 d
②直線L和⊙O相切 d=r
③直線L和⊙O相離 dr
13.切線的判定定理 經過半徑的外端並且垂直於這條半徑的直線是圓的切線
14.切線的性質定理 圓的切線垂直於經過切點的半徑
15.推論1 經過圓心且垂直於切線的直線必經過切點
16.推論2 經過切點且垂直於切線的直線必經過圓心
17.切線長定理 從圓外一點引圓的兩條切線,它們的切線長相等, 圓心和這一點的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等 外角等於內對角
19.如果兩個圓相切,那么切點一定在連心線上
20.①兩圓外離 dR+r ②兩圓外切 d=R+r
③.兩圓相交 R-rr)
④.兩圓內切 d=R-r(Rr) ⑤兩圓內含dr)
國中數學研修工作總結集錦 篇7
一、基本知識
一、數與代數
A、數與式:
1、有理數:①整數→正整數,0,負整數;
②分數→正分數,負分數
數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。
②任何一個有理數都可以用數軸上的一個點來表示。
③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。
④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。
絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。
②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。
有理數的運算:帶上符號進行正常運算。
加法:
①同號相加,取相同的符號,把絕對值相加。
②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。
③一個數與0相加不變。
減法:減去一個數,等於加上這個數的相反數。
乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。
②任何數與0相乘得0。
③乘積為1的兩個有理數互為倒數。
除法:①除以一個數等於乘以一個數的倒數。
②0不能作除數。
乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。
混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。
2、實數
無理數
無理數:無限不循環小數叫無理數,例如:π=3.1415926…
平方根:①如果一個正數X的平方等於A,那么這個正數X就叫做A的算術平方根。
②如果一個數X的平方等於A,那么這個數X就叫做A的平方根。
③一個正數有2個平方根;0的平方根為0;負數沒有平方根。
④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那么這個數X就叫做A的立方根。
②正數的立方根是正數、0的立方根是0、負數的立方根是負數。
③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。
②在實數範圍內,相反數,倒數,絕對值的意義和有理數範圍內的相反數,倒數,絕對值的意義完全一樣;
③每一個實數都可以在數軸上的一個點來表示。
3、代數式
代數式:單獨一個數或者一個字母也是代數式。
合併同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項;②把同類項合併成一項就叫做合併同類項。
③在合併同類項時,我們把同類項的係數相加,字母和字母的指數不變。
4、整式與分式
整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。
②一個單項式中,所有字母的指數和叫做這個單項式的次數。
③一個多項式中,次數最高的項的次數叫做這個多項式的次數。
整式運算:加減運算時,如果遇到括弧先去括弧,再合併同類項。
冪的運算:
A^M+A^N=A^(M+N)
(A^M)^N=A^(MN
)
(A/B)^N=A^N/B^N
除法一樣。
整式的乘法:
①單項式與單項式相乘,把他們的係數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。
②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。
③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);
完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。
整式的除法:①單項式相除,把係數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。
②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。
方法:提公因式法、運用公式法、分組分解法、十字相乘法。
分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對於任何一個分式,分母不為0。
②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。
分式的運算:
乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。
除法:除以一個分式等於乘以這個分式的倒數。
加減法:①同分母分式相加減,分母不變,把分子相加減。
②異分母的分式先通分,化為同分母的分式,再加減。
分式方程:①分母中含有未知數的方程叫分式方程。
②使方程的分母為0的解稱為原方程的增根。
B、方程與不等式
1、方程與方程組
一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。
②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。
解一元一次方程的步驟:去分母,移項,合併同類項,未知數係數化為1。
二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。
二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
解二元一次方程組的方法:代入消元法;加減消元法。
一元二次方程:只有一個未知數,並且未知數的項的最高係數為2的方程:ax^2+bx+c=0;
1)一元二次方程的二次函式的關係
大家已經學過二次函式(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函式來表示,其實一元二次方程也是二次函式的一個特殊情況,就是當Y=0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函式中,圖像與X軸的交點。也就是該方程的解了
2)一元二次方程的解法
大家知道,二次函式有頂點式(-b/2a
,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函式的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解
(1)配方法
利用配方,使方程變為完全平方公式,在用直接開平方法去求出解
(2)分解因式法
提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解
(3)公式法
這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a
3)解一元二次方程的步驟:
(1)配方法的步驟:
先把常數項移到方程的右邊,再把二次項的係數化為1,再同時加上1次項的係數的一半的平方,最後配成完全平方公式
(2)分解因式法的步驟:
把方程右邊化為0,然後看看是否能用提取公因式,公式法(這裡指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式
(3)公式法
就把一元二次方程的各係數分別代入,這裡二次項的係數為a,一次項的係數為b,常數項的係數為c
4)韋達定理
