高中高考數學知識點最新精選總結 篇1
基本事件的定義:
一次試驗連同其中可能出現的每一個結果稱為一個基本事件。
等可能基本事件:
若在一次試驗中,每個基本事件發生的可能性都相同,則稱這些基本事件為等可能基本事件。
古典概型:
如果一個隨機試驗滿足:(1)試驗中所有可能出現的基本事件只有有限個;
(2)每個基本事件的發生都是等可能的;
那么,我們稱這個隨機試驗的機率模型為古典概型。
古典概型的機率:
如果一次試驗的等可能事件有n個,考試技巧,那么,每個等可能基本事件發生的機率都是;如果某個事件A包含了其中m個等可能基本事件,那么事件A發生的機率為。
古典概型解題步驟:
(1)閱讀題目,蒐集信息;
(2)判斷是否是等可能事件,並用字母表示事件;
(3)求出基本事件總數n和事件A所包含的結果數m;
(4)用公式求出機率並下結論。
求古典概型的機率的關鍵:
求古典概型的機率的關鍵是如何確定基本事件總數及事件A包含的基本事件的個數。
高中高考數學知識點最新精選總結 篇2
空間幾何。三視圖和直觀圖的繪製不算難。但是從三視圖復原出實物從而計算就需要比較強的空間感,要能從三張平面圖中慢慢在腦海中畫出實物。這就要求學生特別是空間感弱的學生多看書上的例圖,把實物圖和平面圖結合起來看,先熟練地正推,再慢慢的逆推。有必要的還要在做題時結合草圖,不能單憑想像。後面的錐體柱體台體的表面積和體積,把公式記牢問題就不大。做題表求表面積時注意好到底有幾個面,到底有沒有上下底這類問題就可以。
點、直線、平面之間的位置關係。這一章除了面與面的相交外,對空間概念的要求不強,大部分都可以直接畫圖,這就要求學生要多看圖,自己畫草圖的時候要嚴格注意好實線虛線,這是個規範性問題。關於這一章的內容,牢記直線與直線、面與面、直線與面相交、垂直、平行的幾大定理及幾大性質,同時能用圖形語言、文字語言、數學表達式表示出來。只要這些全部過關這一章就解決了一大半。這一章的難點在於二面角這個概念,難度在於對這個概念無法理解,即知道有這個概念,但就是無法在二面裡面做出這個角。對這種情況只有從定義入手,先要把定義記牢,再多做多看,這個沒有什麼捷徑可走。
直線與方程。這一章主要講斜率與直線的位置關係。只要搞清楚直線平行、垂直的斜率表示問題就不大了。需要格外注意的是當直線垂直時斜率不存在的情況,這是常考點。另外直線方程的幾種形式,記得一般公式會用就行,要求不高。點與點的距離、點與直線的距離、直線與直線的距離,記住公式,直接套用。
圓與方程。能熟練的把一般式方程轉化為標準方程,通常的考試形式是等式的一遍含根號,另一邊不含,這時就要注意開方後定義域或值域的限制;通過點到點的距離、點到直線的距離與圓半徑的大小關係判斷點與圓、直線與圓、圓與圓的位置關係。另外注意圓的對稱性引起的相切、相交直線的多種情況,這也是常考點。
高中高考數學知識點最新精選總結 篇3
一、充分條件和必要條件
當命題“若A則B”為真時,A稱為B的充分條件,B稱為A的`必要條件。
二、充分條件、必要條件的常用判斷法
1、定義法:判斷B是A的條件,實際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關係畫出箭頭示意圖,再利用定義判斷即可
2、轉換法:當所給命題的充要條件不易判斷時,可對命題進行等價裝換,例如改用其逆否命題進行判斷。
3、集合法
在命題的條件和結論間的關係判斷有困難時,可從集合的角度考慮,記條件p、q對應的集合分別為A、B,則:
若A?B,則p是q的充分條件。
若A?B,則p是q的必要條件。
若A=B,則p是q的充要條件。
若A?B,且B?A,則p是q的既不充分也不必要條件。
三、知識擴展
1、四種命題反映出命題之間的內在聯繫,要注意結合實際問題,理解其關係(尤其是兩種等價關係)的產生過程,關於逆命題、否命題與逆否命題,也可以敘述為:
(1)交換命題的條件和結論,所得的新命題就是原來命題的逆命題;
(2)同時否定命題的條件和結論,所得的新命題就是原來的否命題;
(3)交換命題的條件和結論,並且同時否定,所得的新命題就是原命題的逆否命題。
2、由於“充分條件與必要條件”是四種命題的關係的深化,他們之間存在這密切的聯繫,故在判斷命題的條件的充要性時,可考慮“正難則反”的原則,即在正面判斷較難時,可轉化為套用該命題的逆否命題進行判斷。一個結論成立的充分條件可以不止一個,必要條件也可以不止一個。
高中高考數學知識點最新精選總結 篇4
等式的性質:①不等式的性質可分為不等式基本性質和不等式運算性質兩部分。
不等式基本性質有:
(1)a>bb
(2)a>b,b>ca>c(傳遞性)
(3)a>ba+c>b+c(c∈R)
(4)c>0時,a>bac>bc
cbac
運算性質有:
(1)a>b,c>da+c>b+d。
(2)a>b>0,c>d>0ac>bd。
(3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應注意,上述性質中,條件與結論的邏輯關係有兩種:和即推出關係和等價關係。一般地,證明不等式就是從條件出發施行一系列的推出變換。解不等式就是施行一系列的等價變換。因此,要正確理解和套用不等式性質。
