高三數學知識點歸納總結 篇1
不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
不等式的判定:
①常見的不等號有“>”“<”“≤”“≥”及“≠”。分別讀作“大於,小於,小於等於,大於等於,不等於”,其中“≤”又叫作不大於,“≥”叫作不小於;
②在不等式“a>b”或“a
③不等號的開口所對的數較大,不等號的尖頭所對的數較小;
④在列不等式時,一定要注意不等式關係的關鍵字,如:正數、非負數、不大於、小於等等。
高三數學知識點歸納總結 篇2
1.等差數列的定義
如果一個數列從第2項起,每一項與它的前一項的差等於同一個常數,那么這個數列就叫做等差數列,這個常數叫做等差數列的公差,通常用字母d表示.
2.等差數列的通項公式
若等差數列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.
3.等差中項
如果A=(a+b)/2,那么A叫做a與b的等差中項.
4.等差數列的常用性質
(1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).
(2)若{an}為等差數列,且m+n=p+q,
則am+an=ap+aq(m,n,p,q∈N_).
(3)若{an}是等差數列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數列.
(4)數列Sm,S2m-Sm,S3m-S2m,…也是等差數列.
(5)S2n-1=(2n-1)an.
(6)若n為偶數,則S偶-S奇=nd/2;
若n為奇數,則S奇-S偶=a中(中間項).
注意:
一個推導
利用倒序相加法推導等差數列的前n項和公式:
Sn=a1+a2+a3+…+an,①
Sn=an+an-1+…+a1,②
①+②得:Sn=n(a1+an)/2
兩個技巧
已知三個或四個數組成等差數列的一類問題,要善於設元.
(1)若奇數個數成等差數列且和為定值時,可設為…,a-2d,a-d,a,a+d,a+2d,….
(2)若偶數個數成等差數列且和為定值時,可設為…,a-3d,a-d,a+d,a+3d,…,其餘各項再依據等差數列的定義進行對稱設元.
四種方法
等差數列的判斷方法
(1)定義法:對於n≥2的任意自然數,驗證an-an-1為同一常數;
(2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;
(3)通項公式法:驗證an=pn+q;
(4)前n項和公式法:驗證Sn=An2+Bn.
註:後兩種方法只能用來判斷是否為等差數列,而不能用來證明等差數列.
高三數學知識點歸納總結 篇3
第一部分集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;
(2)注意:討論的時候不要遺忘了的情況。
第二部分函式與導數
1、映射:注意
①第一個集合中的元素必須有象;
②一對一,或多對一。
2、函式值域的求法:
①分析法;
②配方法;
③判別式法;
④利用函式單調性;
⑤換元法;
⑥利用均值不等式;
⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);
⑧利用函式有界性;
⑨導數法
3、複合函式的有關問題
(1)複合函式定義域求法:
①若f(x)的定義域為〔a,b〕,則複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出。
②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。
(2)複合函式單調性的判定:
①首先將原函式分解為基本函式:內函式與外函式;
②分別研究內、外函式在各自定義域內的單調性;
③根據“同性則增,異性則減”來判斷原函式在其定義域內的單調性。
注意:外函式的定義域是內函式的值域。
4、分段函式:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5、函式的奇偶性
(1)函式的定義域關於原點對稱是函式具有奇偶性的必要條件;
(2)是奇函式;
(3)是偶函式;
(4)奇函式在原點有定義,則;
(5)在關於原點對稱的單調區間內:奇函式有相同的單調性,偶函式有相反的單調性;
(6)若所給函式的解析式較為複雜,應先等價變形,再判斷其奇偶性;
高三數學知識點歸納總結 篇4
1.有關平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反覆遇到的,而且是以各種各樣的問題(包括論證、計算角、與距離等)中不可缺少的內容,因此在主體幾何的總複習中,首先應從解決“平行與垂直”的有關問題著手,通過較為基本問題,熟悉公理、定理的內容和功能,通過對問題的分析與概括,掌握立體幾何中解決問題的規律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉化的思想,以提高邏輯思維能力和空間想像能力。
2.判定兩個平面平行的.方法:
(1)根據定義--證明兩平面沒有公共點;
(2)判定定理--證明一個平面內的兩條相交直線都平行於另一個平面;
(3)證明兩平面同垂直於一條直線。
3.兩個平面平行的主要性質:
(1)由定義知:“兩平行平面沒有公共點”;
(2)由定義推得:“兩個平面平行,其中一個平面內的直線必平行於另一個平面”;
(3)兩個平面平行的性質定理:“如果兩個平行平面同時和第三個平面相交,那么它們的交線平行”;
(4)一條直線垂直於兩個平行平面中的一個平面,它也垂直於另一個平面;
(5)夾在兩個平行平面間的平行線段相等;
(6)經過平面外一點只有一個平面和已知平面平行。
高三數學知識點歸納總結 篇5
一個推導
利用錯位相減法推導等比數列的前n項和:Sn=a1+a1q+a1q2+…+a1qn-1,
同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,
兩式相減得(1-q)Sn=a1-a1qn,∴Sn=(q≠1).