利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a
也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各係數,在題目中很常用
5)一元二次方程根的情況
利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao
ta”,而△=b2-4ac,這裡可以分為3種情況:
I當△>0時,一元二次方程有2個不相等的實數根;
II當△=0時,一元二次方程有2個相同的實數根;
III當△B,則A+C>B+C;
在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;
例如:如果A>B,則A-C>B-C;
在不等式中,如果乘以同一個正數,不等式符號不改向;
例如:如果A>B,則A*C>B*C(C>0);
在不等式中,如果乘以同一個負數,不等號改向;
例如:如果A>B,則A*C<B*C(C<0);
如果不等式乘以0,那么不等號改為等號;
所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等於0,否則不等式不成立;
3、函式
變數:因變數Y,自變數X。
在用圖像表示變數之間的關係時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。
一次函式:①若兩個變數X,Y間的關係式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函式。
②當B=0時,稱Y是X的正比例函式。
一次函式的圖像:
①把一個函式的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函式的圖像。
②正比例函式Y=KX的圖像是經過原點的一條直線。
③在一次函式中,當K〈0,B〈O時,則經234象限;
當K〈0,B〉0時,則經124象限;
當K〉0,B〈0時,則經134象限;
當K〉0,B〉0時,則經123象限。
④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。
二空間與圖形
A、圖形的認識
1、點,線,面
點,線,面:①圖形是由點,線,面構成的。
②面與面相交得線,線與線相交得點。
③點動成線,線動成面,面動成體。
展開與摺疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。
②N稜柱就是底面圖形有N條邊的稜柱,上下底面就是N邊形。
截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。
視圖:主視圖,左視圖,俯視圖。
多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。
弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。
②圓可以分割成若干個扇形。
2、角
線:①線段有兩個端點。
②將線段向一個方向無限延長就形成了射線。射線只有一個端點。
③將線段的兩端無限延長就形成了直線。直線沒有端點。
④經過兩點有且只有一條直線。
比較長短:①兩點之間的所有連線中,線段最短。兩點之間直線最短。
②兩點之間線段的長度,叫做這兩點之間的距離。
角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。
角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。
②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角,180。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角,360。
③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
平行:①同一平面內,不相交的兩條直線叫做平行線。
②經過直線外一點,有且只有一條直線與這條直線平行。
③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。
垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。
②互相垂直的兩條直線的交點叫做垂足。
③平面內,過一點有且只有一條直線與已知直線垂直。
垂直平分線:垂直和平分一條線段的直線叫垂直平分線。
垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。
垂直平分線定理:
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。
性質定理:角平分線上的點到該角兩邊的距離相等;
判定定理:到角的兩邊距離相等的點在該角的角平分線上;
正方形:一組鄰邊相等的矩形是正方形
性質:正方形具有平行四邊形、菱形、矩形的一切性質
判定:1、對角線相等的菱形2、鄰邊相等的矩形
二、基本定理
1、過兩點有且只有一條直線
2、兩點之間線段最短
3、同角或等角的補角相等
——補角=180-角度。
4、同角或等角的餘角相等——餘角=90-角度。
5、過一點有且只有一條直線和已知直線垂直
6、直線外一點與直線上各點連線的所有線段中,垂線段最短
7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行
8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9、同位角相等,兩直線平行
10、內錯角相等,兩直線平行
11、同旁內角互補,兩直線平行
12、兩直線平行,同位角相等
13、兩直線平行,內錯角相等
14、兩直線平行,同旁內角互補
15、定理
三角形兩邊的和大於第三邊
16、推論
三角形兩邊的差小於第三邊
17、三角形內角和定理:
三角形三個內角的和等於180°
18、推論1
直角三角形的兩個銳角互余
19、推論2
三角形的一個外角等於和它不相鄰的兩個內角的和
20、推論3
三角形的一個外角大於任何一個和它不相鄰的內角
21、全等三角形的對應邊、對應角相等
22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等
23、角邊角公理(
ASA):有兩角和它們的夾邊對應相等的
兩個三角形全等
24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等
25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等
26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等
27、定理1
在角的平分線上的點到這個角的兩邊的距離相等
28、定理2
到一個角的兩邊的距離相同的點,在這個角的平分線上
29、角的平分線是到角的兩邊距離相等的所有點的集合
30、推論1
等腰三角形頂角的平分線平分底邊並且垂直於底邊
31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;
32、推論3
等邊三角形的各角都相等,並且每一個角都等於60°
33、等腰三角形的判定定理
如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
34、等腰三角形的性質定理
等腰三角形的兩個底角相等
(即等邊對等角)
35、推論1
三個角都相等的三角形是等邊三角形
36、推論
有一個角等於60°的等腰三角形是等邊三角形
37、在直角三角形中,如果一個銳角等於30°那么它所對的直角邊等於斜邊的一半
38、直角三角形斜邊上的中線等於斜邊上的一半
39、定理
線段垂直平分線上的點和這條線段兩個端點的距離相等
40、逆定理
和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42、定理1
關於某條直線對稱的兩個圖形是全等形
43、定理
如果兩個圖形關於某直線對稱,那么對稱軸是對應點連線的垂直平分線
44、定理3
兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45、逆定理