②關於不等式的性質的考察,主要有以下三類問題:
(1)根據給定的不等式條件,利用不等式的性質,判斷不等式能否成立。
(2)利用不等式的性質及實數的性質,函式性質,判斷實數值的大小。
(3)利用不等式的性質,判斷不等式變換中條件與結論間的充分或必要關係。
高中高考數學知識點最新精選總結 篇5
向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=—b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c。
註:向量沒有除法,“向量AB/向量CD”是沒有意義的。
高中高考數學知識點最新精選總結 篇6
由於空集是任何非空集合的真子集,因此B=?時也滿足B?A。解含有參數的集合問題時,要特別注意當參數在某個範圍內取值時所給的集合可能是空集這種情況。
忽視集合元素的三性致誤
集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。
混淆命題的否定與否命題
命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結論。
充分條件、必要條件顛倒致誤
對於兩個條件A,B,如果A?B成立,則A是B的充分條件,B是A的`必要條件;如果B?A成立,則A是B的必要條件,B是A的充分條件;如果A?B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充分條件和必要條件的概念作出準確的判斷。
“或”“且”“非”理解不準致誤
命題p∨q真?p真或q真,命題p∨q假?p假且q假(概括為一真即真);命題p∧q真?p真且q真,命題p∧q假?p假或q假(概括為一假即假);綈p真?p假,綈p假?p真(概括為一真一假)。求參數取值範圍的題目,也可以把“或”“且”“非”與集合的“並”“交”“補”對應起來進行理解,通過集合的運算求解。
函式的單調區間理解不準致誤
在研究函式問題時要時時刻刻想到“函式的圖像”,學會從函式圖像上去分析問題、尋找解決問題的方法。對於函式的幾個不同的單調遞增(減)區間,切忌使用並集,只要指明這幾個區間是該函式的單調遞增(減)區間即可。
判斷函式奇偶性忽略定義域致誤
判斷函式的奇偶性,首先要考慮函式的定義域,一個函式具備奇偶性的必要條件是這個函式的定義域關於原點對稱,如果不具備這個條件,函式一定是非奇非偶函式。
函式零點定理使用不當致誤
如果函式y=f(x)在區間[a,b]上的圖像是一條連續的曲線,並且有f(a)f(b)<0,那么,函式y=f(x)在區間(a,b)內有零點,但f(a)f(b)>0時,不能否定函式y=f(x)在(a,b)內有零點。函式的零點有“變號零點”和“不變號零點”,對於“不變號零點”函式的零點定理是“無能為力”的,在解決函式的零點問題時要注意這個問題。
三角函式的單調性判斷致誤
對於函式y=Asin(ωx+φ)的單調性,當ω>0時,由於內層函式u=ωx+φ是單調遞增的,所以該函式的單調性和y=sin x的單調性相同,故可完全按照函式y=sin x的單調區間解決;但當ω<0時,內層函式u=ωx+φ是單調遞減的,此時該函式的單調性和函式y=sinx的單調性相反,就不能再按照函式y=sinx的單調性解決,一般是根據三角函式的奇偶性將內層函式的係數變為正數後再加以解決。對於帶有絕對值的三角函式應該根據圖像,從直觀上進行判斷。
忽視零向量致誤
零向量是向量中最特殊的向量,規定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應給予足夠的重視。
向量夾角範圍不清致誤
解題時要全面考慮問題。數學試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關鍵,如當a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。
an與Sn關係不清致誤
在數列問題中,數列的通項an與其前n項和Sn之間存在下列關係:an=S1,n=1,Sn-Sn-1,n≥2。這個關係對任意數列都是成立的,但要注意的是這個關係式是分段的,在n=1和n≥2時這個關係式具有完全不同的表現形式,這也是解題中經常出錯的一個地方,在使用這個關係式時要牢牢記住其“分段”的特點。
對數列的定義、性質理解錯誤
等差數列的前n項和在公差不為零時是關於n的常數項為零的二次函式;一般地,有結論“若數列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數列{an}為等差數列的充要條件是c=0”;在等差數列中,Sm,S2m-Sm,S3m-S2m(m∈Nx)是等差數列。
數列中的最值錯誤
