高中數學等比數列知識點總結 篇1
1.等比數列的有關概念
(1)定義:
如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數(不為零),那么這個數列就叫做等比數列.這個常數叫做等比數列的公比,通常用字母q表示,定義的表達式為an+1/an=q(n∈N_,q為非零常數).
(2)等比中項:
如果a、G、b成等比數列,那么G叫做a與b的`等比中項.即:G是a與b的等比中項a,G,b成等比數列G2=ab.
2.等比數列的有關公式
(1)通項公式:an=a1qn-1.
3.等比數列{an}的常用性質
(1)在等比數列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.
特別地,a1an=a2an-1=a3an-2=….
(2)在公比為q的等比數列{an}中,數列am,am+k,am+2k,am+3k,…仍是等比數列,公比為qk;數列Sm,S2m-Sm,S3m-S2m,…仍是等比數列(此時q≠-1);an=amqn-m.
4.等比數列的特徵
(1)從等比數列的定義看,等比數列的任意項都是非零的,公比q也是非零常數.
(2)由an+1=qan,q≠0並不能立即斷言{an}為等比數列,還要驗證a1≠0.
5.等比數列的前n項和Sn
(1)等比數列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數列求和中的運用.
(2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.
高中數學等比數列知識點總結 篇2
1.等比中項
如果在a與b中間插入一個數G,使a,G,b成等比數列,那么G叫做a與b的等比中項。
有關係:
註:兩個非零同號的實數的等比中項有兩個,它們互為相反數,所以G2=ab是a,G,b三數成等比數列的必要不充分條件。
2.等比數列通項公式
an=a1_q’(n-1)(其中首項是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n項和
當q≠1時,等比數列的前n項和的公式為
Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)
當q=1時,等比數列的前n項和的公式為
Sn=na1
3.等比數列前n項和與通項的關係
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比數列性質
(1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;
(2)在等比數列中,依次每k項之和仍成等比數列。
(3)從等比數列的定義、通項公式、前n項和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項:q、r、p成等比數列,則aq·ap=ar2,ar則為ap,aq等比中項。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個各項均為正數的等比數列各項取同底指數冪後構成一個等差數列;反之,以任一個正數C為底,用一個等差數列的各項做指數構造冪Can,則是等比數列。在這個意義下,我們說:一個正項等比數列與等差數列是“同構”的。
(5)等比數列前n項之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項am,an的關係為an=am·q’(n-m)
(7)在等比數列中,首項a1與公比q都不為零。
注意:上述公式中a’n表示a的n次方。
高中數學等比數列知識點總結 篇3
等比數列求和公式
q≠1時,Sn=a1(1-q^n)/(1-q)=(a1-anq)/(1-q)
q=1時,Sn=na1
(a1為首項,an為第n項,d為公差,q為等比)
這個常數叫做等比數列的公比,公比通常用字母q表示(q≠0),等比數列a1≠ 0。註:q=1時,{an}為常數列。利用等比數列求和公式可以快速的計算出該數列的和。
等比數列求和公式推導
Sn=a1+a2+a3+...+an(公比為q)
qSn=a1q + a2q + a3q +...+ anq = a2+ a3+ a4+...+ an+ a(n+1)
Sn-qSn=(1-q)Sn=a1-a(n+1)
a(n+1)=a1qn
Sn=a1(1-qn)/(1-q)(q≠1)
高中數學等比數列知識點總結 篇4
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α0在(a,b)上恆成立,則f(x)在(a,b)上是增函式;若f¢(x)0的解集與定義域的交集的對應區間為增區間;f¢(x)2的解集是{x?R|x-3>2}或{x|x-3>2}
4、集合的分類:
1.有限集含有有限個元素的集合
2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關係
1.“包含”關係子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B或集合B不包含集合A記作AB或BA
2.“相等”關係(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-11}“元素相同”
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
①任何一個集合是它本身的子集。A?A
②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A?BB?C那么A?C
④如果A?B同時B?A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1.交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集.
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作”A並B”),即A∪B={x|x∈A,或x∈B}.
3、交集與並集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A
A∪φ=AA∪B=B∪A.
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U
高中數學等比數列知識點總結 篇5
1.定義法:
判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關係畫出箭頭示意圖,再利用定義判斷即可.
2.轉換法:
當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷.
3.集合法
在命題的條件和結論間的關係判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:
若A∩B,則p是q的充分條件.
若A∪B,則p是q的必要條件.
若A=B,則p是q的充要條件.
若A∈B,且B∈A,則p是q的既不充分也不必要條件.
高中數學等比數列知識點總結 篇6
數學教研組韓婷老師代表自治區參加全國第六屆高中數學優質課比賽獲得一等獎的好成績,韓婷老師優異的表現,充分展現了六盤山高中青年教師的活力和風采,體現了她紮實的教學功底和良好的數學素養,受到評審及來自全國各地聽課教師的一致好評。該成績的取得,除了韓婷老師自身的努力外,更是全數學教研組團結協作,精心打造的結果,是全體數學教師集體智慧的結晶。從參加自治區優質課選拔開始並獲自治區一等獎,到參加全國比賽,前後一年時間,全組教師,特別是高二備課組教師,積極參與到聽課、評課中獻計獻策,反覆修改、打磨、完善,不僅使韓婷老師的課更加精湛,同時也提升了整個教研組的課堂教學能力。希望全組教師以此為契機,鼓舞士氣,振奮精神,紮實工作,勤於鑽研,不斷提升自己的教育教學水平,為我校的繁榮發展發揮自己的聰明才智!