兩個防範
(1)由an+1=qan,q≠0並不能立即斷言{an}為等比數列,還要驗證a1≠0.
(2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.
三種方法
等比數列的判斷方法有:
(1)定義法:若an+1/an=q(q為非零常數)或an/an-1=q(q為非零常數且n≥2且n∈N_),則{an}是等比數列.
(2)中項公式法:在數列{an}中,an≠0且a=an·an+2(n∈N_),則數列{an}是等比數列.
(3)通項公式法:若數列通項公式可寫成an=c·qn(c,q均是不為0的常數,n∈N_),則{an}是等比數列.
註:前兩種方法也可用來證明一個數列為等比數列.
高三數學知識點歸納總結 篇6
不等式這部分知識,滲透在中學數學各個分支中,有著十分廣泛的套用。因此不等式套用問題體現了一定的綜合性、靈活多樣性,對數學各部分知識融會貫通,起到了很好的促進作用。在解決問題時,要依據題設與結論的結構特點、內在聯繫、選擇適當的解決方案,最終歸結為不等式的求解或證明。不等式的套用範圍十分廣泛,它始終貫串在整箇中學數學之中。
諸如集合問題,方程(組)的解的討論,函式單調性的研究,函式定義域的確定,三角、數列、複數、立體幾何、解析幾何中的值、最小值問題,無一不與不等式有著密切的聯繫,許多問題,最終都可歸結為不等式的求解或證明。
知識整合
1、解不等式的核心問題是不等式的同解變形,不等式的性質則是不等式變形的理論依據,方程的根、函式的性質和圖象都與不等式的解法密切相關,要善於把它們有機地聯繫起來,互相轉化。在解不等式中,換元法和圖解法是常用的技巧之一。通過換元,可將較複雜的不等式化歸為較簡單的或基本不等式,通過構造函式、數形結合,則可將不等式的解化歸為直觀、形象的圖形關係,對含有參數的不等式,運用圖解法可以使得分類標準明晰。
2、整式不等式(主要是一次、二次不等式)的解法是解不等式的基礎,利用不等式的性質及函式的單調性,將分式不等式、絕對值不等式等化歸為整式不等式(組)是解不等式的基本思想,分類、換元、數形結合是解不等式的常用方法。方程的根、函式的性質和圖象都與不等式的解密切相關,要善於把它們有機地聯繫起來,相互轉化和相互變用。
3、在不等式的求解中,換元法和圖解法是常用的技巧之一,通過換元,可將較複雜的不等式化歸為較簡單的或基本不等式,通過構造函式,將不等式的解化歸為直觀、形象的圖象關係,對含有參數的不等式,運用圖解法,可以使分類標準更加明晰。
4、證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法。要依據題設、題斷的結構特點、內在聯繫,選擇適當的證明方法,要熟悉各種證法中的推理思維,並掌握相應的步驟,技巧和語言特點。比較法的一般步驟是:作差(商)→變形→判斷符號(值)。
高三數學知識點歸納總結 篇7
①正稜錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正稜錐的斜高)。
②正稜錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正稜錐的高、側棱、側棱在底面內的射影也組成一個直角三角形。
⑶特殊稜錐的頂點在底面的射影位置:
①稜錐的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心。
②稜錐的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心。
③稜錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心。
④稜錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心。
⑤三稜錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心。
⑥三稜錐的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心。
⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等於球半徑;
⑧每個四面體都有內切球,球心是四面體各個二面角的平分面的交點,到各面的距離等於半徑。
[注]:
i、各個側面都是等腰三角形,且底面是正方形的稜錐是正四稜錐。(×)(各個側面的等腰三角形不知是否全等)
ii、若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直。
簡證:AB⊥CD,AC⊥BD
BC⊥AD。令得,已知則。
iii、空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形。