數列問題中其通項公式、前n項和公式都是關於正整數n的函式,要善於從函式的觀點認識和理解數列問題。數列的通項an與前n項和Sn的關係是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統一。在關於正整數n的二次函式中其取最值的點要根據正整數距離二次函式的對稱軸的遠近而定。
錯位相減求和項處理不當致誤
錯位相減求和法的適用條件:數列是由一個等差數列和一個等比數列對應項的乘積所組成的,求其前n項和。基本方法是設這個和式為Sn,在這個和式兩端同時乘以等比數列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉化為以求一個等比數列的前n項和或前n-1項和為主的求和問題.這裡最容易出現問題的就是錯位相減後對剩餘項的處理。
不等式性質套用不當致誤
在使用不等式的基本性質進行推理論證時一定要準確,特別是不等式兩端同時乘以或同時除以一個數式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質成立的前提條件就會出現錯誤。
忽視基本不等式套用條件致誤
利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函式的最值時,務必注意a,b為正數(或a,b非負),ab或a+b其中之一應是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函式,在套用基本不等式求函式最值時,一定要注意ax,bx的'符號,必要時要進行分類討論,另外要注意自變數x的取值範圍,在此範圍內等號能否取到。
高中高考數學知識點最新精選總結 篇7
1.數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.
(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….
(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函式值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.
(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數列的分類
(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.
(2)按照項與項之間的大小關係或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.
高中高考數學知識點最新精選總結 篇8
軌跡方程的求解
符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).
【軌跡方程】就是與幾何軌跡對應的代數描述。
一、求動點的軌跡方程的基本步驟
⒈建立適當的坐標系,設出動點M的坐標;
⒉寫出點M的集合;
⒊列出方程=0;
⒋化簡方程為最簡形式;
⒌檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。
⒈直譯法:直接將條件翻譯成等式,整理化簡後即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
⒊相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然後代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
⒋參數法:當動點坐標x、y之間的直接關係難以找到時,往往先尋找x、y與某一變數t的關係,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。
⒌交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
.直譯法:求動點軌跡方程的一般步驟
①建系——建立適當的坐標系;
②設點——設軌跡上的任一點P(x,y);
③列式——列出動點p所滿足的關係式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關於X,Y的方程式,並化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
排列組合公式
排列組合公式/排列組合計算公式
排列P------和順序有關
組合C-------不牽涉到順序的問題
排列分順序,組合不分
例如把5本不同的書分給3個人,有幾種分法."排列"
把5本書分給3個人,有幾種分法"組合"
1.排列及計算公式
從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數,叫做從n個不同元素中取出m個元素的排列數,用符號p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規定0!=1).