如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱
46、勾股定理
直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47、勾股定理的逆定理
如果三角形的三邊長a、b、c有關係a2+b2=c2,那么這個三角形是直角三角形
48、定理
四邊形的內角和等於360°
49、四邊形的外角和等於360°
50、多邊形內角和定理
n邊形的內角的和等於(n-2)×180°
51、推論
任意多邊的外角和等於360°
52、平行四邊形性質定理1
平行四邊形的對角相等
53、平行四邊形性質定理2
平行四邊形的對邊相等
54、推論
夾在兩條平行線間的平行線段相等
55、平行四邊形性質定理3
平行四邊形的對角線互相平分
56、平行四邊形判定定理1
兩組對角分別相等的四邊形是平行四邊形
57、平行四邊形判定定理2
兩組對邊分別相等的四邊
形是平行四邊形
58、平行四邊形判定定理3
對角線互相平分的四邊形是平行四邊形
59、平行四邊形判定定理4
一組對邊平行相等的四邊形是平行四邊形
60、矩形性質定理1
矩形的四個角都是直角
61、矩形性質定理2
矩形的對角線相等
62、矩形判定定理1
有三個角是直角的四邊形是矩形
63、矩形判定定理2
對角線相等的平行四邊形是矩形
64、菱形性質定理1
菱形的四條邊都相等
65、菱形性質定理2
菱形的對角線互相垂直,並且每一條對角線平分一組對角
66、菱形面積=對角線乘積的一半,即S=(a×b)÷2
67、菱形判定定理1
四邊都相等的四邊形是菱形
68、菱形判定定理2
對角線互相垂直的平行四邊形是菱形
69、正方形性質定理1
正方形的四個角都是直角,四條邊都相等
70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71、定理1
關於中心對稱的.兩個圖形是全等的
72、定理2
關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73、逆定理
如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那么這兩個圖形關於這一點對稱
74、等腰梯形性質定理
等腰梯形在同一底上的兩個角相等
75、等腰梯形的兩條對角線相等
76、等腰梯形判定定理
在同一底上的兩個角相等的梯
形是等腰梯形
77、對角線相等的梯形是等腰梯形
78、平行線等分線段定理
如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79、推論1
經過梯形一腰的中點與底平行的直線,必平分另一腰
80、推論2
經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81、三角形中位線定理
三角形的中位線平行於第三邊,並且等於它的一半
82、梯形中位線定理
梯形的中位線平行於兩底,並且等於兩底和的一半
L=(a+b)÷2
S=L×h
83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc
如果
ad=bc,那么a:b=c:d
84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d
85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86、平行線分線段成比例定理
三條平行線截兩條直線,所得的對應線段成比例
87、推論
平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88、定理
如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行於三角形的第三邊
89、平行於三角形的一邊,並且和其他兩邊相交的直線,
所截得的三角形的三邊與原三角形三邊對應成比例
90、定理
平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91、相似三角形判定定理1
兩角對應相等,兩三角形相似(ASA)
92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93、判定定理2
兩邊對應成比例且夾角相等,兩三角形相似(SAS)
94、判定定理3
三邊對應成比例,兩三角形相似(SSS)
95、定理
如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)
96、性質定理1
相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97、性質定理2
相似三角形周長的比等於相似比
98、性質定理3
相似三角形面積的比等於相似比的平方
99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)
(a<90)
100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)
101、圓是定點的距離等於定長的點的集合
102、圓的內部可以看作是圓心的距離小於半徑的點的集合
103、圓的外部可以看作是圓心的距離大於半徑的點的集合
104、同圓或等圓的半徑相等
105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109、定理
不在同一直線上的三點確定一個圓。
110、垂徑定理
垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111、推論1
①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧(直徑)
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112、推論2
圓的兩條平行弦所夾的弧相等
113、圓是以圓心為對稱中心的中心對稱圖形
114、定理
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115、推論
在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等
116、定理
一條弧所對的圓周角等於它所對的圓心角的一半
117、推論1
同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118、推論2
半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119、推論3
如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形
120、定理
圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121、①直線L和⊙O相交
0<=d<r
②直線L和⊙O相切
d=r
③直線L和⊙O相離
d>r
122、切線的判定定理
經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123、切線的性質定理
圓的切線垂直於經過切點的半徑
124、推論1
經過圓心且垂直於切線的直線必經過切點
125、推論2
經過切點且垂直於切線的直線必經過圓心
126、切線長定理
從圓外一點引圓的兩條切線相交與一點,它們的切線長相等
,圓心和這一點的連線平分兩條切線的夾角
127、圓的外切四邊形的兩組對邊的和相等
128、弦切角定理
弦切角等於它所夾的弧對的圓周角?
129、推論
如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130、相交弦定理
圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131、推論
如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項
132、切割線定理
從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?