iv、若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形。
簡證:取AC中點,則平面90°易知EFGH為平行四邊形
EFGH為長方形。若對角線等,則為正方形。
高三數學知識點歸納總結 篇8
付正軍:高考數學中有函式、數列、三角函式、平面向量、不等式、立體幾何等九大章節,主要是考函式和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函式的性質,包括函式的單調性、奇偶性;第二是函式的解答題,重點考察的是二次函式和高次函式,分函式和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二個是平面向量和三角函式。重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函式的圖像和性質,這裡重點掌握正弦函式和餘弦函式的性質,第三,正弦定理和餘弦定理來解三角形。難度比較小。
第三,是數列,數列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四,空間向量和立體幾何。在裡面重點考察兩個方面:一個是證明;一個是計算。
第五,機率和統計,這一板塊主要是屬於數學套用問題的範疇,當然應該掌握下面幾個方面,第一等可能的機率,第二事件,第三是獨立事件,還有獨立重複事件發生的機率。
第六,解析幾何,這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結下面五類常考的題型,包括第一類所講的直線和曲線的位置關係,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這裡我相等的是,這道題儘管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
第七,押軸題,考生在備考複習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,採取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
高三數學知識點歸納總結 篇9
三角函式。
注意歸一公式、誘導公式的正確性。
數列題。
1、證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2、最後一問證明不等式成立時,如果一端是常數,另一端是含有n的`式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3、證明不等式時,有時構造函式,利用函式單調性很簡單
立體幾何題。
1、證明線面位置關係,一般不需要去建系,更簡單;
2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3、注意向量所成的角的餘弦值(範圍)與所求角的餘弦值(範圍)的關係。
機率問題。
1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2、搞清是什麼機率模型,套用哪個公式;
3、記準均值、方差、標準差公式;
4、求機率時,正難則反(根據p1+p2+……+pn=1);
5、注意計數時利用列舉、樹圖等基本方法;
6、注意放回抽樣,不放回抽樣;
正弦、餘弦典型例題。
1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為
2、已知α為銳角,且,則α的度數是A、30°B、45°C、60°D、90°
3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數是A、75°B、90°C、105°D、120°
4、若∠A為銳角,且,則A=A、15°B、30°C、45°D、60°
5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。
正弦、餘弦解題訣竅。
1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。
2、已知三邊,或兩邊及其夾角用餘弦定理
3、餘弦定理對於確定三角形形狀非常有用,只需要知道角的餘弦值為正,為負,還是為零,就可以確定是鈍角。直角還是銳角。
高三數學知識點歸納總結 篇10
1、三類角的求法。
①找出或作出有關的角。
②證明其符合定義,並指出所求作的角。
③計算大小(解直角三角形,或用餘弦定理)。
2、正稜柱——底面為正多邊形的直稜柱。
正稜錐——底面是正多邊形,頂點在底面的射影是底面的中心。
正稜錐的計算集中在四個直角三角形中。
3、怎樣判斷直線l與圓C的位置關係?