2.組合及計算公式
從n個不同元素中,任取m(m≤n)個元素並成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數,叫做從n個不同元素中取出m個元素的組合數.用符號
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);
3.其他排列與組合公式
從n個元素中取出r個元素的循環排列數=p(n,r)/r=n!/r(n-r)!.
n個元素被分成k類,每類的個數分別是n1,n2,...nk這n個元素的全排列數為
n!/(n1!.n2!.....nk!).
k類元素,每類的個數無限,從中取出m個元素的組合數為c(m+k-1,m).
排列(Pnm(n為下標,m為上標))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(註:!是階乘符號);Pnn(兩個n分別為上標和下標)=n!;0!=1;Pn1(n為下標1為上標)=n
組合(Cnm(n為下標,m為上標))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標和下標)=1;Cn1(n為下標1為上標)=n;Cnm=Cnn-m
公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如9!=9.8.7.6.5.4.3.2.1
從N倒數r個,表達式應該為n.(n-1).(n-2)..(n-r+1);
因為從n到(n-r+1)個數為n-(n-r+1)=r
舉例:
Q1:有從1到9總計9個號碼球,請問,可以組成多少個三位數?
A1:123和213是兩個不同的排列數。即對排列順序有要求的,既屬於“排列P”計算範疇。
上問題中,任何一個號碼只能用一次,顯然不會出現988,997之類的組合,我們可以這么看,百位數有9種可能,十位數則應該有9-1種可能,個位數則應該只有9-1-1種可能,最終共有9.8.7個三位數。計算公式=P(3,9)=9.8.7,(從9倒數3個的乘積)
Q2:有從1到9總計9個號碼球,請問,如果三個一組,代表“三國聯盟”,可以組合成多少個“三國聯盟”?
A2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬於“組合C”計算範疇。
上問題中,將所有的包括排列數的個數去除掉屬於重複的個數即為最終組合數C(3,9)=9.8.7/3.2.1
排列、組合的概念和公式典型例題分析
例1設有3名學生和4個課外小組.
(1)每名學生都只參加一個課外小組;
(2)每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加.各有多少種不同方法?
解
(1)由於每名學生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數,因此共有種不同方法.
(2)由於每名學生都只參加一個課外小組,而且每個小組至多有一名學生參加,因此共有種不同方法.
點評由於要讓3名學生逐個選擇課外小組,故兩問都用乘法原理進行計算.
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?
解依題意,符合要求的排法可分為第一個排、中的某一個,共3類,每一類中不同排法可採用畫“樹圖”的方式逐一排出:
∴符合題意的不同排法共有9種.
點評按照分“類”的思路,本題套用了加法原理.為把握不同排法的規律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數問題的一種數學模型.
例3判斷下列問題是排列問題還是組合問題?並計算出結果.
(1)高三年級學生會有11人:
①每兩人互通一封信,共通了多少封信?
②每兩人互握了一次手,共握了多少次手?
(2)高二年級數學課外小組共10人:
①從中選一名正組長和一名副組長,共有多少種不同的選法?
②從中選2名參加省數學競賽,有多少種不同的選法?
(3)有2,3,5,7,11,13,17,19八個質數:
①從中任取兩個數求它們的商可以有多少種不同的商?
②從中任取兩個求它的積,可以得到多少個不同的積?
(4)有8盆花:
①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?
②從中選出2盆放在教室有多少種不同的選法?
分析(1)
①由於每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關是排列;
②由於每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關,所以是組合問題.其他類似分析.