133、推論
從圓外一點引圓的兩條割線,這一點到每條
割線與圓的交點的兩條線段長的積相等
134、如果兩個圓相切,那么切點一定在連心線上
135、①兩圓外離
d>R+r
②兩圓外切
d=R+r
③兩圓相交
R-r<d<R+r(R>r)
④兩圓內切
d=R-r(R>r)
⑤兩圓內含
d<R-r(R>r)
136、定理
相交兩圓的連心線垂直平分兩圓的公共弦
137、定理
把圓平均分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138、定理
任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139、正n邊形的每個內角都等於(n-2)×180°/n
140、定理
正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141、正n邊形的面積Sn=pn*rn/2
p表示正n邊形的周長
142、正三角形面積√3a^2/4
a表示邊長
143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144、弧長計算公式:L=n兀R/180——》L=nR
145、扇形面積公式:S扇形=n兀R^2/360=LR/2
146、內公切線長=d-(R-r)
外公切線長=d-(R+r)
國中數學研修工作總結集錦 篇8
一直以來,在試卷講評課的上法上總存在著一些困惑。例如,試卷上的錯題因人而異,如何上能照顧到全體,將每位學生出錯的問題解決?通過這次培訓我認識到,我們沒有足夠的時間面面俱到的講解,在一定的時間內想面面俱到,那么每個題目也只是蜻蜓點水,一節課下來真正沉澱到頭腦中的知識寥寥無幾。今後的試卷講評課我打算按照下面的思路來上,請劉老師多批評指正。
一、考試之後教師要做好測試分析,並充分備課。
通過測試分析,首先,弄清學生集中出錯的題目,找出學生的共性問題,並針對這些共性的問題展開備課。備課要備學生出錯的原因,試卷講評時如何對這些問題講解與完善。其次,弄清每位學生的得分,對於成績波動大的同學通過談話等方式及時了解情況並幫助解決困難。
二、下發試卷,學生自己糾錯。
給學生自己糾錯的機會,將能自己改正或通過小組合作改正的題目在試卷講評前改過來。
三、訂正答案,進一步改錯。
給學生標準答案,在答案的引導下,學生進一步尋找解題思路,完善解題步驟,查找丟分原因,加深對知識的理解。
四、重點題、錯題重點講解。
經過兩輪的改錯之後學生存留下的問題已經很少,教師試卷講評時就要解決這些遺留問題、重點題、錯題。對於這些問題可以通過分類講解、同類知識串講、變式訓練、一題多解、多個知識點上串下聯等方式講透。經過尋根問底,可使學生對不明確的知識點加深理解,再認識,然後鞏固練習。這個過程下來同時可複習到多個知識點,建立知識體系,拓展學生思維。
五、方法總結。
圍繞一個知識點講解之後,要讓學生總結解題思想、方法,掌握答題技巧。需要時可讓學生簡記。
六、解答疑問。
通過學生提出疑問,大家共同解答,完善學生對知識的認識。
近幾年教基礎年級,所以感覺上章節複習課較多,專題複習課很少。我們學校的章節複習課與劉老師的“出示問題,引出知識”是一致的。通過問題的解決實現知識點的複習。
通過聽兩位韓老師的課我感覺有幾處大的收穫:
一、要想實現高效課堂,教師首先高效備課。從兩位老師對題目的選取上能看到她們備課的用心。值得學習。
二、充分放手給學生,讓學生思考、解決問題、總結方法。教師適時點撥。
三、重要知識點、思想、方法及時簡記。“好腦子不如爛筆頭”,的確如此。根據艾賓浩斯的遺忘規律,一節課下來學到的知識點總在慢慢遺忘,如果課堂上不把關鍵點記錄下來的話,回過頭來複習時頭腦中的知識漏洞難以得到修繕。
通過這次學習我感覺收穫很大,希望劉老師多組織類似活動幫助年輕教師成長。同時對於這次培訓的膚淺認識希望劉老師多批評指正。謝謝!
國中數學研修工作總結集錦 篇9
1、圖形的相似
相似多邊形的對應邊的比值相等,對應角相等;
兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;
相似比:相似多邊形對應邊的比值。
2、相似三角形
判定:
平行於三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;
如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應邊的比相等,並且相應的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等於相似比;
相似三角形(多邊形)的面積的比等於相似比的平方。
國中數學研修工作總結集錦 篇10
