初三數學拋物線知識點總結 篇1
1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。
對稱軸與拋物線唯一的.交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)
2、拋物線有一個頂點P,坐標為:P(—b/2a,(4ac—b^2)/4a)當—b/2a=0時,P在y軸上;當=b^2—4ac=0時,P在x軸上。
3、二次項係數a決定拋物線的開口方向和大小。
當a0時,拋物線向上開口;當a0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4、一次項係數b和二次項係數a共同決定對稱軸的位置。
當a與b同號時(即ab0),對稱軸在y軸左;
當a與b異號時(即ab0),對稱軸在y軸右。
5、常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
6、拋物線與x軸交點個數
=b^2—4ac0時,拋物線與x軸有2個交點。
=b^2—4ac=0時,拋物線與x軸有1個交點。
=b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(x=—bb^2—4ac的值的相反數,乘上虛數i,整個式子除以2a)
初三數學拋物線知識點總結 篇2
拋物線
y = ax^2 + bx + c (a≠0)
就是y等於a乘以x 的平方加上 b乘以x再加上 c
置於平面直角坐標系中
a > 0時開口向上
a 0時函式圖像與y軸正方向相交
c0)
它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 準線方程為x=-p/2
由於拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=-2px x^2=2py x^2=-2py
初三數學拋物線知識點總結 篇3
本學期以來,我所擔任初三(1)、(2)兩個班的數學教學取的較好效果,,我堅持"以學生髮展為本"的指導思想,關注每位學生,幫助他們在原有基礎上得到提高和發展,初三數學教學總結。經過一個學期的努力,現將具體工作總結如下:
一、面向全體因材施教
在教學實踐中,全面貫徹教育方針,面向全體學生,採用抓兩頭、促中間,實施分層教學,因材施教,因人施教,使全體學生都能學有所得。
1、備課。精心鑽研教材,細心備課;做到:重點難點突出,易混易錯知識點清晰,並掌握好、中、差學生的認知能力,分層次設計練習題,分層次落實訓練內容,使全體學生都能輕鬆學習,學有所獲。
2、授課。一是從問題出發進行教學。讓學生自己發現問題,自己提出問題,自己解決問題。尤其鼓勵學生自己提出問題,因為提出一個問題比解決一個問題更重要。二是情感教學。深刻領會"親其師、信其道、樂其學"的效應,與學生建立深厚的師生感情,在課堂上,始終做到和善愉快的教育學生,在沒有歐打、沒有哭泣、沒有暴力、沒有厭惡的氣氛下進行教學。正確對學生進行學法指導,使學生願學、樂學、會學。
3、創造成功體驗的機會。一是從多個方面給學困生創設學習時間空間,採用課堂多提問,一幫一合作學習,作業分層照顧,指導學困生自己提出問題等措施;二是利用課後時間與其談心,樹立正確積極向上的人生觀,同時經常在學困生的作業上、試卷上寫上一些鼓勵的語言,及時與家長交流學生學習的情況,做到學校、家庭齊關心。
二、團結奉獻拼博進取
1、團隊合作。我們五位數學老師團結在一起,把初三教學工作擺在首位,齊心協力,採用聽課、評課,使初三的數學教學達到揚長避短的目的。
2、努力拚搏。在複習階段,老師們團結合作,齊心協力,找題、選題、編題,並對一些資料進行剪貼重組,自編大量資料,使習題具有典型性,科學性、實效性。而自己也對於每次單元測試,摸擬測試,不管每天幾點鐘考完,當天必須批改。
初三數學拋物線知識點總結 篇4
三角函式關係
倒數關係
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
商的關係
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方關係
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
同角三角函式關係六角形記憶法
構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。
倒數關係
對角線上兩個函式互為倒數;
商數關係
六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。(主要是兩條虛線兩端的三角函式值的乘積,下面4個也存在這種關係。)。由此,可得商數關係式。
平方關係
在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。
銳角三角函式定義
銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),餘割(csc)都叫做角A的銳角三角函式。
正弦(sin)等於對邊比斜邊;sinA=a/c
餘弦(cos)等於鄰邊比斜邊;cosA=b/c
正切(tan)等於對邊比鄰邊;tanA=a/b
餘切(cot)等於鄰邊比對邊;cotA=b/a
正割(sec)等於斜邊比鄰邊;secA=c/b
餘割(csc)等於斜邊比對邊。cscA=c/a
互餘角的三角函式間的關係
sin(90°-α)=cosα,cos(90°-α)=sinα,
tan(90°-α)=cotα,cot(90°-α)=tanα.
平方關係:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
積的關係:
sinα=tanα·cosα
cosα=cotα·sinα
tanα=sinα·secα
cotα=cosα·cscα
secα=tanα·cscα
cscα=secα·cotα
倒數關係:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
中考數學知識點
1、反比例函式的概念
一般地,函式(k是常數,k0)叫做反比例函式。反比例函式的解析式也可以寫成的形式。自變數x的取值範圍是x0的一切實數,函式的取值範圍也是一切非零實數。
2、反比例函式的圖像
反比例函式的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函式中自變數x0,函式y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。
3、反比例函式的性質
反比例函式k的符號k>0k0時,函式圖像的兩個分支分別在第一、三象限。在每個象限內,y隨x的增大而減小。
①x的取值範圍是x0,
y的取值範圍是y0;
②當k<0時,函式圖像的兩個分支分別在第二、四象限。在每個象限內,y隨x的增大而增大。
4、反比例函式解析式的確定
確定及誒是的方法仍是待定係數法。由於在反比例函式中,只有一個待定係數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。
5、反比例函式的幾何意義
設是反比例函式圖象上任一點,過點P作軸、軸的垂線,垂足為A,則:
(1)△OPA的面積.