(1)
①是排列問題,共用了封信;
②是組合問題,共需握手(次).
(2)
①是排列問題,共有(種)不同的選法;
②是組合問題,共有種不同的選法.
(3)
①是排列問題,共有種不同的商;
②是組合問題,共有種不同的積.
(4)
①是排列問題,共有種不同的選法;
②是組合問題,共有種不同的選法.
例4證明.
證明左式
右式.
∴等式成立.
點評這是一個排列數等式的證明問題,選用階乘之商的形式,並利用階乘的性質,可使變形過程得以簡化.
例5化簡.
解法一原式
解法二原式
點評解法一選用了組合數公式的階乘形式,並利用階乘的性質;解法二選用了組合數的兩個性質,都使變形過程得以簡化.
例6解方程:(1);(2).
解(1)原方程
解得.
(2)原方程可變為
∵
∴原方程可化為.
即,解得
三角函式公式
銳角三角函式公式
sin α=∠α的對邊 / 斜邊
cos α=∠α的鄰邊 / 斜邊
tan α=∠α的對邊 / ∠α的鄰邊
cot α=∠α的鄰邊 / ∠α的對邊
倍角公式
Sin2A=2SinA?CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(註:SinA^2 是sinA的平方 sin2(A) )
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a = tan a · tan(π/3+a)· tan(π/3-a)
三倍角公式推導
sin3a
=sin(2a+a)
=sin2acosa+cos2asina
輔助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
降冪公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=(sinα/2+cosα/2)^2
=2sina(1-sin2a)+(1-2sin2a)sina
=3sina-4sin3a
cos3a
=cos(2a+a)
=cos2acosa-sin2asina
=(2cos2a-1)cosa-2(1-sin2a)cosa
=4cos3a-3cosa
sin3a=3sina-4sin3a
=4sina(3/4-sin2a)
=4sina[(√3/2)2-sin2a]
=4sina(sin260°-sin2a)
=4sina(sin60°+sina)(sin60°-sina)
=4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]
=4sinasin(60°+a)sin(60°-a)
cos3a=4cos3a-3cosa
=4cosa(cos2a-3/4)
=4cosa[cos2a-(√3/2)2]
=4cosa(cos2a-cos230°)
=4cosa(cosa+cos30°)(cosa-cos30°)
=4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}
=-4cosasin(a+30°)sin(a-30°)
=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
=-4cosacos(60°-a)[-cos(60°+a)]
=4cosacos(60°-a)cos(60°+a)
上述兩式相比可得
tan3a=tanatan(60°-a)tan(60°+a)
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
兩角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化積
sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
高中高考數學知識點最新精選總結 篇9
1.定義:
用符號〉,=,〈號連線的式子叫不等式。
2.性質:
①不等式的兩邊都加上或減去同一個整式,不等號方向不變。
②不等式的兩邊都乘以或者除以一個正數,不等號方向不變。
③不等式的兩邊都乘以或除以同一個負數,不等號方向相反。
3.分類:
①一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的次數是1的不等式叫一元一次不等式。
②一元一次不等式組:
a.關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。
b.一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。
4.考點:
①解一元一次不等式(組)
②根據具體問題中的數量關係列不等式(組)並解決簡單實際問題
③用數軸表示一元一次不等式(組)的解集
高中高考數學知識點最新精選總結 篇10
一、高考數學中有函式、數列、三角函式、平面向量、不等式、立體幾何等九大章節