本次活動受到全國高中數學教師、數學教研部門、各會員單位的高度重視,來自全國除西藏、港澳台以外的所有省、直轄市、自治區,行業的近93名代表參加了本次活動,覆蓋範圍廣,參與熱情高。各會員單位做了大量前期工作,很多會員單位從兩年前就開始布置、落實本項活動,把工作細化在過程中,積極組織當地廣大高中青年數學教師參與觀摩活動,引領廣大教師交流教學經驗,以觀摩與評比活動帶動課堂教學研究,在研究中不斷深化課堂教學改革,切實提高課堂教學質量和效益。
本次大會的協辦方卡西歐(上海貿易有限公司)、《中國數學教育》《數學周報》社為本項活動提供了資金、技術、獎品以及人力、物力的大力支持。
各位參賽選手付出了巨大的智力勞動,承受了巨大的心理壓力,為本次活動做出了特殊的貢獻。在教師專業化成長的道路上邁出了重要而堅實的一步。
由於本次活動組織方式的改變,對評審提出了高要求。各位評審不僅要事先對參賽選手的教學設計、教學設計說明和課堂實錄進行仔細閱讀、觀摩,在現場還要聚精會神地觀察選手的表現,根據參賽選手的預設和現場生成,做出評判,並給出點評。這項活動匯集了我國高中數學教學最前沿的教改、教研信息,展示了我國目前高中課程改革中取得的最新成果,反映了全國高中數學教育教研的前沿動態。
一、本次活動的基本成績
1.關於活動滿意度的調查。以問卷的方式,對本次活動的現場滿意度作了調查:
參會代表最感興趣的環節:選手講述4.9%,代表互動16.5%,評審點評78.6%。這一組數據表明,廣大觀摩代表對評審會的期望值很高。
2.本次活動涉及的教材版本有人教A版、人教B版、北師大版、蘇教版、上海版、人教大綱版。版本的多樣化從一個側面反映了本次活動的代表性和廣泛參與性。
3.內容覆蓋了高中課程的所有板塊,有大量的概念課,這是非常好的現象。概念教學是我國數學課堂的薄弱環節,加強研究很有必要。另外,有些選手選擇了一些難點課題開展教學研究,例如機率、統計中的一些概念課,這是當前需要重點研討的,體現了選手能迎難而上。
4.各位參賽選手在理解教學內容上下了很大功夫,與往屆比較,在數學理解水平上有了很大長進。
5.學生主體意識進一步加強,注重精心設計學生活動,採取問題引導學習的方式,讓學生帶著問題開展探索活動。
6.教學過程中,能自覺注意根據學生的認知規律安排教學活動。特別值得一提的是,許多參賽教師都能注意根據概念教學的基本規律安排教學進程,注意通過具體事例的歸納、概括活動得出數學概念。
7.信息技術與數學教學整合的水平進一步提高,大部分教師都能做到恰當使用信息技術,幫助學生理解數學內容。
8.現場互動充分,評審事先觀看了各位選手提供的完整的課堂錄像,預先寫好了點評提綱,並結合每一位選手的現場表現給予認真點評。代表的參與程度高,現場氣氛熱烈。擺事實、講道理、亮觀點的互動原則得到貫徹。
二、幾個需要進一步思考的問題
1.正確理解“三維目標”
在參賽選手提供的教學設計中,教學目標的表述不盡一致。許多老師採用了“三維目標”分別闡述的方式呈現目標。
從積極的方面看,老師們已經注意到教學目標必須反映內容特點,關注到顯性目標與隱性目標的不同。但這樣的表述,除了目標分類不準確、表達不確切(如把“由一般到特殊、由特殊到一般”的邏輯思考方法不恰當地歸入情感領域,把“培養學生積極嚴謹的學習態度和勇於探索的求知精神”這樣的“放之四海而皆準”的目標作為一堂課的目標。)等“技術性”問題外,最大的問題是混淆了課程目標與課堂教學目標的關係。
“三維目標”是課程目標而不是課堂教學目標。“三個維度”具有內在統一性,都指向人的發展,它們交融互進。“知識與技能”只有在學生獨立思考、大膽批判和實踐運用中,才能實現知識的意義建構;“情感、態度與價值觀”只有伴隨著學生對數學知識技能的反思、批判與運用,才能得到升華;“過程與方法”只有學生以積極的情感、態度為動力,以知識和技能目標為適用對象,才能體現它的存在價值。
“三維目標”是中學課程目標的.整體設計思路,反映了一個學習過程中的三個心理維度,但不是教學目標的維度。在制定教學目標時簡單地套用“三個維度”將使課堂不堪重負。
教學目標取決於教學內容的特點,要在“三個維度”的指導下,綜合考慮高中階段的數學教學目的、內容特點和學生情況來確定。課堂教學不是為了體現課程目標的“三個維度”而存在的,而是要具體而紮實地把數學課程內容傳遞給學生,要以數學知識教學為載體來促進學生的發展,這樣才能真正實現“數學育人”。
因此,一堂數學課的教學目標,應當是以數學知識、技能為載體,在教學過程中開展數學思想、方法的教學,滲透情感、態度和價值觀的教育。只有在正確理解教學內容的基礎上,才能制定出恰當的教學目標。
2.圍繞概念的核心展開教學
一段時間以來,大家對數學教學的有效性開展了大量研究。如果在網上以“有效教學”為關鍵字搜尋,那么有效教學的論文數以萬計,還有許多理論專著,有效教學研究可謂一片繁榮。然而,與之形成鮮明對照的是課堂教學的低效甚至無效。看來,“有效教學”的研究也有“無效”之虞。到底怎樣才能實現課堂教學的有效性?我認為,只有圍繞數學概念的核心展開教學,在概念的本質和數學思想方法的理解上給予點撥、講解,讓學生在理解概念及其反應的數學思想和方法的基礎上,對細節問題、變化的問題進行深入思考,這樣才能實現有效教學。因為概念的核心、思想方法是不容易把握的,這是教師發揮主導作用的重點所在;具體細節正好是鍛鍊學生套用概念解決問題的機會,是促進學生理解概念的平台。那種事無巨細、包打天下的做法,要把所有細節、變化都在課堂上講完練完的企圖,最終只能把關鍵、重點、核心淹沒在細節的海洋中,不僅教學效果不佳,而且導致學生負擔沉重。
3.把引導學生提出問題作為重要教學內容
雖然老師們已經意識到,課堂教學中必須注意教師主導取向的講授式與學生自主取向的活動式的結合,而且注意使用“問題引導學習”的教學,但學生只有回答老師提問的機會而沒有提出問題的機會的做法仍需要進一步改進。教師要給學生以提問的示範,目的是使學生“看過問題三百個,不會解題也會問”。要把引導學生提問,使學生在獨立思考後提出有質量的數學問題作為學生活動的重要內容。那種“構建模型我來乾,你要做的就是算”的做法,擠壓了學生獨立思考的空間,剝奪了學生實質性思考的機會。
如何實現“讓學生提問”呢?我認為,如果注意“先行組織者”的使用,在研究方法上多加指導,給學生提供類比的對象和方法,就能使學生自己提問。
4.“概念+數學思想方法”PK“題型+技巧”
在我們的數學課堂中,解題教學歷來是重點、核心。教師常常把注意力集中在“題型”及其技巧上,許多老師分不清技巧與思想方法的界限,錯誤地把技巧當成思想方法,而且往往把技巧直接告訴學生,再讓學生通過模仿訓練記住技巧,而對技巧的來龍去脈則語焉不詳特別是對蘊含於數學知識中的數學思想方法教學,因其是一種潛移默化、潤物無聲的“慢工”,被有些老師判為“不實惠”而得不到應有的滲透、提煉和概括。結果是在稍有變化的情境中,因為沒有數學思想方法的支撐,“特技”失靈,“動作”變形,靈活套用數學知識解決問題的能力成為“泡影”。在“能力立意”的高考中出現“講過練過的不一定會,沒講沒練的一定不會”的結局就不足為奇了。
實際上,技巧往往是“可以意會不可言傳”的,是不可複製的,而且掌握技巧需要付出大量時間、精力的代價,這是得不償失的。大眾數學教育是普及性的,目的是培養公民的基本數學素養,就像平時鍛鍊身體不需要專業運動技巧一樣,並不需要太多高超的解題技巧,教學時也很難用富有啟發性的語言予以傳授。因此,技巧,雕蟲小技也,不足道也!概念及其蘊含的思想方法才是根本大法!我們要強調數學知識及其蘊含的思想方法教學的重要性,無知者無能,在對數學知識沒有基本理解時就進行解題訓練是盲目的,也是注定低效的。解題訓練應針對概念的理解和套用,要讓學生養成從基本概念出發思考問題、解決問題的習慣。另外,解題的靈活性來源於概念的實質性聯繫,技巧是不可靠的,因此要加強概念的聯繫性,從概念的聯繫中尋找解決問題的新思路。