不知不覺,一個學期的教學工作又告一段落了。本學期是我第一次擔任數學教學工作,經驗尚淺,開始,對於重難點,易錯點及中考方向可以說毫無頭緒。為不辜負校領導及前輩們的信任,我絲毫不敢怠慢,認真學,積極請教,努力適應新時期教學工作的要求,從各方面嚴格要求自己,結合學生的實際情況,勤勤懇懇,兢兢業業,使教學工作有計畫,有組織,有效率地開展。一學期下來確實取得了一定的成績。為使今後的工作取得更大的進步,現對本學期教學工作做出總結,希望能發揚優點,克服不足,以促進教訓工作更上一層樓。
一、認真備課,不但備學生而且備教材備教法,根據教材內容及學生的實際,設計課的類型,選擇教學方法,認真寫好教案。每一課都做到“有備而來”,每堂課都在課前做好充分的準備,課後及時對該課作出總結,寫好教學後記,並認真按蒐集每課書的知識要點,歸納成集。
二、增強上課技能,提高教學質量,做到線索清晰,層次分明,言簡意賅,深入淺出。在課堂上特別注意調動學生的積極性,加強師生交流,充分體現學生的主作用,讓學生學得容易,學得輕鬆,學得愉快;注意精講精練,在課堂上老師講得儘量少,學生動口動手動腦儘量多;同時在每一堂課上都充分考慮每一個層次的學生學需求和學能力,讓各個層次的學生都得到提高。現在很多學生反映喜歡上數學課了。
國中數學研修工作總結集錦 篇11
作為一名數學教師,我有幸參加了中國教師研修網組織的國培計畫(20xx年)——貴州省農村中國小教師遠程培訓項目的貴陽國中數學教學技能研修班的培訓學習,使我深受啟發和鼓舞!通過這次培訓學習我開闊了知識視野,加深了數學課程改革的認識,提升了對素質教育改革的理解,對今後的教育教學工作一定會起到重要的促進作用。同時,也衷心感謝各級領導為我提供了這次寶貴的學習機會。
第一、通過參觀學習及研討交流,豐富了閱歷,拓寬了視野,提升了對數學教育教學的認識。在短短几個月的學習時間裡,雖然緊張而忙碌,但更感充實與快樂。在這裡,來自全國各地各領域專家學者給我們帶來了精彩紛呈的學術報告,專家們精闢獨到的理論闡述、鮮活生動的案例分析,拓寬了我們的視野,豐富了我們的知識,啟迪著我們的思想;
培訓學習的同時,有機會與來自貴陽市各地的100多名學員們一起交流各學校的教學改革經驗,切磋課堂教學技藝。往日教學教研中的許多疑難、困惑就在這種學習、討論、交流中得以解答。這次培訓為全體參訓學員今後的工作提供了強大的理論支持和精神動力。
第二、通過學習經典務實的課例,開闊了我的視野。數學教師的視頻課,對於我,很好地起到了示範作用。讓我從他們的課堂中領略了他們的執教標準,以及駕御課堂的能力,可以說重新讓我堅定了課堂教學的信念。教學中,教師要勇於創新,改變傳統的教學定勢,進行有針對性的輔導與幫助,從而激發學生的學習興趣,培養他們勇於實踐的能力。課例從不同層次、不同角度重新提升了我對課堂教學的認識與把握,極大地開闊了我的視野。
第三、通過幾次專家線上研討,解除我心中的許多困惑。在培訓中,專家們的授課湧現出太多精彩,讓我感受到了大師們高尚的師德修養,以及他們的敬業精神,深邃的思考、紮實的工作作風和積極樂觀的心態,使我深切領悟到“學高為師,德高為范”的真諦,給我這個一線的教師留下了終生揮之不去的印象,它必將成為我今後人生的指南,事業的航標,深深地影響著我、激勵著我。他們身上理想的光輝照亮了我的心房,也改變了我曾有的.學習觀念,告訴自己要多學習。曾經認為自己從教十幾年,知識已經足夠,課堂也可以深淺無謂。當我看完視頻欣賞完同行的課堂聽完專家的點評之後,我深有感觸:我們需要的不僅僅是書本上的專業知識,更需要的是淵博的知識、教育的智慧。我們自身要多學習知識,讓自身知識不斷厚重。專家的線上研討,對困擾一線教師教學中存在的問題進行解答。通過認真學習專家的留言答疑,使我明確了自己今後的教學目標,而且對一些現實存在的問題有了自己解決的心理準備。儘管面對的困難很多,但我要積極地進行教學改革、探索新教學方法,積極進行嘗試新課改。
第四、通過專家的講課,專家的研討,使我們知道教學中要了解數學的發展,深刻意識數學的發展史對教學中的作用。傳統的數學教育使得教師在課堂上講授的知識的現在,忽視了知識的過去發明過程。我們說人的學習是一個認知過程,而教科書上講的往往是成熟的、完美的知識,而從不講獲得真理的艱苦歷程,使學生認識不到數學發展的曲折性,更不能讓學生了解知識發展過程,容易使學生產生誤解,以為數學家獲得知識很輕鬆。這嚴重阻礙了學生創造力的發展。了解數學發展過程中的數學家的故事,能夠使學生從數學家身上學習鍥而不捨的精神,在學習中鞭策自己。
第五、通過遠程研修,激勵自身成長,展望未來。培訓雖然是短暫的,但是收穫是充實的。讓我站在了一個嶄新的平台上審視了我的教學,使我對今後的工作有了明確的方向,這一次培訓活動後,我要把所學的教學理念咀嚼、消化內化為自己的教學思想,指導自己的教學實踐,要不斷蒐集教育信息,學習教育理論,增長專業知識,課後經常撰寫教學反思,以便今後上課進一步提高,並積極撰寫教育隨筆和教學論文參與投稿或評比活動。我的未來目標是通過自己的不斷磨礪成為一名數學骨幹教師,我有信心在未來的道路上通過學習,讓自己走得更遠,要想讓自己成為一名合格骨幹教師,為了理想中的教育事業,我將自強不息努力向前!