(2)矩形OAPB的面積。這就是係數的幾何意義.並且無論P怎樣移動,△OPA的面積和矩形OAPB的'面積都保持不變。
初三數學拋物線知識點總結 篇5
1、概念:
把一個圖形繞著某一點O轉動一個角度的`圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。
旋轉三要素:旋轉中心、旋轉方面、旋轉角。
2、旋轉的性質:
(1)旋轉前後的兩個圖形是全等形;
(2)兩個對應點到旋轉中心的距離相等。
(3)兩個對應點與旋轉中心的連線段的夾角等於旋轉角。
3、中心對稱:
把一個圖形繞著某一個點旋轉180,如果它能夠與另一個圖形重合,那么就說這兩個圖形關於這個點對稱或中心對稱,這個點叫做對稱中心。
這兩個圖形中的對應點叫做關於中心的對稱點。
4、中心對稱的性質:
(1)關於中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。
(2)關於中心對稱的兩個圖形是全等圖形。
5、中心對稱圖形:
把一個圖形繞著某一個點旋轉180,如果旋轉後的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
6、坐標系中的中心對稱
兩個點關於原點對稱時,它們的坐標符號相反,
即點P(x,y)關於原點O的對稱點P(—x,—y)。
初三數學拋物線知識點總結 篇6
1、圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2、垂直於弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直於弦的直徑平分弦,並且平方弦所對的兩條弧;
平分弦的直徑垂直弦,並且平分弦所對的兩條弧。
3、弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等。
4、圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5、點和圓的位置關係
點在圓外
點在圓上d=r
點在圓內d
定理:不在同一條直線上的三個點確定一個圓。
三角形的外接圓:經過三角形的三個頂點的圓,外接圓的圓心是三角形的三條邊的垂直平分線的交點,叫做三角形的外心。
6、直線和圓的位置關係
相交d
相切d=r
相離d>r
切線的性質定理:圓的切線垂直於過切點的半徑;
切線的判定定理:經過圓的外端並且垂直於這條半徑的直線是圓的切線;
切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等,這一點和圓心的連線平分兩條切線的夾角。
三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。
7、圓和圓的位置關係
外離d>R+r
外切d=R+r
相交R—r
內切d=R—r
內含d
8、正多邊形和圓
正多邊形的中心:外接圓的圓心
正多邊形的半徑:外接圓的半徑
正多邊形的中心角:沒邊所對的圓心角
正多邊形的邊心距:中心到一邊的距離
9、弧長和扇形面積
弧長
扇形面積:
10、圓錐的側面積和全面積
側面積:
全面積
11、(附加)相交弦定理、切割線定理
第五章機率初步
1、機率意義:在大量重複試驗中,事件A發生的頻率穩定在某個常數p附近,則常數p叫做事件A的機率。
2、用列舉法求機率
一般的,在一次試驗中,有n中可能的結果,並且它們發生的機率相等,事件A包含其中的m中結果,那么事件A發生的機率就是p(A)=
3、用頻率去估計機率
初三數學拋物線知識點總結 篇7
1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2、三邊關係:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
4、中線:在三角形中,連線一個頂點和它對邊中點的線段叫做三角形的中線。
5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
10、多邊形的對角線:連線多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。
12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個時,就能拼成一個平面圖形。
13、公式與性質:
⑴三角形的內角和:三角形的內角和為180°
⑵三角形外角的性質:
性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。
性質2:三角形的一個外角大於任何一個和它不相鄰的內角。
⑶多邊形內角和公式:邊形的內角和等於·180°
⑷多邊形的外角和:多邊形的外角和為360°。
⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形、②邊形共有條對角線。
初三數學拋物線知識點總結 篇8
沒有一個冬天不可逾越,沒有一個春天不會來臨。為堅決打贏疫情防控阻擊戰,在這個特殊時期,徐州市第三十六中學九年級數學組積極回響“停課不停學”的號召,結合上級建議和學生實際,精心制定教學計畫。老師們充分利用釘釘線上教學平台,全心投入,精心準備,認真完成資源選用、線上備課、線上教學以及課後答疑等環節。
用心備課、精心研磨是保證四十五分鐘課堂質量的重要前提,面對新的教學環境、教學形式和組織策略,數學組教研工作力求精細,課件設計緊扣知識點,一點一點總結,一點一點練習,重難點精講精練,從而不斷提高課堂效率。
線上上授課的過程中,老師們時刻關注互動區域。學生如果有疑問,老師適時進行答疑講解,及時和學生互動,在發起直播時選擇保存,這樣孩子們就可以在群里觀看直播回放。這樣的講課方式不但鍛鍊了老師的能力,對學生來說也是非常感興趣的一種學習方式。針對個別學生線上學習不主動的情況,老師會經常查看直播學生數據,第一時間發現並及時反饋給家長,督促學生觀看直播回放,保證每一個學生不掉隊。
老師們通過釘釘平檯布置作業,面向全體,立足基礎。批改作業時,老師們做到人人過關,及時督促學生訂正。對於個別不按時交作業的同學,通過釘釘、微信、電話等方式提醒到家長,做到全面覆蓋。
疫情還未結束,線上教學仍在繼續,作為教師雖不能奮戰在抗擊疫情的一線,但“師者人心、香遠益清”,老師們不忘教書育人的初心和使命。讓我們並肩攜手,齊抗疫情,期待花枝春滿,山河無恙。
初三數學拋物線知識點總結 篇9
中位線概念
(1)三角形中位線定義:連線三角形兩邊中點的線段叫做三角形的中位線。
(2)梯形中位線定義:連線梯形兩腰中點的線段叫做梯形的中位線。
注意:
(1)要把三角形的中位線與三角形的中線區分開。三角形中線是連線一頂點和它的對邊中點的線段,而三角形中位線是連線三角形兩邊中點的線段。
(2)梯形的中位線是連線兩腰中點的線段而不是連結兩底中點的線段。
(3)兩個中位線定義間的聯繫:可以把三角形看成是上底為零時的梯形,這時三角形的中位線就變成梯形的中位線。
中位線定理
(1)三角形中位線定理:三角形的中位線平行於第三邊並且等於它的一半.