5.怎樣進行“思維的教學”
眾所周知,數學是思維的科學,數學是思維的體操。數學教學的核心任務之一是要培養學生的思維能力,使學生在掌握數學基礎知識的過程中,學會感知、觀察、歸納、類比、想像、抽象、概括、推理、證明和反思等邏輯思考的基本方法。從課堂教學現狀看,許多老師還沒有掌握“思維的教學”的基本方法,不能有效地抓住“思維的教學”的時機。
思維發展心理學的研究表明,概括是人們掌握概念的直接前提;概括是思維的速度、靈活遷移程度、廣度和深度、創造程度等思維品質的基礎;概括是科學研究的關鍵機制;學習和套用知識的過程也是概括的過程;數學概括能力是數學學科能力的基礎,概括能力的訓練是數學思維能力訓練的基礎;概括與歸納、類比等直接相關,是培養創造力的基礎。因此,“思維的教學”的基本方法是以數學知識的發生髮展過程為載體,為學生的概括活動搭建平台,千方百計地給學生提供概括的機會,鍛鍊學生的概括能力,使學生學會概括。特別要注意在概括的關鍵環節上放手讓學生自主活動。
順便提及,要搞好“思維的教學”,關鍵是教師自己先要理解好數學內容的本質,教師自己要成為善於思考者。
6.如何進行課堂小結
從本次活動中發現,課堂小結問題還有進一步研究的必要。許多老師在小結時的第一個問題是“通過今天的學習,你有哪些收穫?”這樣的問題過於寬泛,學生的回答往往是“使我知道了數學與現實生活是緊密聯繫的”,“數學是有趣的”,“數學奇妙無窮的”,“我學會了數形結合思想”……大話、空話、套話甚至是假話滿天飛,這種沒有以本課內容為載體的“收穫”是虛無飄渺的。
小結的主要任務是歸納本課內容,提煉思想方法,總結學習經驗。要提高小結環節的教學立意,應當圍繞本課的內容及其反應的數學思想方法,以知識的發生髮展過程為線索展開,通過小結使學生頭腦中形成關於本課內容的一個清晰的知識結構(包括相關知識的聯繫)。特別是,要把認識數學對象的“基本套路”、解決問題的“基本思路”等納入其中。另外,在總結“學到了什麼”的同時,還要總結“哪些地方沒有學好、沒學會”。
7.充分認識教材在教學中的地位
當前,教師誤解“用教材教”“創造性地使用教材”的課改理念,不下功夫深入研讀教材,在沒有準確理解教材編寫意圖的情況下就隨意地刪減、補充或更改教材內容,有的甚至輕率地脫離教材進行教學,以那些粗製濫造的教輔資料為依據進行教學。這樣做的結果是使教學失去基本依據,數學課堂變得沒有章法。這種做法,只考慮“應試”而不顧學生的可持續發展,不重視教材,不要求學生精心閱讀課本,把大部分時間花費在做教輔資料的題目上,已經導致學生會解題但不會提問,會模仿解題技巧而不會讀書、不會獨立思考。因此,這種局面必須引起我們的高度警覺,並下大力氣扭轉。作為優秀教師,應當注意到:
第一,一定要正確理解“用教材教”“創造性地使用教材”的內涵。這是針對“照本宣科”而言的,絕對不是提倡“脫離教材”搞教學。
第二,教材的“基礎性”與高考的“選拔性”確有一定的目標差異,但學好教材一定是高考取得好成績的前提,教師的主要精力應放在幫助學生熟練掌握教材內容上。
第三,理解教材是當好數學教師的前提,而“理解教材”的第一要義是“理解數學”。了解數學概念的背景,把握概念的邏輯意義,理解內容所反映的思想方法,挖掘知識所蘊含的科學方法、理性思維過程和價值觀資源,區分核心知識和非核心知識等都是教師的基本功。
第四,要仔細分析教材編寫意圖。教材的結構體系、內容順序是反覆考量的,語言是字斟句酌的,例題是反覆打磨的,習題是精挑細選的。因此,在處理教材時,內容順序的調整要十分小心(否則容易導致教學目標的偏離),例子可以根據學生基礎和當地教學環境替換,但所換的例子要反映教科書的意圖,要能承載書上例子的教學任務。
三、結束語:把教研作為一種生活方式
本項活動在我國中學數學教育界具有很大影響力,已成為研究課堂教學問題,探討課堂教學規律,提高課堂教學質量和效益,促進教師專業化發展的重要平台。“重在參與,重在過程,重在交流,重在研究”的活動宗旨深入人心。我們欣喜地看到,本項活動模式上不斷創新,質量不斷提高。所有這些都得益於大家的共同智慧和創造,得益於各會員單位在準備過程中不斷加強和完善過程性、研究性,將本項活動宗旨具體化。在這幾天的展示與觀摩活動期間,做到了錦上添花,把各地的研究成果充分展示出來,通過現場互動交流,進一步發揮了這些成果的引領、示範作用。
教師專業化發展是一個沒有止境的過程,要求廣大教師把教學研究作為自己的生活常態甚至是一種生活方式,這是為人師表需要的一種態度,也是教師應具備的一種職業精神。做教研要有“默而識之,學而不厭,誨人不倦”的態度和精神:教研不是為了表演、作秀,要靜下心來,心無旁騖,要默默然領會在心,也就是要“默而識之”;教研還要有“學而不厭”的精神,因為它不能讓你升官發財,更多的是“枯燥乏味”,甚至費九牛二虎之力而難入其門,很多老師也因此而放棄,但這正是進步的開端,因此做教研要有“面壁十年”的準備;當教師必須有“誨人不倦”的態度,當今的教育,受功利化社會環境的污染,已經忘記了自己“教書育人”的根本職責,家長、社會、行政部門以“教育GDP”(升學率)論英雄,這種社會氛圍十分令人生厭。數學教學也不能置身事外,教師為了分數而不得不讓學生進行大運動量機械重複訓練,而數學的育人本分(培養思維能力、發展理性精神)則被拋到九霄雲外,這種沒有思想、沒有靈魂的教育已經“造就”了大批只會解題不會讀書的學生。在這樣的環境下,一個真正的數學教師,必須懷有一種菩薩心腸,無私地熱愛學生;還要有普度眾生的學識、精神、耐心、耐力,不厭其煩地把自己掌握的數學知識和領悟到的思想、精神傳遞給學生。惟有堅持“誨人不倦”的精神,我們才能在盡教書育人職責的同時,實現自己的人生價值,找到人生樂趣。
願我們數學教師真心誠意地熱愛教研,專心致志地研究教學,在教學過程中,隨時隨地思考,隨時隨地發現,隨時隨地實踐,隨時隨地體驗,隨時隨地領悟,隨時隨地反省。這是教研的真諦,也是教好書、做好人的真諦。
高中數學等比數列知識點總結 篇7
知識點概述
本節包括集合的概念、集合元素的特性、集合的表示方法、常見的特殊集合、集合的分類和集合間的基本關係等知識點,除了集合的表示方法中的描述法較難理解,其它的都多是好理解的知識,只需加強記憶。
知識點總結
方法:常用數軸或韋恩圖進行集合的交、並、補三種運算
1、包含關係子集
注意:有兩種可能(1)A是B的一部分;(2)A與B是同一集合。
反之:集合A不包含於集合B或集合B不包含集合A記作AB或BA
2、不含任何元素的集合叫做空集,記為
規定:空集是任何集合的子集,空集是任何非空集合的真子集
3、相等關係(55,且55,則5=5)
實例:設A={xx2—1=0}B={—11}元素相同
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
常見考點考法
集合是學習函式的基礎知識,在段考和高考中是必考內容。在段考中多考查集合間的子集和真子集關係,在高考中也是不可少的考查內容,多以選擇題和填空題的形式出現,經常出現在選擇填空題的前幾小題,難度不大。主要與函式和方程、不等式聯合考查的集合的表示方法和集合間的基本關係。
常見誤區提醒
1、集合的關係問題,有同學容易忽視空集這個特殊的集合,導致錯解。空集是任何集合的子集,是任何非空集合的真子集。
2、集合的運算要注意靈活運用韋恩圖和數軸,這實際上是數形結合的思想的具體運用。