總而言之,在今後的工作中,我還會一如既往地進行專業研修,不斷創新思路,改進教學方法,使自己真正成為一名數學骨幹教師。
國中數學研修工作總結集錦 篇12
角度制知識:用度(°)、分(′)、秒(″)來測量角的大小的制度叫做角度制。
角度制
角度制:規定周角的360分之一為1度的角,用度作為單位來度量角的單位制叫做角度制。
角度制中單位的換算。
角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。
角度制就是運用60進制的例子。
角度制中角度的運算。
兩個角相加時,°與°相加,′與′相加,″與″相加,其中如果滿60則進1。
兩個角相減時,°與°相減,′與′相減,″與″相減,其中如果不夠則從上一個單位退1當作60。
測量角的大小的另外一個方法,角度制與弧度制的換算。
主要把握180°=π rad這個關係式。
例如:1度=π /180 弧度30度轉換成弧度值:弧度=30*π /180終邊相同的角的表示β=α+k360°k屬於整數。
知識歸納:除了角度制可以測量角的大小,還有一種——弧度制也可以測量角的大小。
國中數學研修工作總結集錦 篇13
其實角的大小與邊的長短沒有關係,角的大小決定於角的兩條邊張開的程度。
角的靜態定義
具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
角的動態定義
一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號
角的符號:∠
角的種類
在動態定義中,取決於旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
銳角:大於0°,小於90°的角叫做銳角。
直角:等於90°的角叫做直角。
鈍角:大於90°而小於180°的角叫做鈍角。
平角:等於180°的角叫做平角。
優角:大於180°小於360°叫優角。
劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。
角周角:等於360°的角叫做周角。
負角:按照順時針方向旋轉而成的角叫做負角。
正角:逆時針旋轉的角為正角。
0角:等於零度的角。
特殊角
餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。
對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。
鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關係的兩個角,互為鄰補角。
內錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的
內側,並且在第三條直線的兩側,那么這樣的一對角叫做內錯角(alternateinteriorangle)。如:∠1和∠6,∠2和∠5
同旁內角:兩個角都在截線的同一側,且在兩條被截線之間,具有這樣位置關係的一對角互為同旁內角。如:∠1和∠5,∠2和∠6
同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側,具有這樣位置關係的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7
外錯角:兩條直線被第三條直線所截,構成了八個角。如果兩個角都在兩條被截線的外側,並且在截線的兩側,那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。
同旁外角:兩個角都在截線的同一側,且在兩條被截線之外,具有這樣位置關係的一對角互為同旁外角。如:∠4和∠8,∠3和∠7
終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬於集合:
A{bb=k_360+a,k∈Z}表示角度制;
B{bb=2kπ+a,k∈Z}表示弧度制
國中數學研修工作總結集錦 篇14
誘導公式的本質
所謂三角函式誘導公式,就是將角n(/2)的三角函式轉化為角的三角函式。
常用的誘導公式
公式一: 設為任意角,終邊相同的角的同一三角函式的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設為任意角,的三角函式值與的三角函式值之間的關係:
sin=-sin
cos=-cos
tan=tan
cot=cot
公式三: 任意角與 -的三角函式值之間的關係:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函式值之間的關係:
sin=sin
cos=-cos
tan=-tan
cot=-cot
國中數學研修工作總結集錦 篇15
一.行程問題
行程問題要點解析
基本概念:行程問題是研究物體運動的,它研究的是物體速度、時間、行程三者之間的關係。基本公式:路程=速度×時間;路程÷時間=速度;路程÷速度=時間關鍵問題:確定行程過程中的位置相遇問題:速度和×相遇時間=相遇路程(請寫出其他公式)追擊問題:追擊時間=路程差÷速度差(寫出其他公式)流水問題:順水行程=(船速+水速)×順水時間逆水行程=(船速-水速)×逆水時間
順水速度=船速+水速逆水速度=船速-水速靜水速度=(順水速度+逆水速度)÷2水速=(順水速度-逆水速度)÷2基本題型:已知路程(相遇問題、追擊問題)、時間(相遇時間、追擊時間)、速度(速度和、速度差)中任意兩個量,求出第三個量。
二、利潤問題
每件商品的利潤=售價-進貨價毛利潤=銷售額-費用
利潤率=(售價--進價)/進價*100%
三、計算利息的基本公式
儲蓄存款利息計算的基本公式為:利息=本金×存期×利率利率的換算:
年利率、月利率、日利率三者的換算關係是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。使用利率要注意與存期相一致。利潤與折扣問題的公式利潤=售出價-成本利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%漲跌金額=本金×漲跌百分比折扣=實際售價÷原售價×100%(折扣<1)利息=本金×利率×時間稅後利息=本金×利率×時間×(1-20%)
四、濃度問題
溶質的重量+溶劑的重量=溶液的重量溶質的重量÷溶液的重量×100%=濃度溶液的重量×濃度=溶質的重量溶質的重量÷濃度=溶液的重量五、增長率問題
若平均增長(下降)數百分率為x,增長(或下降)前的是a,增長(或下降)n次後的量是b,則它們的數量關係可表示為:a(1x)b或a(1x)b
國中數學研修工作總結集錦 篇16
顧名思義。中位線就是圖形的中點的連線,包括三角形中位線和梯形中位線兩種。
中位線
中位線概念
(1)三角形中位線定義:連線三角形兩邊中點的線段叫做三角形的中位線。
(2)梯形中位線定義:連結梯形兩腰中點的線段叫做梯形的中位線。
注意:
(1)要把三角形的中位線與三角形的中線區分開。三角形中線是連結一頂點和它對邊的中點,而三角形中位線是連結三角形兩邊中點的線段。
(2)梯形的中位線是連結兩腰中點的線段而不是連結兩底中點的線段。
(3)兩個中位線定義間的聯繫:可以把三角形看成是上底為零時的梯形,這時梯形的中位線就變成三角形的中位線。
國中數學研修工作總結集錦 篇17
1.有理數:
(1)凡能寫成形式的數,都是有理數。正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數。注意:0即不是正數,也不是負數;—a不一定是負數,+a也不一定是正數;p不是有理數;
(2)有理數的分類:①②
2.數軸:數軸是規定了原點、正方向、單位長度的一條直線。
3.相反數:
(1)只有符號不同的兩個數,我們說其中一個是另一個的相反數;0的相反數還是0;
(2)相反數的和為0?a+b=0?a、b互為相反數。
4.絕對值:
(1)正數的絕對值是其本身,0的絕對值是0,負數的絕對值是它的相反數;注意:絕對值的意義是數軸上表示某數的點離開原點的距離;
(2)絕對值可表示為:或;絕對值的問題經常分類討論;
5.有理數比大小:(1)正數的絕對值越大,這個數越大;(2)正數永遠比0大,負數永遠比0小;(3)正數大於一切負數;(4)兩個負數比大小,絕對值大的反而小;(5)數軸上的兩個數,右邊的數總比左邊的數大;(6)大數—小數>0,小數—大數<0。
6.互為倒數:乘積為1的兩個數互為倒數;注意:0沒有倒數;若a≠0,那么的倒數是;若ab=1?a、b互為倒數;若ab=—1?a、b互為負倒數。
7.有理數加法法則:
(1)同號兩數相加,取相同的符號,並把絕對值相加;
(2)異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
(3)一個數與0相加,仍得這個數。
8.有理數加法的運算律:
(1)加法的交換律:a+b=b+a;(2)加法的結合律:(a+b)+c=a+(b+c)。
9.有理數減法法則:減去一個數,等於加上這個數的相反數;即a—b=a+(—b)。
10.有理數乘法法則:
(1)兩數相乘,同號為正,異號為負,並把絕對值相乘;
(2)任何數同零相乘都得零;
(3)幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
11.有理數乘法的運算律:
(1)乘法的交換律:ab=ba;(2)乘法的結合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac。
12.有理數除法法則:除以一個數等於乘以這個數的倒數;注意:零不能做除數,。
13.有理數乘方的法則:
(1)正數的任何次冪都是正數;
(2)負數的奇次冪是負數;負數的偶次冪是正數;注意:當n為正奇數時:(—a)n=—an或(a—b)n=—(b—a)n,當n為正偶數時:(—a)n=an或(a—b)n=(b—a)n。
14.乘方的定義:
(1)求相同因式積的運算,叫做乘方;
(2)乘方中,相同的因式叫做底數,相同因式的個數叫做指數,乘方的結果叫做冪;
15.科學記數法:把一個大於10的數記成a×10n的形式,其中a是整數數位只有一位的數,這種記數法叫科學記數法。
16.近似數的精確位:一個近似數,四捨五入到那一位,就說這個近似數的精確到那一位。
17.有效數字:從左邊第一個不為零的數字起,到精確的位數止,所有數字,都叫這個近似數的有效數字。
18.混合運算法則:先乘方,後乘除,最後加減。
本章內容要求學生正確認識有理數的概念,在實際生活和學習數軸的基礎上,理解正負數、相反數、絕對值的意義所在。重點利用有理數的運算法則解決實際問題。
體驗數學發展的一個重要原因是生活實際的需要。激發學生學習數學的興趣,教師培養學生的觀察、歸納與概括的能力,使學生建立正確的數感和解決實際問題的能力。教師在講授本章內容時,應該多創設情境,充分體現學生學習的主體性地位。
國中數學研修工作總結集錦 篇18
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。(二)平方差公式1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。2.因式分解,必須進行到每一個多項式因式不能再分解為止。(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。上面兩個公式叫完全平方公式。(2)完全平方式的形式和特點①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這裡只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以原式=(am+an)+(bm+bn)
=a(m+n)+b(m+n)=(m+n)(a+b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於一次項的係數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:①列出常數項分解成兩個因數的積各種可能情況;②嘗試其中的哪兩個因數的和恰好等於一次項係數.3.將原多項式分解成(x+q)(x+p)的形式.(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的.分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.(九)含有字母係數的一元一次方程1.含有字母係數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的係數,b是常數項。這個方程就是一個含有字母係數的一元一次方程。
含有字母係數的方程的解法與以前學過的只含有數字係數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。1.分式2.二次根式3.三角形4.一次函式5.四邊形6.相似7.簡單機率統計
(一)運用公式法:
我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。(二)平方差公式1.平方差公式
(1)式子:a2-b2=(a+b)(a-b)
(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。(三)因式分解
1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。
2.因式分解,必須進行到每一個多項式因式不能再分解為止。(四)完全平方公式
(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2
這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。上面兩個公式叫完全平方公式。(2)完全平方式的形式和特點①項數:三項
②有兩項是兩個數的的平方和,這兩項的符號相同。③有一項是這兩個數的積的兩倍。
(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這裡只要將多項式看成一個整體就可以了。
(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。(五)分組分解法
我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.
如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.
原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)
做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).
這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.(六)提公因式法
1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於一次項的係數.
2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:①列出常數項分解成兩個因數的積各種可能情況;
②嘗試其中的哪兩個因數的和恰好等於一次項係數.3.將原多項式分解成(x+q)(x+p)的形式.(七)分式的乘除法
1.把一個分式的分子與分母的公因式約去,叫做分式的約分.2.分式進行約分的目的是要把這個分式化為最簡分式.
3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.
4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.
5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.(八)分數的加減法
1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.
2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.
4.通分的依據:分式的基本性質.5.通分的關鍵:確定幾個分式的公分母.
通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分數的通分得到分式的通分:
把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。
同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.
9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.
10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.
11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.