(2)梯形中位線定理:梯形的中位線平行於兩底,並且等於兩底和的一半.
中位線定理推廣
三角形有三條中位線,首尾相接時,每個小三角形面積都等於原三角形的四分之一,這四個三角形都互相全等。
初三數學拋物線知識點總結 篇10
平方根:①如果一個正數X的平方等於A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等於A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數範圍內,相反數,倒數,絕對值的意義和有理數範圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
初三數學拋物線知識點總結 篇11
1.代數式與有理式
用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。
整式和分式統稱為有理式。
2.整式和分式
含有加、減、乘、除、乘方運算的代數式叫做有理式。
沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。
有除法運算並且除式中含有字母的有理式叫做分式。
3.單項式與多項式
沒有加減運算的整式叫做單項式(數字與字母的積—包括單獨的一個數或字母)。
幾個單項式的和,叫做多項式。
說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如=x,=│x│等。
4.係數與指數
區別與聯繫:①從位置上看;②從表示的意義上看;
5.同類項及其合併
條件:①字母相同;②相同字母的指數相同
合併依據:乘法分配律
6.根式
表示方根的代數式叫做根式。
含有關於字母開方運算的代數式叫做無理式。
注意:①從外形上判斷;②區別:是根式,但不是無理式(是無理數)。
7.算術平方根
⑴正數a的正的平方根([a≥0—與“平方根”的區別]);
⑵算術平方根與絕對值
①聯繫:都是非負數,=│a│
②區別:│a│中,a為一切實數;中,a為非負數。
8.同類二次根式、最簡二次根式、分母有理化
化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。
滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。
把分母中的根號划去叫做分母有理化。
9.指數
⑴(—冪,乘方運算)。
①a>0時,>0;②a<0時,>0(n是偶數),<0(n是奇數)。
⑵零指數:=1(a≠0)。
負整指數:=1/(a≠0,p是正整數)。
初三數學拋物線知識點總結 篇12
第21章二次根式知識框圖
理解並掌握下列結論:
(1)是非負數;(2);(3);
I.二次根式的定義和概念:
1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。
II.二次根式√ā的簡單性質和幾何意義
1)a≥0;√ā≥0[雙重非負性]
2)(√ā)^2=a(a≥0)[任何一個非負數都可以寫成一個數的平方的形式]3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論。
IV.二次根式的乘法和除法
1運算法則
√a√b=√ab(a≥0,b≥0)
√a/b=√a/√b(a≥0,b>0)
二數二次根之積,等於二數之積的二次根。2共軛因式
如果兩個含有根式的代數式的積不再含有根式,那么這兩個代數式叫做共軛因式,也稱互為有理化根式。
V.二次根式的加法和減法
1同類二次根式
一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。2合併同類二次根式
把幾個同類二次根式合併為一個二次根式就叫做合併同類二次根式。
3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併
Ⅵ.二次根式的混合運算
1確定運算順序2靈活運用運算定律3正確使用乘法公式4大多數分母有理化要及時
5在有些簡便運算中也許可以約分,不要盲目有理化
VII.分母有理化
分母有理化有兩種方法I.分母是單項式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多項式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知識框圖
旋轉的定義
旋轉對稱中心
大於360°)。
把一個圖形繞著一個定點旋轉一個角度後,與初始圖形重合,這種
圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小於0°,
也就是說:
①中心對稱圖形:如果把一個圖形繞著某一點旋轉180度後能與自身重合,那么我們就說,這個圖形成中心對稱圖形。
②中心對稱:如果把一個圖形繞著某一點旋轉180度後能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。
中心對稱圖形
正(2N)邊形(N為大於1的正整數),線段,矩形,菱形,圓
只是中心對稱圖形
平行四邊形等.第24章圓知識框圖
圓和點的位置關係:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。
直線與圓有3種位置關係:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線AB與圓O為例(設OP⊥AB於P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關係:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。
圓的平面幾何性質和定理
一有關圓的基本性質與定理
⑴圓的確定:不在同一直線上的三個點確定一個圓。
圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的2條弧。逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的2條弧。
⑵有關圓周角和圓心角的性質和定理在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應的其餘各組量都分別相等。一條弧所對的圓周角等於它所對的圓心角的一半。直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