3、集合的運算注意端點的取等問題。最好是直接代入原題檢驗。
4、集合中的元素具有確定性、互異性和無序性三個特徵,尤其是確定性和互異性。在解題中,要注意把握與運用,例如在解答含有參數問題時,千萬別忘了檢驗,否則很可能會因為不滿足互異性而導致結論錯誤。
高中數學等比數列知識點總結 篇8
一、集合有關概念
1. 集合的含義
2. 集合的中元素的三個特性:
(1) 元素的確定性如:世界上最高的山
(2) 元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y} (3) 元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{ } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5} (2) 集合的表示方法:列舉法與描述法。 注意:常用數集及其記法:
非負整數集(即自然數集) 記作:N
正整數集 N*或 N+整數集Z 有理數集Q 實數集R
1) 列舉法:{a,b,c}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{xR| x-3>2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集含有有限個元素的集合
(2) 無限集含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x=-5}
二、集合間的基本關係 1.“包含”關係—子集
注意:AB有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
B或BA 反之: 集合A不包含於集合B,或集合B不包含集合A,記作A2.“相等”關係:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x-1=0} B={-1,1}“元素相同則兩集合相等” 即:① 任何一個集合是它本身的子集。AA
②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
③如果 AB, BC ,那么 AC ④ 如果AB 同時 BA 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
nn-1有n個元素的集合,含有2個子集,2個真子集
例題:
下列四組對象,能構成集合的是 A某班所有高個子的學生 B著名的藝術家 C一切很大的書 D 倒數等於它自身的實數
2.集合{a,b,c }的真子集共有個
3.若集合M={y|y=x-2x+1,xR},N={x|x≥0},則M與N的關係是 .
4.設集合A=xx2,B=a,若AB,則a的取值範圍是
5.50名學生做的物理、化學兩種實驗,已知物理實驗做得正確得有40人,化學實驗做得正確得有31人,
兩種實驗都做錯得有4人,則這兩種實驗都做對的有人。
6. 用描述法表示圖中陰影部分的點(含邊界上的點)組成的集合M=.
7.已知集合A={x| x+2x-8=0}, B={x| x-5x+6=0}, C={x| x-mx+m-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值
高中數學等比數列知識點總結 篇9
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1)元素的確定性;
2)元素的互異性;
3)元素的無序性。
說明:(1)對於一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先後順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋大西洋印度洋北冰洋}
1)用拉丁字母表示集合:A={我校的籃球隊員}B={12345}。
2)集合的表示方法:列舉法與描述法。
注意啊:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N_或N+整數集Z有理數集Q實數集R
關於“屬於”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬於集合A記作a∈A,相反,a不屬於集合A記作a:A。
列舉法:把集合中的元素一一列舉出來,然後用一個大括弧括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。用確定的條件表示某些對象是否屬於這個集合的方法。
①語言描述法:例:{不是直角三角形的三角形}
②數學式子描述法:例:不等式x—3>2的解集是{x?R|x—3>2}或{x|x—3>2}
4、集合的分類:
1)有限集含有有限個元素的集合。
2)無限集含有無限個元素的集合。
3)空集不含任何元素的集合例:{x|x2=—5}。
二、集合間的基本關係
1、“包含”關係子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B或集合B不包含集合A記作AB或BA。
2、“相等”關係(5≥5,且5≤5,則5=5)
實例:設A={x|x2—1=0}B={—11}“元素相同”
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B。
①任何一個集合是它本身的子集。AA
②真子集:如果A?B且A?B那就說集合A是集合B的真子集,記作AB(或BA)
③如果ABBC那么AC
④如果AB同時BA那么A=B
3、不含任何元素的集合叫做空集,記為Φ。
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的運算
1、交集的定義:一般地,由所有屬於A且屬於B的元素所組成的集合叫做AB的交集。
記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、並集的定義:一般地,由所有屬於集合A或屬於集合B的元素所組成的集合,叫做AB的並集。記作:A∪B(讀作”A並B”),即A∪B={x|x∈A,或x∈B}。
3、交集與並集的性質:A∩A=AA∩φ=φA∩B=B∩A,A∪A=A,A∪φ=AA∪B=B∪A。
4、全集與補集
(1)補集:設S是一個集合,A是S的一個子集(即),由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
記作:CSA即CSA={x?x?S且x?A}。
(2)全集:如果集合S含有我們所要研究的各個集合的全部元素,這個集合就可以看作一個全集。通常用U來表示。
(3)性質:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U。
高中數學等比數列知識點總結 篇10
時光荏苒,歲月不居,轉眼間又是一個學年。送走了老學生,迎來了新 弟子。回憶過去的這一學年,我不得不感嘆時間的飛逝和生活的繁忙。正因為這繁忙,才使我感嘆教師工作的辛苦,可是,我們的辛苦終將換來碩果纍纍。那遠在海角天涯的問候便是對我們最大的安慰。回憶這一年的工作,總結下來就是這樣幾個字“愁過,累過,憂過,喜過。”是的,在這一年裡,我付出了很多,但我不後悔,因為我的付出取得了滿意的成績。回顧這一年,我將自己的工作總結如下:
一、 師德方面 嚴於律己,踏實工作。