圓心到直線的距離與圓的半徑比較。
直線與圓相交時,注意利用圓的“垂徑定理”。
4、對線性規劃問題:作出可行域,作出以目標函式為截距的直線,在可行域內平移直線,求出目標函式的最值。
高三數學知識點歸納總結 篇11
第一部分集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;
(2)注意:討論的時候不要遺忘了的情況。
第二部分函式與導數
1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。
2、函式值域的求法:①分析法;②配方法;③判別式法;④利用函式單調性;⑤換元法;⑥利用均值不等式;⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函式有界性(、等);⑨導數法
3、複合函式的有關問題
(1)複合函式定義域求法:
①若f(x)的定義域為〔a,b〕,則複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出
②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域。
(2)複合函式單調性的判定:
①首先將原函式分解為基本函式:內函式與外函式;
②分別研究內、外函式在各自定義域內的單調性;
③根據“同性則增,異性則減”來判斷原函式在其定義域內的單調性。
注意:外函式的定義域是內函式的值域。
4、分段函式:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5、函式的奇偶性
⑴函式的定義域關於原點對稱是函式具有奇偶性的必要條件;
⑵是奇函式;
⑶是偶函式;
⑷奇函式在原點有定義,則;
⑸在關於原點對稱的單調區間內:奇函式有相同的單調性,偶函式有相反的單調性;
(6)若所給函式的解析式較為複雜,應先等價變形,再判斷其奇偶性;
1、對於函式f(x),如果對於定義域內任意一個x,都有f(—x)=—f(x),那么f(x)為奇函式;
2、對於函式f(x),如果對於定義域內任意一個x,都有f(—x)=f(x),那么f(x)為偶函式;
3、一般地,對於函式y=f(x),定義域內每一個自變數x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關於點(a,b)成中心對稱;
4、一般地,對於函式y=f(x),定義域內每一個自變數x都有f(a+x)=f(a—x),則它的圖象關於x=a成軸對稱。
5、函式是奇函式或是偶函式稱為函式的奇偶性,函式的奇偶性是函式的整體性質;
6、由函式奇偶性定義可知,函式具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則—x也一定是定義域內的一個自變數(即定義域關於原點對稱)。
高三數學知識點歸納總結 篇12
三角函式
注意歸一公式、誘導公式的正確性
數列題
1.證明一個數列是等差(等比)數列時,最後下結論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數列;
2.最後一問證明不等式成立時,如果一端是常數,另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數學歸納法(用數學歸納法時,當n=k+1時,一定利用上n=k時的假設,否則不正確。利用上假設後,如何把當前的式子轉化到目標式子,一般進行適當的放縮,這一點是有難度的。簡潔的方法是,用當前的式子減去目標式子,看符號,得到目標式子,下結論時一定寫上綜上:由①②得證;
3.證明不等式時,有時構造函式,利用函式單調性很簡單
立體幾何題
1.證明線面位置關係,一般不需要去建系,更簡單;
2.求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;
3.注意向量所成的角的餘弦值(範圍)與所求角的餘弦值(範圍)的關係。
機率問題
1.搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數;
2.搞清是什麼機率模型,套用哪個公式;
3.記準均值、方差、標準差公式;
4.求機率時,正難則反(根據p1+p2+...+pn=1);5.注意計數時利用列舉、樹圖等基本方法;6.注意放回抽樣,不放回抽樣;
高三數學知識點歸納總結 篇13