⑶有關外接圓和內切圓的性質和定理
①一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;
②內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。③S三角=1/2*△三角形周長*內切圓半徑
④兩相切圓的連心線過切點(連心線:兩個圓心相連的線段)
⑤圓O中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ於X,Y,則M為XY之中點。
〖有關切線的性質和定理〗
圓的切線垂直於過切點的半徑;經過半徑的一端,並且垂直於這條半徑的直線,是這個圓的切線。
切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。
切線的性質:(1)經過切點垂直於這條半徑的直線是圓的切線。(2)經過切點垂直於切線的直線必經過圓心。(3)圓的切線垂直於經過切點的半徑。
切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。〖有關圓的計算公式〗
1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/1804.扇形面積S=π(R^2-r^2)5.圓錐側面積S=πrl
第25章機率初步知識框圖
第26章二次函式
知識框圖
定義與定義表達式
一般地,自變數x和因變數y之間存在如下關係:
一般式:y=ax^2+bx+c(a≠0,a、b、c為常數),則稱y為x的二次函式。頂點式:y=a(x-h)^2+k
交點式(與x軸):y=a(x-x1)(x-x2)
重要概念:(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)2.拋物線有一個頂點P,坐標為P(-b/2a,(4ac-b)/4a)當-b/2a=0時,P在y軸上;當Δ=b-4ac=0時,P在x軸上。3.二次項係數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項係數b和二次項係數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;因為若對稱軸在左邊則對稱軸小於0,也就是-b/2a0,所以b/2a要小於0,所以a、b要異號
事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函式解析式(一次函式)的斜率k的值。可通過對二次函式求導得到。5.常數項c決定拋物線與y軸交點。拋物線與y軸交於(0,c)6.拋物線與x軸交點個數
Δ=b-4ac>0時,拋物線與x軸有2個交點。Δ=b-4ac=0時,拋物線與x軸有1個交點。_______
Δ=b-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b-4ac的值的相反數,乘上虛數i,整個式子除以2a)
當a>0時,函式在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函式;拋物線的開口向上;函式的值域是{y|y≥4ac-b/4a}相反不變
當b=0時,拋物線的對稱軸是y軸,這時,函式是偶函式,解析式變形為y=ax+c(a≠0)解析式:
第27章相似知識框圖
相似三角形的認識
對應角相等,對應邊成比例的.兩個三角形叫做相似三角形。(similartriangles)。互為相似形的三角形叫做相似三角形
相似三角形的判定方法
根據相似圖形的特徵來判斷。(對應邊成比例,對應角相等)
1.平行於三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構成的三角形與原三角形相似;
(這是相似三角形判定的引理,是以下判定方法證明的基礎。這個引理的證明方法需要平行線分線段成比例的證明)
2.如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;
直角三角形相似判定定理
1.斜邊與一條直角邊對應成比例的兩直角三角形相似。
2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,並且分成的兩個直角三角形也相似。射影定理
三角形相似的判定定理推論
推論一:頂角或底角相等的那個的兩個等腰三角形相似。推論二:腰和底對應成比例的兩個等腰三角形相似。推論三:有一個銳角相等的兩個直角三角形相似。
推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。
推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。
推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。
相似三角形的性質
1.相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等於相似比。
2.相似三角形周長的比等於相似比。3.相似三角形面積的比等於相似比的平方。
相似三角形的特例
能夠完全重合的兩個三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特徵:1.形狀完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。全等三角形的定義
能夠完全重合的兩個三角形稱為全等三角形。(註:全等三角形是相似三角形中的特殊情況)當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。
由此,可以得出:全等三角形的對應邊相等,對應角相等。
(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;(3)有公共邊的,公共邊一定是對應邊;(4)有公共角的,角一定是對應角;(5)有對頂角的,對頂角一定是對應角;三角形全等的判定公理及推論