面對全體學生,一視同仁,不歧視學生,不打罵學生,注意自己的言行,提高自己的思想認識和覺悟程度水平,做到愛崗敬業,學而不厭,誨人不倦,為人師表,治學嚴謹,還要保持良好的教態。因為我知道,老師的教學語言和教態對學生的學習有直接的影響。老師的教態好,學生就喜歡,他們聽課的興趣就高,接受知識也快。反之,學生就不喜歡,甚至討厭。所以,注重學生的整體發展,經常的和學生談心、談人生。師生關係非常融洽。受到學生的一致認可。他們在背後都叫我“安哥”。
二、 教育教學方面
為了更好的完成高三年級的複課工作,在學期初,我不但制訂了嚴密的工作計畫,同時也為自己制定了一學期的奮鬥目標。首先,上好一節課的前提是備課,為了備好每節課,我大量的閱讀各種複習資料,希望能更加完整並精簡的給學生呈現每節課的知識和做題方法。
每天晚上,我都會在網上查閱下節課的相關資料並加以整理。把一節課的內容整理成學生好學易懂的知識,使學生掌握起來很順手。學生自然也喜歡聽課,做起筆記來津津有味。同時,我知道,數學的枯燥乏味是學生聽課的最大的障礙。所以,我在業餘時間經常看一些課外書籍,並不斷思索著把數學知識和實際結合起來講,在我的課堂上學生很少走神,因為他們喜歡聽這樣的數學課。他們喜歡這樣知識淵博的數學老師。課外,我給學生布置了適合他們的作業,因為我帶了一個文科班和一個理科班,所以,不知作業也有所區別。學生能做但不好做。批作業時,我認真看完每本作業,給學生指出作業中存在的問題,我經常是在教室看作業,隨時可以給學生糾正作業中存在的問題。讓學生當場改正。有利於學生的糾錯意識。上自習時,我讓我的學生大膽提問,有些學生,一開始還不喜歡問老師題,後來,在我的鼓勵下,問問題很活躍。成績也就慢慢上去了。學生成績的提高,使我每天疲憊的心裡總有那么一點點的高興。
三,教研方面
因為我是高三年級數學備課組組長,同時也為了更好的指導我的複課工作,我認真研究陝西的高考大綱,並不斷的研究新課改地區的高考試題,並將自己看到的一些信息及時的反饋到我的課堂,取得一定的效果,在今年的高考中,我為我的學生爭取到了6分的成績。雖然這分數很少,但是,我已知足。同時,我堅持聽課,在聽課中學習老教師的經驗和新教師的新的思路的方法,我也鼓勵同組的老師互相
學習聽課,在這裡,我不得不提一下我尊敬的兩位老師,王北平老師和高天發老師,正是他們的指導使我不斷成長。
四,學校工作方面
這一學年,我除了擔任高三的數學教學外,還兼任了高三年級的教導副主任,主管學校的分類推進工作,在工作中,我嚴格按照學校的要求,制定了一學年的分類推進計畫,把幾乎所有的渴望生都安排在列,同時,自己也按照分類推進的要求對所帶班的學生進行了輔導。高考中不但學校的成績優異,我所帶的班級的成績也很是讓我欣慰,兩個班的平均成
高中數學等比數列知識點總結 篇11
緊扣新課程標準,在有限的時間吃透教材,分組討論定稿,每個人根據本班學生情況說課、主講、自評;積極利用各種教學資源,創造性地使用教材公開輪講,反覆聽評,從研、講、聽、評中推敲完善出精彩的案例。實踐表明,這種備課方式,既照顧到各班實際情況,又有利於教師之間的優勢互補,從而整體提高備課水平。
三。課堂教學,交往互動、共同發展
為保證新課程標準的落實,我們把課堂教學營造成學生主動探索的學習環境,學生在獲得知識和技能的同時,在過程方法、情感態度價值觀等方面都得到了充分發展,把數學教學變成了師生之間、學生之間交往互動,共同發展的過程。
在平時的教學實踐中,我們還注意記下學生學習中的閃光點或困惑,記下自已的所感、所思、所得,積累寶貴的第一手資料。教學經驗的積累和教訓的吸取,對今後改進課堂教學和提高教學水平十分有用。
課前準備不流於形式,變成一種實實在在的研究,教師的集體智慧得到充分發揮,課後的反思為以後的教學積累了許多有益的經驗與啟示。 “學生是教學活動的主體,教師成為教學活動的組織者、指導者、參與者。”這一觀念的確立,滿堂灌的教法就沒有了市場。無論是問題的提出,還是已有數據處理、數學結論的獲得等環節,都體現學生自主探索研究。突出過程性,注重學習結果更注重學習過程以及學生在學習過程中的感受和體驗。學生的智慧、能力、情感、信念水乳交融,心靈受到震撼,心理得到滿足,學生成了學習的主人,學習成了他們的需求,學中有發現,學中有樂趣,學中有收穫。實踐證明:營造情境,培養學生的主動探究精神是探究性學習的新空間、新途徑。
四.加快新教師的培養,做學者型教師
通過新老教師結對子等活動,數學組新教師在兩位老教師的悉心指導下,通過自身努力,半年時間內在課堂教學的各個方面都取得了長足進步,現在已經能夠勝任正常的教育教學工作。新教師的匯報課得到了上級主管領導及校領導的高度評價和充分肯定,多位教師在校內外的優質課比賽中取得優異成績。每位教師在做好正常教育教學工作的同時,通過多種途徑不斷學習提高,爭做研究性、學者型教師。
第一,全體教師參加宿遷市教育局新課程及研究性學習培訓。及時了解高中新課程改革的最新動態,認真研究新課程標準及新教材,立體建構起新課程改革下的數學教學框架,並在以後的教學工作中收到了良好效果。
第二,全體新教師利用節假日參加了由甘谷縣教育局組織的教師繼續教育培訓活動,認真聽專家講座,積極向其他教師學習寶貴經驗,提高了自身水平和能力。
第三,走出去引進來。在學校的統一安排下,多人次到甘谷縣一中,二中、天水市,蘭州市等地聽公開課、專家報告和講座;及時在集體備課活動中與同組成員分享討論共同提高。
一份耕耘,一份收穫,教學工作苦樂相伴。我們將本著“勤學、善思、實幹”的準則,一如既往,再接再厲,把教學工作搞得更出色。
高中數學等比數列知識點總結 篇12
★高中數學導數知識點
一、早期導數概念————特殊的形式大約在1629年法國數學家費馬研究了作曲線的切線和求函式極值的方法1637年左右他寫一篇手稿《求最大值與最小值的方法》。在作切線時他構造了差分f(A+E)—f(A),發現的因子E就是我們所說的導數f(A)。
二、17世紀————廣泛使用的“流數術”17世紀生產力的發展推動了自然科學和技術的發展在前人創造性研究的基礎上大數學家牛頓、萊布尼茨等從不同的角度開始系統地研究微積分。牛頓的微積分理論被稱為“流數術”他稱變數為流量稱變數的變化率為流數相當於我們所說的導數。牛頓的有關“流數術”的主要著作是《求曲邊形面積》、《運用無窮多項方程的計算法》和《流數術和無窮級數》流數理論的實質概括為他的重點在於一個變數的函式而不在於多變數的方程在於自變數的變化與函式的變化的比的構成最在於決定這個比當變化趨於零時的極限。
三、19世紀導數————逐漸成熟的理論1750年達朗貝爾在為法國科學家院出版的《百科全書》第五版寫的“微分”條目中提出了關於導數的一種觀點可以用現代符號簡單表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《無窮小分析概論》中定義導數如果函式y=f(x)在變數x的兩個給定的界限之間保持連續並且我們為這樣的變數指定一個包含在這兩個不同界限之間的值那么是使變數得到一個無窮小增量。19世紀60年代以後魏爾斯特拉斯創造了ε—δ語言對微積分中出現的各種類型的極限重加表達導數的定義也就獲得了今天常見的形式。
四、實無限將異軍突起微積分第二輪初等化或成為可能微積分學理論基礎大體可以分為兩個部分。一個是實無限理論即無限是一個具體的東西一種真實的存在另一種是潛無限指一種意識形態上的過程比如無限接近。就歷史來看兩種理論都有一定的道理。其中實無限用了150年後來極限論就是現在所使用的。光是電磁波還是粒子是一個物理學長期爭論的問題後來由波粒二象性來統一。微積分無論是用現代極限論還是150年前的理論都不是最好的手段。
★高中數學導數要點