本學期開學以來,在校園創先爭優活動的指引下,高三數學備課組8位教師教師結合本學期教學計畫,認真學習校園的有關要求,認真履行備課組長與教師的職責,認真完成校園的各項工作,用心組織備課活動,加強學科的理論學習,使數學組成為團結和諧、勤奮、互助合作潛力較強的備課組。現將本學期工作總結如下:
一、教學常規方面
1、有計畫的安排高三第二學期的教學工作計畫。
新學期開課的第一天,備課組進行了第一次活動。該次活動的主題是制定本學期的教學工作計畫。在教學過程中,堅持間周一次的關於教學工作狀況總結的備課組活動,發現狀況,及時討論及時解決。
2、集思廣益,加強民眾備課
高三數學備課組,做到了:每個教學環節、每個共案都能在討論中確定;備課組間周一次大的活動,資料包括有關教學進度的安排、疑難問題的分析討論研究,數學教學的最新動態、數學教學的改革與創新等。一般每次備課組活動都有專人主要負責發言,時間為兩節課。經過精心的準備,每次的備課組活動都能解決一到幾個相關的問題,各備課組成員的教學研究水平也在不知不覺中得到了提高。
3、嚴格落實教學常規,提高教學效益
按照校園的要求,用心認真地做好課前的備課資料的蒐集工作,然後民眾備課。每周一測,要求要有必須的知識覆蓋面,有必須的難度和深度,由專人負責出題;每次月考的測驗題,也由專人負責出題,兼顧各班的學生水平,並要到達必須的預期效果。
4、做好試卷命題,閱卷和質量分析,提出改善的.意見和措施。
備課組的精誠合作是取得成績的關鍵,我們的備課組做事十分齊心。我們堅持民眾備課。民眾備課使我們對教材的認識到達統一,理解更深刻,時間安排一致。除了規定的時間民眾備課外,我們還經常在一齊討論,解決問題。其次,統一測試、統一複習資料。平時,備課組安排老師出單元資料、檢測題,然後統一使用。在高考複習階段,組長安排每個老師負責出各章節的複習資料、複習題,資料共享。
二、加強業務學習,建立團結和諧昂揚向上的民眾
備課組共有x位教師,年青教師x位。中年青教師占百分之八十,但他們好學上進,業務素質高。本學期洪國清老師上了一節校級示範課,充分體現以學生為主體的教學模式,教學效果非常好,得到了聽課老師一致好評。我們高三數學備課組組風正,教風好,是一支個性能吃苦,個性能戰鬥的團隊,得到校園及年級組領導的一致好評。
三、今後工作的思考
1、學習:向大綱學習,向書本學習,向同行學習,理解新知識,改變舊觀念,用心推行新課改;
2、推行新課改:提高課堂教學效率,真正實施教學重心前置;課堂上要做到重點的要精講,難點要巧講,該講的講到位,不該講的直接不講;
3、抓輔導,抓糾錯,抓答疑:進一步利用周周練,適當的時間做好補差工作,關心愛護後進生,堅信讓每個學生成功;提高錯題集的使用工作,做到有錯必糾,有批必評;縮小班級之間的差距;
最後,我們這個數學備課組力爭在今年被評為校級優秀備課組,在新的學期,我們深知領導的要求,也深知學生家長的期盼,更深知自己的壓力和職責,我們將把壓力變為動力,更加努力,做到愛崗敬業,踏實工作,相信有領導的關心和幫忙,有我們組內教師的工作熱情和幹勁,我堅信我們已出色的完成了本屆高三數學教學任務,本屆學生的高考成績也一定最優。
高三數學知識點歸納總結 篇14
1.數列的定義、分類與通項公式
(1)數列的定義:
①數列:按照一定順序排列的一列數.
②數列的項:數列中的每一個數.
(2)數列的分類:
分類標準類型滿足條件
項數有窮數列項數有限
無窮數列項數無限
項與項間的大小關係遞增數列an+1>an其中n∈N_
遞減數列an+1
常數列an+1=an
(3)數列的通項公式:
如果數列{an}的第n項與序號n之間的關係可以用一個式子來表示,那么這個公式叫做這個數列的通項公式.
2.數列的遞推公式
如果已知數列{an}的首項(或前幾項),且任一項an與它的前一項an-1(n≥2)(或前幾項)間的關係可用一個公式來表示,那么這個公式叫數列的遞推公式.
3.對數列概念的理解
(1)數列是按一定“順序”排列的一列數,一個數列不僅與構成它的“數”有關,而且還與這些“數”的排列順序有關,這有別於集合中元素的無序性.因此,若組成兩個數列的數相同而排列次序不同,那么它們就是不同的兩個數列.
(2)數列中的數可以重複出現,而集合中的元素不能重複出現,這也是數列與數集的區別.
4.數列的函式特徵
數列是一個定義域為正整數集N_(或它的有限子集{1,2,3,…,n})的特殊函式,數列的通項公式也就是相應的函式解析式,即f(n)=an(n∈N_).