1、三組對應邊分別相等的兩個三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩定性的原因。
2、有兩邊及其夾角對應相等的兩個三角形全等(SAS或“邊角邊”)。3、有兩角及其夾邊對應相等的兩個三角形全等(ASA或“角邊角”)。由3可推到
4、有兩角及一角的對邊對應相等的兩個三角形全等(AAS或“角角邊”)
5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或“斜邊,直角邊”)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。A是英文角的縮寫(angle),S是英文邊的縮寫(side)。全等三角形的性質
1、全等三角形的對應角相等、對應邊相等。2、全等三角形的對應邊上的高對應相等。3、全等三角形的對應角平分線相等。4、全等三角形的對應中線相等。5、全等三角形面積相等。6、全等三角形周長相等。
7、三邊對應相等的兩個三角形全等。(SSS)
8、兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)9、兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)
10、兩個角和其中一個角的對邊對應相等的兩個三角形全等。(AAS)11、斜邊和一條直角邊對應相等的兩個直角三角形全等。(HL)全等三角形的運用
1、性質中三角形全等是條件,結論是對應角、對應邊相等。而全等的判定卻剛好相反。2、利用性質和判定,學會準確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。3,當圖中出現兩個以上等邊三角形時,應首先考慮用SAS找全等三角形。
第28章銳角三角函式
知識框圖
第29章投影與視圖知識框圖
代數重點難點總結
方程(組)
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)二、一元二次方程1.定義及一般形式:
2.解法:⑴直接開平方法(注意特徵)⑵配方法(注意步驟推倒求根公式)⑶公式法:⑷因式分解法(特徵:左邊=0)3.根的判別式:b24ac
bc4.根與係數的關係(韋達定理):x1+x2=,x1x2=
aa逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:
三、可化為一元二次方程的方程1.分式方程⑴定義
⑵基本思想:去分母
⑶基本解法:①去分母法②換元法(如,)⑷驗根及方法2.無理方程⑴定義
⑵基本思想:分母有理化
⑶基本解法:①乘方法(注意技巧!!)②換元法(例,)⑷驗根及方法
3.簡單的二元二次方程組
由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。四、列方程解套用題一概述
列方程(組)解套用題是中學數學聯繫實際的一個重要方面。其具體步驟是:
⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關係是什麼。
⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。
⑶用含未知數的代數式表示相關的量。
⑷尋找相等關係(有的由題目給出,有的由該問題所涉及的等量關係給出),列方程。一般地,未知數個數與方程個數是相同的。⑸解方程及檢驗。⑹答案。
綜上所述,列方程解套用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解套用題的關鍵。
函式及其圖象
★重難點★二次函式的圖象和性質。一、平面直角坐標系
1.各象限內點的坐標的特點2.坐標軸上點的坐標的特點
3.關於坐標軸、原點對稱的點的坐標的特點4.坐標平面內點與有序實數對的對應關係二、函式
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變數取值範圍的原則:⑴使代數式有意義;⑵使實際問題有意義。
3.畫函式圖象:⑴列表;⑵描點;⑶連線。三、二次函式(定義→圖象→性質)⑴定義:
⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。用配方法變為,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a0時,在對稱軸左側,右側;a
四邊形
★重難點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。分類表:
1.一般性質(角)⑴內角和:360°
⑵順次連結各邊中點得平行四邊形。
推論1:順次連結對角線相等的四邊形各邊中點得菱形。
推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。⑶外角和:360°2.特殊四邊形
⑴研究它們的一般方法:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定⑶判定步驟:四邊形→平行四邊形→矩形→正方形┗→菱形↑
⑷對角線的紐帶作用:3.對稱圖形
⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)4.有關定理:①平行線等分線段定理及其推論1、2②三角形、梯形的中位線定理
③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結頂點和對腰中點並延長與底邊相交”轉化為三角形。6.作圖:任意等分線段。
第十章圓
★重難點★①圓的重要性質;②直線與圓、圓與圓的位置關係;③與圓有關的角的定理;④與圓有關的比例線段定理。一、圓的基本性質1.圓的定義
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。3.“三點定圓”定理4.垂徑定理及其推論
5.“等對等”定理及其推論
5.與圓有關的角:⑴圓心角定義(等對等定理)⑵圓周角定義(圓周角定理,與圓心角的關係)⑶弦切角定義(弦切角定理)二、直線和圓的位置關係
1.三種位置及判定與性質:相離、相切、相交2.切線的性質(重點)
3.切線的判定定理(重點)。圓的切線的判定有⑴⑵
4.切線長定理
三、圓換圓的位置關係
1.五種位置關係及判定與性質:(重點:相切)外離、外切、相交、內切、內含