1、求函式的單調性:
利用導數求函式單調性的基本方法:設函式yf(x)在區間(a,b)內可導,(1)如果恆f(x)0,則函式yf(x)在區間(a,b)上為增函式;(2)如果恆f(x)0,則函式yf(x)在區間(a,b)上為減函式;(3)如果恆f(x)0,則函式yf(x)在區間(a,b)上為常數函式。
利用導數求函式單調性的基本步驟:①求函式yf(x)的定義域;②求導數f(x);③解不等式f(x)0,解集在定義域內的不間斷區間為增區間;④解不等式f(x)0,解集在定義域內的不間斷區間為減區間。
反過來,也可以利用導數由函式的單調性解決相關問題(如確定參數的取值範圍):設函式yf(x)在區間(a,b)內可導,
(1)如果函式yf(x)在區間(a,b)上為增函式,則f(x)0(其中使f(x)0的x值不構成區間);
(2)如果函式yf(x)在區間(a,b)上為減函式,則f(x)0(其中使f(x)0的x值不構成區間);
(3)如果函式yf(x)在區間(a,b)上為常數函式,則f(x)0恆成立。
2、求函式的極值:
設函式yf(x)在x0及其附近有定義,如果對x0附近的所有的點都有f(x)f(x0)(或f(x)f(x0)),則稱f(x0)是函式f(x)的極小值(或極大值)。
可導函式的極值,可通過研究函式的單調性求得,基本步驟是:
(1)確定函式f(x)的定義域;(2)求導數f(x);(3)求方程f(x)0的全部實根,x1x2xn,順次將定義域分成若干個小區間,並列表:x變化時,f(x)和f(x)值的
變化情況:
(4)檢查f(x)的符號並由表格判斷極值。
3、求函式的最大值與最小值:
如果函式f(x)在定義域I記憶體在x0,使得對任意的xI,總有f(x)f(x0),則稱f(x0)為函式在定義域上的最大值。函式在定義域內的極值不一定唯一,但在定義域內的最值是唯一的。
求函式f(x)在區間[a,b]上的最大值和最小值的步驟:(1)求f(x)在區間(a,b)上的極值;
(2)將第一步中求得的極值與f(a),f(b)比較,得到f(x)在區間[a,b]上的最大值與最小值。
4、解決不等式的有關問題:
(1)不等式恆成立問題(絕對不等式問題)可考慮值域。
f(x)(xA)的值域是[a,b]時,
不等式f(x)0恆成立的充要條件是f(x)max0,即b0;
不等式f(x)0恆成立的充要條件是f(x)min0,即a0。
f(x)(xA)的值域是(a,b)時,
不等式f(x)0恆成立的充要條件是b0;不等式f(x)0恆成立的充要條件是a0。
(2)證明不等式f(x)0可轉化為證明f(x)max0,或利用函式f(x)的單調性,轉化為證明f(x)f(x0)0。
5、導數在實際生活中的套用:
實際生活求解最大(小)值問題,通常都可轉化為函式的最值。在利用導數來求函式最值時,一定要注意,極值點唯一的單峰函式,極值點就是最值點,在解題時要加以說明。
高中數學等比數列知識點總結 篇13
本學期我擔任高一(4)班的數學教學工作,一直本著實事求是、腳踏實地的工作原則,圓滿完成本學期的教學任務,並在思想水平、業務水平等方面有很大的進步,現就一學期的工作總結如下:
一、思想政治方面
一年來,我積極參加政治學習,政治學習筆記整理的認真細緻。我時刻用教師的職業道德要求來約束自己,愛崗敬業,嚴於律己,服從組織分配,對工作盡職盡責,任勞任怨,注重師德修養。我始終認為作為一名教師應把“師德”放在一個極其重要的位置上,因為這是教師的立身之本。本人奉守“學高為師,身正為范”的從業準則,從踏上講台的第一天,我就時刻嚴格要求自己,力爭做一個有崇高師德的人。熱愛學生,堅持“德育為首,育人為本”的原則,不僅在課堂上堅持德育滲透,而且注重從思想上、生活上、學習上全面關心學生,在學生評教中深受學生的敬重與歡迎。能嚴格遵守校級校規,嚴格按照作息上下班,團結同志,能與同事和睦相處。
二、教育教學方面
教學工作是學校各項工作的中心,也是檢驗一個教師工作成敗的關鍵。
(一)注意培養學生良好的學習習慣和學習方法
學生在從國中到高中的過渡階段,往往會有些不能適應新的學習環境。例如以往的學習方法不能適應高中的學習,不良的學習習慣和學習態度等一些問題困擾和制約著學生的學習。為了解決這些問題,我從下面幾方面下功夫:
1、改變學生學習數學的一些思想觀念,樹立學好數學的信心
在開學初,我就給他們指出高中數學學習較國中的要難度大,內容多,知識面廣,大家其實處在同一起跑線上,誰先跑,誰跑得有力,誰就會成功。對較差的學生,給予多的關心和指導,並幫助他們樹立信心;對驕傲的學生批評教育,讓他們不要放鬆學習。
2、改變學生不良的學習習慣,建立良好的學習方法和學習態度
開始,有些學生有不好的學習習慣,例如作業字跡潦草,不寫解答過程;不喜歡課前預習和課後複習;不會總結消化知識;對學習馬虎大意等。為了改變學生不良的學習習慣,我要求統一作業格式,表揚優秀作業,指導他們預習和複習,強調總結的重要性,讓學生寫章節小結,做錯題檔案,總結做題規律等。對做得好的同學全班表揚並推廣,不做或做得差的同學要批評。通過努力,大多數同學能很快接受,慢慢的建立起好的學習方法和認真的學習態度。
(二)日常數學教學的方法及對策
1、備課
本學期我根據教材內容及學生的實際情況設計課程教學,擬定教學方法,並對教學過程中遇到的問題儘可能的預先考慮到,認真寫好教案。高一雖然已經教過了幾輪,但是每一年的感覺都不一樣。從不敢因為教過而有所懈怠。我還是像一位新老師一樣認真閱讀新課標,鑽研新教材,熟悉教材內容,查閱教學資料,適當增減教學內容,認真細緻的備好每一節課,真正做到重點明確,難點分解。遇到難以解決的問題,就向老教師討教或在備課組內討論。其次,深入了解學生,根據學生的知識水平和接受能力設計教案,每一課都做到“有備而去”。 並積極聽老教師的課,取其所長,並不斷歸納總結經驗教訓。
2、課堂教學
針對#高中學生特點,堅持學生為主體,教師為主導、教學為主線,注重講練結合。在教學中注意抓住重點,突破難點。
課堂上我特別注意調動學生的積極性,加強師生交流,充分體現學生在學習過程中的主動性,讓學生學得輕鬆,學得愉快。在課堂上講得儘量少些,而讓學生自己動口動手動腦儘量多些;同時在每一堂課上都充分考慮每一個層次的學生學習需求和接受能力,讓各個層次的學生都得到提高。同時更新理念,堅持採用多媒體輔助教學,深受學生歡迎。每堂課都在課前做好充分的準備,並製作各種利於吸引學生注意力的有趣教具,課後及時對該課作好總結,寫好教學後記。
(三)課後輔導
課後在給學生解難答疑時耐心細緻,使學生在接受新知識的同時,不斷地對以往的知識進行複習鞏固。在“導師制”活動開展後,我負責一年四班x同學的數學學習,除了在課堂上關注她,課後也及時進行交流
高中數學等比數列知識點總結 篇14
一、求導數的方法
(1)基本求導公式
(2)導數的四則運算
(3)複合函式的導數
設在點x處可導,y=在點處可導,則複合函式在點x處可導,且即
二、關於極限
1、數列的極限:
粗略地說,就是當數列的項n無限增大時,數列的項無限趨向於A,這就是數列極限的描述性定義。記作:=A。如:
2、函式的極限:
當自變數x無限趨近於常數時,如果函式無限趨近於一個常數,就說當x趨近於時,函式的極限是,記作
三、導數的概念
1、在處的導數。
2、在的導數。
3。函式在點處的導數的幾何意義:
函式在點處的導數是曲線在處的切線的斜率,
即k=,相應的切線方程是
註:函式的導函式在時的函式值,就是在處的導數。
例、若=2,則=A—1B—2C1D
四、導數的綜合運用
(一)曲線的切線