12.作為最後結果,如果是分式則應該是最簡分式.(九)含有字母係數的一元一次方程1.含有字母係數的一元一次方程
引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)
在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的係數,b是常數項。這個方程就是一個含有字母係數的一元一次方程。
含有字母係數的方程的解法與以前學過的只含有數字係數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。
國中數學研修工作總結集錦 篇19
1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的餘角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連線的所有線段中,垂線段最短7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大於第三邊16推論三角形兩邊的差小於第三邊
17三角形內角和定理三角形三個內角的和等於180°18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等於和它不相鄰的兩個內角的和20推論3三角形的一個外角大於任何一個和它不相鄰的內角21全等三角形的對應邊、對應角相等
22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,並且每一個角都等於60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等於60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等於30°那么它所對的直角邊等於斜邊的一半38直角三角形斜邊上的中線等於斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關於某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關於某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關係a2+b2=c2,那么這個三角形是直角三角形
48定理四邊形的內角和等於360°49四邊形的外角和等於360°
50多邊形內角和定理n邊形的內角的和等於(n-2)×180°51推論任意多邊的外角和等於360°
52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質定理1正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1關於中心對稱的兩個圖形是全等的
72定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那么這兩個圖形關於這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半82梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半
L=(a+b)÷2S=L×h
83(1)比例的基本性質如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行於三角形的第三邊
89平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比97性質定理2相似三角形周長的比等於相似比98性質定理3相似三角形面積的比等於相似比的平方
99任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合103圓的外部可以看作是圓心的距離大於半徑的點的集合104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的.兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等
116定理一條弧所對的圓周角等於它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形120定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線123切線的性質定理圓的切線垂直於經過切點的半徑124推論1經過圓心且垂直於切線的直線必經過切點125推論2經過切點且垂直於切線的直線必經過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等於它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r
②兩圓外切d=R+r
③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)
136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
(n2)180139正n邊形的每個內角都等於
n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
pnrn141正n邊形的面積Sn=p表示正n邊形的周長
2142正三角形面積
32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,
k(n2)180360化為(n-2)(k-2)=4因此
n144弧長計算公式:L=
nR180nR2LR145扇形面積公式:S扇形==
3602146內公切線長=d-(R-r)外公切線長=d-(R+r)
公式分類及公式表達式
乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|
一元二次方程的解
bb24ac2a
根與係數的關係:X1+X2=-b/aX1*X2=c/a註:韋達定理判別式
b2-4ac=0註:方程有兩個相等的實根b2-4ac>0註:方程有兩個不等的實根b2-4ac
國中數學研修工作總結集錦 篇20
一.有理數
知識網路:
概念、定義:
1、大於0的數叫做正數(positive number)。
2、在正數前面加上負號“-”的數叫做負數(negative number)。
3、整數和分數統稱為有理數(rational number)。
4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。
5、在直線上任取一個點表示數0,這個點叫做原點(origin)。
6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。
7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。
8、正數大於0,0大於負數,正數大於負數。
9、兩個負數,絕對值大的反而小。
10、有理數加法法則
(1)同號兩數相加,取相同的符號,並把絕對值相加。
(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。
(3)一個數同0相加,仍得這個數。
11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。
12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。
13、有理數減法法則
減去一個數,等於加上這個數的相反數。
14、有理數乘法法則
兩數相乘,同號得正,異號得負,並把絕對值向乘。
任何數同0相乘,都得0。
15、有理數中仍然有:乘積是1的兩個數互為倒數。
16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。
17、三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。
18、一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。
19、有理數除法法則
除以一個不等於0的數,等於乘這個數的倒數。
20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。
21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)
22、根據有理數的乘法法則可以得出
負數的奇次冪是負數,負數的偶次冪是正數。
顯然,正數的任何次冪都是正數,0的任何次冪都是0。
23、做有理數混合運算時,應注意以下運算順序:
(1)先乘方,再乘除,最後加減;
(2)同級運算,從左到右進行;
(3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。
24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。
25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。
26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)
註:黑體字為重要部分
二.整式的加減
知識網路:
概念、定義:
1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。
2、單項式中的數字因數叫做這個單項式的係數(coefficient)。
3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly
term)。
5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。
6、把多項式中的同類項合併成一項,叫做合併同類項。
合併同類項後,所得項的係數是合併前各同類項的係數的和,且字母部分不變。
7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;
8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合併同類項。
三.一元一次方程
知識網路:
概念、定義:
1、列方程時,要先設字母表示未知數,然後根據問題中的相等關係,寫出還有未知數的等式——方程(equation)。
2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。
3、分析實際問題中的數量關係,利用其中的等量關係列出方程,是用數學解決實際問題的一種方法。
4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。
5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。
6、把等式一邊的某項變號後移到另一邊,叫做移項。
7、套用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間
盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%
售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間
本息和=本金+利息
四.圖形初步認識
知識網路:
概念、定義:
1、我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的.各部分不都在同一平面內,它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。
8、點動成面,面動成線,線動成體。
9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。
簡述為:兩點確定一條直線(公理)。
10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連線兩點間的線段的長度,叫做這兩點的距離(distance)。
14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。
17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary
angle),即其中的每一個角是另一個角的餘角。
18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary
angle),即其中一個角是另一個角的補角
19、等角的補角相等,等角的餘角相等。