主要是考函式和導數,因為這是整個高中階段中最核心的部分,這部分里還重點考察兩個方面:第一個函式的性質,包括函式的單調性、奇偶性;第二是函式的解答題,重點考察的是二次函式和高次函式,分函式和它的一些分布問題,但是這個分布重點還包含兩個分析。
二、平面向量和三角函式
對於這部分知識重點考察三個方面:是劃減與求值,第一,重點掌握公式和五組基本公式;第二,掌握三角函式的圖像和性質,這裡重點掌握正弦函式和餘弦函式的性質;第三,正弦定理和餘弦定理來解三角形,這方面難度並不大。
三、數列
數列這個板塊,重點考兩個方面:一個通項;一個是求和。
四、空間向量和立體幾何
在裡面重點考察兩個方面:一個是證明;一個是計算。
五、機率和統計
機率和統計主要屬於數學套用問題的範疇,需要掌握幾個方面:……等可能的機率;……事件;獨立事件和獨立重複事件發生的機率。
六、解析幾何
這部分內容說起來容易做起來難,需要掌握幾類問題,第一類直線和曲線的位置關係,要掌握它的通法;第二類動點問題;第三類是弦長問題;第四類是對稱問題;第五類重點問題,這類題往往覺得有思路卻沒有一個清晰的答案,但需要要掌握比較好的算法,來提高做題的準確度。
七、壓軸題
同學們在最後的備考複習中,還應該把重點放在不等式計算的方法中,難度雖然很大,但是也切忌在試卷中留空白,平時多做些壓軸題真題,爭取能解題就解題,能思考就思考。
高考數學直線方程知識點:什麼是直線方程
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標系中的一個二元一次方程所表示的圖形。求兩條直線的交點,只需把這兩個二元一次方程聯立求解,當這個聯立方程組無解時,兩直線平行;有無窮多解時,兩直線重合;只有一解時,兩直線相交於一點。常用直線向上方向與X軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對於X軸)的傾斜程度。可以通過斜率來判斷兩條直線是否互相平行或互相垂直,也可計算它們的交角。直線與某個坐標軸的交點在該坐標軸上的坐標,稱為直線在該坐標軸上的截距。直線在平面上的位置,由它的斜率和一個截距完全確定。在空間,兩個平面相交時,交線為一條直線。因此,在空間直角坐標系中,用兩個表示平面的三元一次方程聯立,作為它們相交所得直線的方程。
高中高考數學知識點最新精選總結 篇11
1.集合的有關概念。
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N.
2.子集、交集、並集、補集、空集、全集等概念。
1)子集:若對x∈A都有x∈B,則A B(或A B);
2)真子集:A B且存在x0∈B但x0 A;記為A B(或,且)
3)交集:A∩B={x| x∈A且x∈B}
4)並集:A∪B={x| x∈A或x∈B}
5)補集:CUA={x| x A但x∈U}
注意:①? A,若A≠?,則? A ;
②若,,則;
③若且,則A=B(等集)
3.弄清集合與元素、集合與集合的關係,掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
4.有關子集的幾個等價關係
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB =空集CuA B;⑤CuA∪B=I A B。
5.交、並集運算的性質
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個數:設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
高中高考數學知識點最新精選總結 篇12
1、向考生強調:確保簡單題全拿分,中檔題少失分
《考試說明》中要求“高考數學考查中學的基礎知識、基本技能的掌握程度”,在“考查基礎知識的同時,注重考查能力”。“試題設計力求情境熟、入口寬、方法多、有層次。”
高考試題很大部分是簡單題與中檔題,所以,學生如果基礎知識不掌握,那么還談什麼能力呢?因此建議:老師們一定要引導考生在最後一個學期,加強基礎知識、基本方法的鞏固,保證簡單題全拿分、中檔題少失分。
對於難題,則要鼓勵考生切不可放棄,第一小題要拿下,最後小題多角度地思考努力尋找恰當方法,儘可能多拿分,平時一定要養成不會做的難題拿步驟分的習慣。
2、引導考生學會反思歸納,學會反思命題者出題意圖
《考試說明》指出,試題要“注重通性通法”、“常規方法”。根據此,老師們要做的是:
首先,引導考生反思歸納,尋找“通性通法”“常規方法”。
數學需要一定的訓練量,幾天不練就會感覺手生,但題海戰術並不可取,因為題海戰術會擠占反思的時間。因此平時在做練習模擬卷時,做完題目,除了訂正,還應該反思。
《考試說明》中關於空間想像能力是這樣敘述的:“能根據條件作出正確的圖形,根據圖形想像出直觀形象;能正確地分析出圖形中基本元素及其相互關係;能對圖形進行分解、組合;會運用圖形與圖表等手段形象地揭示問題的本質。”
其次,引導考生反思命題人為什麼出這個題,想考查什麼?