函式y=f(x)在點處的導數,就是曲線y=(x)在點處的切線的斜率。由此,可以利用導數求曲線的切線方程。具體求法分兩步:
(1)求出函式y=f(x)在點處的導數,即曲線y=f(x)在點處的切線的斜率k=
(2)在已知切點坐標和切線斜率的條件下,求得切線方程為x。
高中數學等比數列知識點總結 篇15
1.“包含”關係—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關係(5≥5,且5≤5,則5=5)
實例:設A={2-1=0}B={-1,1}“元素相同”
結論:對於兩個集合A與B,如果集合A的`任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集
高中數學等比數列知識點總結 篇16
一、高中數列基本公式:
1、一般數列的通項an與前n項和Sn的關係:an=
2、等差數列的通項公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1為首項、ak為已知的第k項) 當d≠0時,an是關於n的一次式;當d=0時,an是一個常數。
3、等差數列的前n項和公式:Sn=
Sn=
Sn=
當d≠0時,Sn是關於n的二次式且常數項為0;當d=0時(a1≠0),Sn=na1是關於n的正比例式。
4、等比數列的通項公式: an= a1qn-1an= akqn-k
(其中a1為首項、ak為已知的第k項,an≠0)
5、等比數列的前n項和公式:當q=1時,Sn=n a1 (是關於n的正比例式);
當q≠1時,Sn=
Sn=
二、高中數學中有關等差、等比數列的結論
1、等差數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等差數列。
2、等差數列{an}中,若m+n=p+q,則
3、等比數列{an}中,若m+n=p+q,則
4、等比數列{an}的任意連續m項的和構成的數列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍為等比數列。
5、兩個等差數列{an}與{bn}的和差的數列{an+bn}、{an-bn}仍為等差數列。
6、兩個等比數列{an}與{bn}的積、商、倒數組成的數列仍為等比數列。
7、等差數列{an}的任意等距離的項構成的數列仍為等差數列。
8、等比數列{an}的任意等距離的項構成的數列仍為等比數列。
9、三個數成等差數列的設法:a-d,a,a+d;四個數成等差的設法:a-3d,a-d,,a+d,a+3d
10、三個數成等比數列的設法:a/q,a,aq;
四個數成等比的錯誤設法:a/q3,a/q,aq,aq3 (為什麼?)
高中數學等比數列知識點總結 篇17
一、函式的有關概念
1.函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函式.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值範圍A叫做函式的定義域;與x的值相對應的y值叫做函式值,函式值的集合{f(x)| x∈A }叫做函式的值域.
注意:
1.定義域:能使函式式有意義的實數x的集合稱為函式的定義域。 求函式的定義域時列不等式組的主要依據是: (1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函式是由一些基本函式通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數為零底不可以等於零,
(7)實際問題中的函式的定義域還要保證實際問題有意義.
母無關);②定義域一致 (兩點必須同時具備) (見課本21頁相關例2)
2.值域 : 先考慮其定義域 (1)觀察法 (2)配方法 (3)代換法
3. 函式圖象知識歸納
(1)定義:在平面直角坐標系中,以函式 y=f(x) , (x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的集合C,叫做函式 y=f(x),(x ∈A)的圖象.C上每一點的.坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . (2) 畫法 A、 描點法: B、 圖象變換法
常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對稱變換 4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間 (2)無窮區間
(3)區間的數軸表示. 5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:AB為從集合A到集合B的一個映射。記作“f(對應關係):A(原象)B(象)” 對於映射f:A→B來說,則應滿足:
(1)集合A中的每一個元素,在集合B中都有象,並且象是唯一的; (2)集合A中不同的元素,在集合B中對應的象可以是同一個; (3)不要求集合B中的每一個元素在集合A中都有原象。 6.分段函式
(1)在定義域的不同部分上有不同的解析表達式的函式。 (2)各部分的自變數的取值情況.
(3)分段函式的定義域是各段定義域的交集,值域是各段值域的並集. 補充:複合函式
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的複合函式。
二.函式的性質
1.函式的單調性(局部性質) (1)增函式
設函式y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的
任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說f(x)在區間D上是增函式.區間D稱為y=f(x)的單調增區間. 如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那么就說f(x)在這個區間上是減函式.區間D稱為y=f(x)的單調減區間.
注意:函式的單調性是函式的局部性質; (2) 圖象的特點
如果函式y=f(x)在某個區間是增函式或減函式,那么說函式y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函式的圖象從左到右是上升的,減函式的圖象從左到右是下降的. (3).函式單調區間與單調性的判定方法 (A) 定義法:
1 任取x,x∈D,且x<x; ○
2 作差f(x)-f(x); ○
3 變形(通常是因式分解和配方); ○
4 定號(即判斷差f(x)-f(x)的正負); ○
5 下結論(指出函式f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降) (C)複合函式的單調性
複合函式f[g(x)]的單調性與構成它的函式u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”
注意:函式的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 8.函式的奇偶性(整體性質) (1)偶函式
一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函式. (2).奇函式
一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函式.