高三數學知識點歸納總結 篇15
等式的性質:
①不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
cbac
運算性質有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關係有兩種:和即推出關係和等價關係。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和套用不等式性質。
②關於不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函式性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關係。
高中數學集合複習知識點
任一A,B,記做AB
AB,BA ,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)-card(AB)
(1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有①確定性;②互異性;③無序性
2.集合表示方法①列舉法;②描述法;③韋恩圖;④數軸法
(3)集合的運算
①A∩(B∪C)=(A∩B)∪(A∩C)
②Cu(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
(4)集合的性質
n元集合的字集數:2n
真子集數:2n-1;
非空真子集數:2n-2
高中數學集合知識點歸納
1、集合的概念
集合是數學中最原始的不定義的概念,只能給出,描述性說明:某些制定的且不同的對象集合在一起就稱為一個集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。
集合是一個確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個集合。
2、元素與集合的關係元素與集合的關係有屬於和不屬於兩種:
元素a屬於集合A,記做a∈A;元素a不屬於集合A,記做a?A。
3、集合中元素的特性
(1)確定性:設A是一個給定的集合,_是某一具體對象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互異性:“集合張的元素必須是互異的”,就是說“對於一個給定的集合,它的任何兩個元素都是不同的”。
(3)無序性:集合與其中元素的排列次序無關,如集合{a,b,c}與集合{c,b,a}是同一個集合。
4、集合的分類
集合科根據他含有的元素個數的多少分為兩類:
有限集:含有有限個元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個數是可數的,因此兩個集合是有限集。
無限集:含有無限個元素的集合,如“到平面上兩個定點的距離相等於所有點”“所有的三角形”,組成上述集合的元素不可數的,因此他們是無限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯F,如{|R|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規定常見的數集用特定的字母表示,下面是幾種常見的數集表示方法,請牢記。
(1)全體非負整數的集合通常簡稱非負整數集(或自然數集),記做N。
(2)非負整數集內排出0的集合,也稱正整數集,記做N_或N+。
(3)全體整數的集合通常簡稱為整數集Z。
(4)全體有理數的集合通常簡稱為有理數集,記做Q。
(5)全體實數的集合通常簡稱為實數集,記做R。
高三數學知識點歸納總結 篇16
第一:高考數學中有函式、數列、三角函式、平面向量、不等式、立體幾何等九大章節。
主要是考函式和導數,這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函式的性質,包括函式的單調性、奇偶性;第二是函式的解答題,重點考察的是二次函式和高次函式,分函式和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。
第二:平面向量和三角函式。
重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函式的圖像和性質,這裡重點掌握正弦函式和餘弦函式的性質,第三,正弦定理和餘弦定理來解三角形。難度比較小。
第三:數列。
數列這個板塊,重點考兩個方面:一個通項;一個是求和。
第四:空間向量和立體幾何。
在裡面重點考察兩個方面:一個是證明;一個是計算。
第五:機率和統計。
這一板塊主要是屬於數學套用問題的範疇,當然應該掌握下面幾個方面,第一……等可能的機率,第二………事件,第三是獨立事件,還有獨立重複事件發生的機率。
第六:解析幾何。
這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當然這一類題,我總結下面五類常考的題型,包括第一類所講的直線和曲線的位置關係,這是考試最多的內容。考生應該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當然這裡我相等的是,這道題儘管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當,因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準確度,這是我們所講的第六大板塊。
第七:押軸題。
考生在備考複習時,應該重點不等式計算的方法,雖然說難度比較大,我建議考生,採取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。