2.相切(交)兩圓連心線的性質定理3.兩圓的公切線:⑴定義⑵性質四、與圓有關的比例線段1.相交弦定理2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)2.三角形的外接圓、內切圓及性質3.圓的外切四邊形、內接四邊形的性質4.正多邊形及計算中心角:
內角的一半:(解Rt△OAM可求出相關元素等)六、一組計算公式1.圓周長公式2.圓面積公式3.扇形面積公式4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算七、點的軌跡六條基本軌跡八、有關作圖
1.作三角形的外接圓、內切圓2.平分已知弧
3.作已知兩線段的比例中項4.等分圓周:4、8;6、3等分九、基本圖形十、重要輔助線1.作半徑
2.見弦往往作弦心距
3.見直逕往往作直徑上的圓周角4.切點圓心莫忘連
5.兩圓相切公切線(連心線)6.兩圓相交公共弦
初三數學拋物線知識點總結 篇13
我不是數學家,我對數學的了解也不多,但我想說說我所學的數學。
學習數學是一件輕鬆快樂的事情。在數學的學習中,“大事化小小事化了”的思維方式很重要。比如你撞見一道相當複雜的題目,那么把它分化成幾個簡單的小問題無疑是很明智的。
當然,就如同意蓋大樓一樣,基礎十分重要。就現在的考試來說,基礎題亦是重點。只有掌握基礎知識,才能靈活運用,並對各種題目進行變形、探究。
什麼是探究中最重要的呢?我認為是挑戰精神。只要有挑戰精神才能讓你不畏難點,攻破難點,急速向前。但挑戰精神不是萬能藥,也不是一味地蠻幹,也要伴隨著謹慎的思考,這才是終極奧義。
初三數學拋物線知識點總結 篇14
1、矩形的概念
有一個角是直角的平行四邊形叫做矩形。
2、矩形的性質
(1)具有平行四邊形的一切性質。
(2)矩形的四個角都是直角。
(3)矩形的對角線相等。
(4)矩形是軸對稱圖形。
3、矩形的判定
(1)定義:有一個角是直角的平行四邊形是矩形。
(2)定理1:有三個角是直角的四邊形是矩形。
(3)定理2:對角線相等的平行四邊形是矩形。
4、矩形的面積:S矩形=長×寬=ab
初三數學重點知識點(四)
1、正方形的概念
有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形。
2、正方形的性質
(1)具有平行四邊形、矩形、菱形的一切性質;
(2)正方形的四個角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角;
(4)正方形是軸對稱圖形,有4條對稱軸;
(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;
(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。
3、正方形的判定
(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個角是直角。
(2)判定一個四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最後證明它是矩形(或菱形)。
初三數學拋物線知識點總結 篇15
等腰三角形的判定方法
1.有兩條邊相等的三角形是等腰三角形。
2.判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形(簡稱:等角對等邊)。
角平分線:把一個角平分的射線叫該角的角平分線。
定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點
性質定理:角平分線上的點到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點在該角的角平分線上
標準差與方差
極差是什麼:一組數據中數據與最小數據的差叫做極差,即極差=值-最小值。
計算器——求標準差與方差的一般步驟:
1.打開計算器,按“ON”鍵,按“MODE”“2”進入統計(SD)狀態。
2.在開始數據輸入之前,請務必按“SHIFT”“CLR”“1”“=”鍵清除統計存儲器。
3.輸入數據:按數字鍵輸入數值,然後按“M+”鍵,就能完成一個數據的輸入。如果想對此輸入同樣的數據時,還可在步驟3後按“SHIET”“;”,後輸入該數據出現的頻數,再按“M+”鍵。
4.當所有的數據全部輸入結束後,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數據的標準差;
5.標準差的平方就是方差。
初三數學拋物線知識點總結 篇16
1.軸對稱:
把一個圖形沿著某一條直線摺疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關於這條直線對稱,兩個圖形中的對應點叫做對稱點,對應線段叫做對稱線段。
2.軸對稱圖形:
如果一個圖形沿著一條直線摺疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是它的對稱軸。
注意:對稱軸是直線而不是線段
3.軸對稱的性質:
(1)關於某條直線對稱的兩個圖形是全等形;
(2)如果兩個圖形關於某條直線對稱,那么對稱軸是對應點連線的垂直平分線;
(3)兩個圖形關於某條直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上;
(4)如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱。
4.線段垂直平分線:
(1)定義:垂直平分一條線段的直線是這條線的垂直平分線。
(2)性質:
①線段垂直平分線上的點到這條線段兩個端點的距離相等;
②到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。
注意:根據線段垂直平分線的這一特性可以推出:三角形三邊的垂直平分線交於一點,並且這一點到三個頂點的距離相等。
5.角的平分線:
(1)定義:把一個角分成兩個相等的角的射線叫做角的平分線.
(2)性質:
①在角的平分線上的點到這個角的兩邊的距離相等.
②到一個角的兩邊距離相等的點,在這個角的平分線上.
注意:根據角平分線的性質,三角形的三個內角的平分線交於一點,並且這一點到三條邊的距離相等.