(3)具有奇偶性的函式的圖象的特徵
偶函式的圖象關於y軸對稱;奇函式的圖象關於原點對稱. 利用定義判斷函式奇偶性的步驟: 1首先確定函式的定義域,並判斷其是否關於原點對稱; ○
2確定f(-x)與f(x)的關係; ○
3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)○
是偶函式;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函式. 注意:函式定義域關於原點對稱是函式具有奇偶性的必要條件.首先看函式的定義域是否關於原點對稱,若不對稱則函式是非奇非偶函式.若對稱,(1)再根據定義判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函式的圖象判定 . 9、函式的解析表達式
(1).函式的解析式是函式的一種表示方法,要求兩個變數之間的函式關係時,一是要求出它們之間的對應法則,二是要求出函式的定義域. (2)求函式的解析式的主要方法有: 1) 湊配法
2) 待定係數法 3) 換元法 4) 消參法
10.函式最大(小)值(定義見課本p36頁)
1 利用二次函式的性質(配方法)求函式的最大(小)值 ○
2 利用圖象求函式的最大(小)值 ○
3 利用函式單調性的判斷函式的最大(小)值: ○
如果函式y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函式y=f(x)在x=b處有最大值f(b);
如果函式y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函式y=f(x)在x=b處有最小值f(b); 例題:
1.求下列函式的定義域:
⑴y
⑵
y2.設函式f(x)的定義域為[0,1],則函式f(x2)的定義域為_ _
3.若函式f(x1)的定義域為[2,3],則函式f(2x1)的定義域是
x2(x1)
4.函式 ,若f(x)3,則x= f(x)x2(1x2)
2x(x2)
5.求下列函式的值域:
⑴yx22x3 (xR) ⑵yx22x3 x[1,2]
(3)yx
yf(2x1)的解析式
6.已知函式f(x1)x24x,求函式f(x),7.已知函式f(x)滿足2f(x)f(x)3x4,則
f(x)= 。
8.設f(x)是R上的奇函式,且當x[0,)時
,f(x)x(1,則當x(,0)時 f(x)在R上的解析式為 9.求下列函式的單調區間: ⑴ yx22x3
⑵yf(x)=
⑶ yx26x1
10.判斷函式yx31的單調性並證明你的結論. 11.設函式f(x)
1x2判斷它的奇偶性並且求證:1
ff(x). 2
1
高中數學等比數列知識點總結 篇18
有界性
設函式f(x)在區間X上有定義,如果存在M>0,對於一切屬於區間X上的x,恆有|f(x)|≤M,則稱f(x)在區間X上有界,否則稱f(x)在區間上無界.
單調性
設函式f(x)的定義域為D,區間I包含於D.如果對於區間上任意兩點x1及x2,當x1f(x2),則稱函式f(x)在區間I上是單調遞減的.單調遞增和單調遞減的函式統稱為單調函式.
奇偶性
設為一個實變數實值函式,若有f(—x)=—f(x),則f(x)為奇函式.
幾何上,一個奇函式關於原點對稱,亦即其圖像在繞原點做180度旋轉後不會改變.
奇函式的例子有x、sin(x)、sinh(x)和erf(x).
設f(x)為一實變數實值函式,若有f(x)=f(—x),則f(x)為偶函式.
幾何上,一個偶函式關於y軸對稱,亦即其圖在對y軸映射後不會改變.
偶函式的例子有|x|、x2、cos(x)和cosh(x).
偶函式不可能是個雙射映射.
連續性
在數學中,連續是函式的一種屬性.直觀上來說,連續的函式就是當輸入值的變化足夠小的時候,輸出的變化也會隨之足夠小的函式.如果輸入值的某種微小的變化會產生輸出值的一個突然的跳躍甚至無法定義,則這個函式被稱為是不連續的函式(或者說具有不連續性).
高中數學等比數列知識點總結 篇19
集合的分類:
(1)按元素屬性分類,如點集,數集。
(2)按元素的個數多少,分為有/無限集
關於集合的概念:
(1)確定性:作為一個集合的元素,必須是確定的,這就是說,不能確定的對象就不能構成集合,也就是說,給定一個集合,任何一個對象是不是這個集合的元素也就確定了。
(2)互異性:對於一個給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個元素都是不同的對象,相同的對象歸入同一個集合時只能算作集合的一個元素。
(3)無序性:判斷一些對象時候構成集合,關鍵在於看這些對象是否有明確的標準。
集合可以根據它含有的元素的個數分為兩類:
含有有限個元素的集合叫做有限集,含有無限個元素的集合叫做無限集。
非負整數全體構成的集合,叫做自然數集,記作N;
在自然數集內排除0的集合叫做正整數集,記作N+或Nx;
整數全體構成的集合,叫做整數集,記作Z;
有理數全體構成的集合,叫做有理數集,記作Q;(有理數是整數和分數的統稱,一切有理數都可以化成分數的形式。)
實數全體構成的集合,叫做實數集,記作R。(包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括整數和分數。數學上,實數直觀地定義為和數軸上的'點一一對應的數。)
1.列舉法:如果一個集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括弧“{}”內表示這個集合,例如,由兩個元素0,1構成的集合可表示為{0,1}.
有些集合的元素較多,元素的排列又呈現一定的規律,在不致於發生誤解的情況下,也可以列出幾個元素作為代表,其他元素用省略號表示。
例如:不大於100的自然數的全體構成的集合,可表示為{0,1,2,3,…,100}.
無限集有時也用上述的列舉法表示,例如,自然數集N可表示為{1,2,3,…,n,…}.
2.描述法:一種更有效地描述集合的方法,是用集合中元素的特徵性質來描述。
例如:正偶數構成的集合,它的每一個元素都具有性質:“能被2整除,且大於0”
而這個集合外的其他元素都不具有這種性質,因此,我們可以用上述性質把正偶數集合表示為
一般地,如果在集合I中,屬於集合A的任意一個元素x都具有性質p(x),而不屬於集合A的元素都不具有的性質p(x),則性質p(x)叫做集合A的一個特徵性質。於是,集合A可以用它的性質p(x)描述為{x∈I│p(x)}
例如:集合A={x∈R│x2-1=0}的特徵是X2-1=0
高中數學等比數列知識點總結 篇20
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那么a=-b,b=-a,a+b=0.0的反向量為0
AB-AC=CB.即“共同起點,指向被減”
a=(x,y)b=(x',y')則a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。
當λ>0時,λa與a同方向;
當λ1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)·b=λ(a·b)=(a·λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:①如果實數λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。
3、向量的的數量積
定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。
定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。
向量的數量積的坐標表示:a·b=x·x'+y·y'。
向量的數量積的運算率
a·b=b·a(交換率);
(a+b)·c=a·c+b·c(分配率);
向量的數量積的性質
a·a=|a|的平方。
a⊥b〈=〉a·b=0。
|a·b|≤|a|·|b|。