高三數學知識點歸納總結 篇17
必修一
第一章:集合和函式的基本概念
這一章的易錯點,都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就會丟分。次一級的知識點就是集合的韋恩圖、會畫圖,掌握了這些,集合的“並、補、交、非”也就解決了。
還有函式的定義域和函式的單調性、增減性的概念,這些都是函式的基礎而且不難理解。在第一輪複習中一定要反覆去記這些概念,最好的方法是寫在筆記本上,每天至少看上一遍。
第二章:基本初等函式
——指數、對數、冪函式三大函式的運算性質及圖像
函式的幾大要素和相關考點基本都在函式圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函式的運算公式,多記多用,多做一點練習,基本就沒問題。
函式圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函式圖像,定義域、值域、零點等等。對於冪函式還要搞清楚當指數冪大於一和小於一時圖像的不同及函式值的大小關係,這也是常考點。另外指數函式和對數函式的對立關係及其相互之間要怎樣轉化等問題,需要著重回看課本例題。
第三章:函式的套用
這一章主要考是函式與方程的結合,其實就是函式的零點,也就是函式圖像與X軸的交點。這三者之間的轉化關係是這一章的重點,要學會在這三者之間靈活轉化,以求能最簡單的解決問題。關於證明零點的方法,直接計算加得必有零點,連續函式在x軸上方下方有定義則有零點等等,這些難點對應的證明方法都要記住,多練習。二次函式的零點的Δ判別法,這個需要你看懂定義,多畫多做題。
必修二
第一章:空間幾何
三視圖和直觀圖的繪製不算難,但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物,這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推(建議用紙做一個立方體來找感覺)。
在做題時結合草圖是有必要的,不能單憑想像。後面的錐體、柱體、台體的表面積和體積,把公式記牢問題就不大。
第二章:點、直線、平面之間的位置關係
這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生多看圖。自己畫草圖的時候要嚴格注意好實線虛線,這是個規範性問題。
關於這一章的內容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,大多同學即使知道有這個概念,也無法理解怎么在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。
第三章:直線與方程
這一章主要講斜率與直線的位置關係,只要搞清楚直線平行、垂直的斜率表示問題就錯不了。需要注意的是當直線垂直時斜率不存在的情況是考試中的常考點。另外直線方程的幾種形式所涉及到的一般公式,會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,只要直接套用公式就行,沒什麼難點。
第四章:圓與方程
能熟練地把一般式方程轉化為標準方程,通常的考試形式是等式的一邊含根號,另一邊不含,這時就要注意開方後定義域或值域的限制。通過點到點的距離、點到直線的距離、圓半徑的大小關係來判斷點與圓、直線與圓、圓與圓的位置關係。另外注意圓的對稱性引起的相切、相交等的多種情況,自己把幾種對稱的形式羅列出來,多思考就不難理解了。
必修三
總的來說這一本書難度不大,只是比較繁瑣,需要有耐心的去畫圖去計算。
程式框圖與三種算法語句的結合,及框圖的算法表示,不要用常規的語言來理解,否則你會在這樣的題型中栽跟頭。
秦九韶算法是重點,要牢記算法的公式。
統計就是對一堆數據的處理,考試也是以計算為主,會從條形圖中計算出中位數等數字特徵,對於回歸問題,只要記住公式,也就是個計算問題。
機率,主要就只幾何概型、古典概型。幾何概型只要會找表示所求事件的長度面積等,古典概型只要能表示出全部事件就可以。
必修四
第一章:三角函式
考試必在這一塊出題,且題量不小!誘導公式和基本三角函式圖像的一些性質,沒有太大難度,只要會畫圖就行。難度都在三角函式形函式的振幅、頻率、周期、相位、初相上,及根據最值計算A、B的值和周期,及恆等變化時的圖像及性質變化,這部分的知識點內容較多,需要多花時間,不要再定義上死扣,要從圖像和例題入手。
第二章:平面向量
向量的運算性質及三角形法則、平行四邊形法則的難度都不大,只要在計算的時候記住要“同起點的向量”這一條就OK了。向量共線和垂直的數學表達,是計算當中經常用到的公式。向量的共線定理、基本定理、數量積公式。分點坐標公式是重點內容,也是難點內容,要花心思記憶。
第三章:三角恆等變換
這一章公式特別多,像差倍半角公式這類內容常會出現,所以必須要記牢。由於量比較大,記憶難度大,所以建議用紙寫好後貼在桌子上,天天都要看。要提一點,就是三角恆等變換是有一定規律的,記憶的時候可以集合三角函式去記。
必修五
第一章:解三角形
掌握正弦、餘弦公式及其變式、推論、三角面積公式即可。
第二章:數列
等差、等比數列的通項公式、前n項及一些性質常出現於填空、解答題中,這部分內容學起來比較簡單,但考驗對其推導、計算、活用的層面較深,因此要仔細。考試題中,通項公式、前n項和的內容出現頻次較多,這類題看到後要帶有目的的去推導就沒問題了。
第三章:不等式
這一章一般用線性規劃的形式來考察學生,這種題通常是和實際問題聯繫的,所以要會讀題,從題中找不等式,畫出線性規劃圖,然後再根據實際問題的限制要求來求最值。
高三數學知識點歸納總結 篇18