6.等腰三角形的性質與判定:
性質:
(1)對稱性:等腰三角形是軸對稱圖形,等腰三角形底邊上的中線所在的直線是它的對稱軸,或底邊上的高所在的直線是它的對稱軸,或頂角的平分線所在的直線是它的對稱軸;
(2)三線合一:等腰三角形頂角的平分線、底邊上的中線、底邊上的高互相重合;
(3)等邊對等角:等腰三角形的兩個底角相等。
說明:等腰三角形的性質除三線合一外,三角形中的主要線段之間也存在著特殊的性質,如:
①等腰三角形兩底角的平分線相等;
②等腰三角形兩腰上的中線相等;
③等腰三角形兩腰上的高相等;
④等腰三角形底邊上的中點到兩腰的距離相等。
判定定理:如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。
7.等邊三角形的性質與判定:
性質:
(1)等邊三角形的三個角都相等,並且每個角都等於60。
(2)等邊三角形具有等腰三角形的所有性質,並且在每條邊上都有三線合一。因此等邊三角形是軸對稱圖形,它有三條對稱軸,而等腰三角形(非等邊三角形)只有一條對稱軸。
判定定理:有一個角是60的等腰三角形是等邊三角形。
說明:等邊三角形是一種特殊的三角形,容易知道等邊三角形的三條高(或三條中線、三條角平分線)都相等。
初三數學拋物線知識點總結 篇17
根據教研室工作安排,本周居家線上學習監控重點是對九年級教學及備考情況進行監控督導,截至目前,共聽課22節,視導學校11所,聽複習課16節,新課6節,共聽課22節(城關鎮中2節,思源中學3節,上津中學2節、店子中學1節、關防中學2節、湖北口中學2節,夾河中學3節、羊尾中學2節、縣三中2節、六郎中學1節,馬安中學2節)。其中優秀4節,良好16節,合格2節。還有部分學校將在後期繼續視導,現將本周視導情況通報如下:
一、值得肯定的成功經驗及做法
1.合理安排教學進度,科學制定備考方案。通過一周來的評課、評課交流和從收集到的和學校備考方案中發現,全縣大部分學校教學進度適中,能按照原定計畫完成教學任務,目前已經結束新課,只有極少數學校進度稍滯後,馬安、六郎、夾河、思源、土門、縣三中、已進入第一輪複習。關防、澗池、河夾、湖北口、羊尾、香口、上津、店子、外國語等學校新課基本結束,在進行最後的章節小結。大部分學校都制定了複習計畫和備考方案,提出了明確的中考目標,把握三輪複習時間節點,複習內容細化到每一天,城關鎮中、夾河中學、羊尾中學明確了每節課內容的主備操心人,體現了集體備課和分工協作。
2.紮實開展教研活動,領導重視跟蹤督辦。這次線上教學視導活動,各校高度重視,精心準備,組織校內教師認真聽課,馬安、思源、羊尾、湖北口等學校校長親自組織課後線上評課,並提出合理化建議和對後期教學要求。馬安、思源、關防落實主題教研日活動和線上集體備課,研討課堂教學,查網上常規教學落實;香口中學校長鬍利果包聯數學學科,邀請中心學校校長、教研員及時進入數學課堂,進行教學診斷;羊尾中學數學教研活動每周一主題,線上評課直擊問題,提出改進建議,下周跟蹤督導,查看問題落實情況;店子中學堅持每周一節公開課,每周一測,馬安、夾河、縣三中、店子、關防、湖北口等學校已經召開中考百日衝刺動員會,積極營造備考氛圍,確保質量不滑坡、成績不下降。
3.精心設計教學策略,增強線上教學實效。一是不管是新授課,還是複習課,每節課都有課件輔助教學,克服了線上教學展示不足,增強了課堂容量,朱富寬、王賢文、熊祥蓮等老師在課件中插入微課視頻,節約了時間,突破了難點,豐富了學生的視野。祝東旭在執教《三視圖》時,自製簡易教具演示教學,幫助學生建立立體思維,化解難點。二是認真研究教材,準確把握教學目標,結合考情,精選試題,教師緊緊圍繞導學案展開教學,特別是部分阻隔在老家的老師,手邊沒有其他資料,藉助導學案,邊做邊講,達成教學目標。三是克服線上教學的局限性,最大限度的和學生互動交流,突出學生的主體地位,鼓勵學生積極連麥,把學生的課堂練習截圖展示,充分調動學生積極參與學習。四是在解題教學中,先學後教,先做後講,注重一題多解,一題多變,探究用多種途徑解決問題,培養學生在解決問題時以不變應萬變以及求新、創新的品質。如李平、陳傳艾、胡祥立等老師在執教《圓的綜合題》時,例題講完後,讓學生思考還有沒有其他的方法或者更好的方法解決此題,引導學生從不同的角度做輔助線來分析問題,注重解題方法的歸納與總結,舉一反三、觸類旁通,幫助學生從複雜的幾何圖形中發現基本圖形,運用基本圖形思考解決問題。劉小麗老師在執教《一元二方程根與係數關係》複習課時,聚焦含有絕對值的代數式變形,對例題三次變式,充分發揮題目作用,發散學生思維,增強應變能力。
二、存在的問題及後期教學要求與建議
1.參加活動積極性有待提高。部分學校九年級數學老師認為教學工作重,線上教學局限性大,講課不方便,因此參加聽課活動不主動,不積極,給教研組長為難。反映出這部分老師日常線上教學準備不充分,設備手段套用不熟練,教學思想不端正,對教研活動的認識不足。建議各學校以此次視導活動為契機,組織學科迅速開展複習備考研討活動,包聯數學學科的校委會會班子成員深入到每個老師的課堂中,校長要堅持不定時巡課,對發現不認真備課、不落實教學常規的現象及時通報整改。
2.備考方向不明確,備考方案不具體。部分老師在複習教學中選題不夠典型,與中考題的考查方式大相逕庭,從收集起來的複習計畫和備考方案上看,部分學校沒有明確目標,缺少提高複習效率的舉措,沒有把複習任務具體到天、落實到人。建議後期複習緊扣中考說明,認真研究20__年十堰市調研試題和中考試題,明確每道題、每個知識點的考查要求,紮實做好三輪複習,準確把握每輪複習的時間節點,提高複習質量。建議第一輪複習時間為3月16日——4月30日,以教材為載體,梳理知識脈絡,構建知識體系,夯實基礎;第二輪複習時間為5月1日——5月20日,以攻克專題為主,側重培養學生數學能力,圍繞熱點、難點、重點,特別是中考試題中,難度在中上等題型逐一設專題突破,如規律探究、函式套用題、一元二次方程根與係數關係、圓的綜合題、旋轉綜合題、二次函式與幾何綜合題等;第三輪複習從5月21日——中考,以綜合訓練為主,模擬中考,查漏補缺,綜合題必須根據十堰市中考試題特點進行命制或改編,不允許直接用成套的陳題。教師要控制每一個複習階段題目的難度,不可盲目拔高,要加強備課組內交流,強化集體備課,分工協作,資源共享。
3.備課準備不充分,少數教師上課前沒有教學設計,沒有製作簡易課件。在目前線上教學各方麵條件受限的情況下,備課是對老師最基本的要求,特別是複習課教學,如果不精心設計教學過程,不精選試題,不深入研究重點、難點、考點和學生的易混易錯點,就沒有高效的課堂。建議九年級老師要在備課上多花時間、下功夫,研究學生、研究題目、研究教法,必須明確方向,突出重點,對中考“考什麼”、“怎樣考”應瞭若指掌,對必考點要高度重視,對不考內容淡化處理。同時學校要加強教學常規管理,對發現的問題要及時通報整改,落實“日查周通報”制度。
4.複習課模式單一,方法簡單。部分複習課堂習慣於先羅列知識點,花很多時間複習基本概念,然後講解例題,到學生自主練習時,時間已過大半;部分老師講的太多,不關注學情,不注重對學生學習能力、態度、習慣和思維方式的培養,只重一例一題,就題論題,不重知識建構,不拓展變式,不總結方法。建議複習要以題目為載體,單元複習先要給學生呈現一個有梯度的題組,讓學生思考、解答,教師再適當點撥,幫學生回顧、總結相關知識點,形成知識網路,然後再突破重點題目,最後檢測反饋;在複習過程中,要發揮學生主體地位作用,控制精講時間,多留給學生反思消化的機會;要重視樣題的示範性,對題目進行拓展變式,培養學生靈活性和創造性,對解題方法及時總結歸納,滲透數學思想方法,提升學生解題能力和核心素養。
初三數學拋物線知識點總結 篇18
不等式的概念
1、不等式:用不等號表示不等關係的式子,叫做不等式。
2、不等式的解集:對於一個含有未知數的不等式,任何一個適合這個不等式的未知數的值,都叫做這個不等式的解。
3、對於一個含有未知數的不等式,它的所有解的集合叫做這個不等式的解的集合,簡稱這個不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數軸表示不等式的方法。
不等式基本性質
1、不等式兩邊都加上或減去同一個數或同一個整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個正數,不等號的方向不變。
3、不等式兩邊都乘以或除以同一個負數,不等號的方向改變。
4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘以的數就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個未知數,未知數的次數是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括弧3移項4合併同類項5將x項的係數化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
2、幾個一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當任何數x都不能使不等式同時成立,我們就說這個不等式組無解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個不等式的解集。
2利用數軸求出這些不等式的解集的公共部分,即這個不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連線的式子叫不等式。②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
7、不等式的解集:
①能使不等式成立的未知數的值,叫做不等式的解。
②一個含有未知數的不等式的所有解,組成這個不等式的解集。
③求不等式解集的過程叫做解不等式。
初三數學拋物線知識點總結 篇19
1、絕對值
一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。正數大於零,負數小於零,正數大於一切負數,兩個負數,絕對值大的反而小。
(1)一個正實數的絕對值是它本身;一個負實數的絕對值是它的相反數;0的絕對值是0.即:﹝另有兩種寫法﹞
(2)實數的絕對值是一個非負數,從數軸上看,一個實數的絕對值就是數軸上表示這個數的點到原點的距離.
(3)幾個非負數的和等於零則每個非負數都等於零。
注意:│a│≥0,符號"││"是"非負數"的標誌;數a的絕對值只有一個;處理任何類型的題目,只要其中有"││"出現,其關鍵一步是去掉"││"符號。
2、解一元二次方程
解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。
(1)直接開平方法:
用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m.
直接開平方法就是平方的逆運算.通常用根號表示其運算結果.
(2)配方法
通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式。
1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)
2)係數化1:將二次項係數化為1
3)移項:將常數項移到等號右側
4)配方:等號左右兩邊同時加上一次項係數一半的平方
5)變形:將等號左邊的代數式寫成完全平方形式
6)開方:左右同時開平方
7)求解:整理即可得到原方程的根
(3)公式法
公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項係數a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。
3、圓的必考知識點
(1)圓
在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。
(2)圓的相關特點
1)徑
連線圓心和圓上的任意一點的線段叫做半徑,字母表示為r
通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d
直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r
2)弦
連線圓上任意兩點的線段叫做弦.在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。
3)弧
圓上任意兩點間的部分叫做圓弧,簡稱弧,以“⌒”表示。
大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧,所以半圓既不是優弧,也不是劣弧。優弧一般用三個字母表示,劣弧一般用兩個字母表示。優弧是所對圓心角大於180度的弧,劣弧是所對圓心角小於180度的弧。
在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。
4)角
頂點在圓心上的角叫做圓心角。
頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等於相同弧所對的圓心角的一半。