1、函式的奇偶性
(1)若f(x)是偶函式,那么f(x)=f(-x);
(2)若f(x)是奇函式,0在其定義域內,則f(0)=0(可用於求參數);
(3)判斷函式奇偶性可用定義的等價形式:f(x)±f(-x)=0或(f(x)≠0);
(4)若所給函式的解析式較為複雜,應先化簡,再判斷其奇偶性;
(5)奇函式在對稱的單調區間內有相同的單調性;偶函式在對稱的單調區間內有相反的單調性;
2、複合函式的有關問題
(1)複合函式定義域求法:若已知的定義域為[a,b],其複合函式f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當於x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函式的問題一定要注意定義域優先的原則。
(2)複合函式的單調性由“同增異減”判定;
3、函式圖像(或方程曲線的對稱性)
(1)證明函式圖像的對稱性,即證明圖像上任意點關於對稱中心(對稱軸)的`對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關於對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關於y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關於點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函式y=f(x)對x∈R時,f(a+x)=f(a-x)恆成立,則y=f(x)圖像關於直線x=a對稱;
(6)函式y=f(x-a)與y=f(b-x)的圖像關於直線x=對稱;
4、函式的周期性
(1)y=f(x)對x∈R時,f(x+a)=f(x-a)或f(x-2a)=f(x)(a>0)恆成立,則y=f(x)是周期為2a的周期函式;
(2)若y=f(x)是偶函式,其圖像又關於直線x=a對稱,則f(x)是周期為2︱a︱的周期函式;
(3)若y=f(x)奇函式,其圖像又關於直線x=a對稱,則f(x)是周期為4︱a︱的周期函式;
(4)若y=f(x)關於點(a,0),(b,0)對稱,則f(x)是周期為2的周期函式;
(5)y=f(x)的圖象關於直線x=a,x=b(a≠b)對稱,則函式y=f(x)是周期為2的周期函式;
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函式;
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恆成立a≥[f(x)]max,;a≤f(x)恆成立a≤[f(x)]min;
7、(1)(a>0a≠1,b>0,n∈R+);
(2)logaN=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣“同正異負”記憶;
(4)alogaN=N(a>0,a≠1,N>0);
8、判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且;
(2)B中元素不一定都有原象,並且A中不同元素在B中可以有相同的象;
9、能熟練地用定義證明函式的單調性,求反函式,判斷函式的奇偶性。
10、對於反函式,應掌握以下一些結論:
(1)定義域上的單調函式必有反函式;
(2)奇函式的反函式也是奇函式;
(3)定義域為非單元素集的偶函式不存在反函式;
(4)周期函式不存在反函式;
(5)互為反函式的兩個函式具有相同的單調性;
(6)y=f(x)與y=f-1(x)互為反函式,設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);
11、處理二次函式的問題勿忘數形結合
二次函式在閉區間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區間的相對位置關係;
12、依據單調性
利用一次函式在區間上的保號性可解決求一類參數的範圍問題;
13、恆成立問題的處理方法
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解;
a(1)=a,a(n)為公差為r的等差數列
通項公式:
a(n)=a(n-1)+r=a(n-2)+2r=、=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r、
可用歸納法證明。
n=1時,a(1)=a+(1-1)r=a。成立。
假設n=k時,等差數列的通項公式成立。a(k)=a+(k-1)r
則,n=k+1時,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r、
通項公式也成立。
因此,由歸納法知,等差數列的通項公式是正確的。
求和公式:
S(n)=a(1)+a(2)+、+a(n)
=a+(a+r)+、+[a+(n-1)r]
=na+r[1+2+、+(n-1)]
=na+n(n-1)r/2
同樣,可用歸納法證明求和公式。
a(1)=a,a(n)為公比為r(r不等於0)的等比數列
通項公式:
a(n)=a(n-1)r=a(n-2)r^2=、=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1)、
可用歸納法證明等比數列的通項公式。
求和公式:
S(n)=a(1)+a(2)+、+a(n)
=a+ar+、+ar^(n-1)
=a[1+r+、+r^(n-1)]
r不等於1時,
S(n)=a[1-r^n]/[1-r]
r=1時,
S(n)=na、
同樣,可用歸納法證明求和公式。