比如立體幾何解答題為什麼是這樣出題的'?顯而易見,要考查空間想像能力。因此做完立體幾何解答題後,要再審視一下,這個幾何體是怎樣構成的,幾何元素間有哪些關係。再比如,對於很多考生而言,解析幾何難於計算,為什麼難?因為不會“尋找與設計合理、簡捷的運算途徑”!
解析幾何解答題沒有過關的學生,引導他們反思下自己的運算求解能力,平時遇到計算時,不可畏難退卻,認認真真地做透幾個解析幾何解答題,體會其中的基本技巧,運算求解能力也就培養起來了。
3、用考試說明,引導考生查漏補缺,提高複習效率
用《考試說明》引導學生查漏補缺,看看有哪些知識點考生已經達到了考試要求,有哪些還沒有達到。比如“會求一些簡單的函式的值域”,考生不僅要能夠說出求值域的常用方法——觀察法、配方法、換元法、圖象法、單調性法等,還應該說得出與方法對應的經典例題。對於沒有達到考試要求的知識點,就需要重點加強、專項突破。
對於不知道的“數學概念、性質、法則、公式、公理、定理”,需要認真地看教材,補上短板。比如“理解函式的最大(小)值及其幾何意義,並能求出函式的最大值”,如果說不出最值的幾何意義,就應該再看一遍教材上關於最大(小)的定義。
通過研讀考試說明,把考試說明先讀厚再讀薄,對基礎知識、基本技能進行網路化的加工整理,發現知識內在的聯繫與規律,形成脈絡清晰、主線突出的知識體系,從而有利於快速提取知識解決問題。
比如關於“恆成立問題”的知識網路構建,應該知道有四種常見的解法,一是變數分離,二是轉化為最值問題,三是圖象法,四是轉換主元法,應該知道四種解法內在的聯繫與區別是什麼,除此之外,還應該知道“恆成立問題”與“存在性問題”的區別。建議考生畫出這張知識網路,在考試中遇到“恆成立問題”,就可以根據這張網路快速探索合適的解題方法。
數學對於文科生來說是個大難題,有些同學甚至“談數學色變”。其實只要掌握恰當的學習方法,文科生一樣可以學好數學並在高考中取得滿意的分數。
■杜絕負面的自我暗示
首先對數學學習不要抱有放棄的想法。有些同學認為數學差一點沒關係,只要在其他三門文科上多用功就可以把總分補回來,這種想法是非常錯誤的。我高三時的班主任曾經說過一個“木桶原理”:一隻木桶盛水量的多少取決於它最短的一塊木板。高考也是如此,只有各科全面發展才能取得好成績。其次是要杜絕負面的自我暗示。高三一年會有許許多多的考試,不可能每一次都取得自己理想的成績。在失敗的時候不要有“我肯定沒希望了”、“我是學不好了”這樣的暗示,相反的,要對自己始終充滿信心,最終成功會到你的身邊。
■抄筆記別丟了“西瓜”
高考數學試卷中大部分的題目都是基礎題,只要把這些基礎題做好,分數便不會低了。要想做好基礎題,平時上課時的聽課效率便顯得格外重要。一般教高三的都是有著豐富經驗的老師,他們上課時的內容可謂是精華,認真聽講45分鐘要比自己在家複習2個小時還要有效。聽課時可以適當地做些筆記,但前提是不影響聽課的效果。有些同學光顧著抄筆記卻忽略了老師解題的思路,這樣就是“撿了芝麻丟了西瓜”,反而有些得不償失。
■題目最好做兩遍
要想學好數學,平時的練習必不可少,但這並不意味著要進行題海戰術,做練習也要講究科學性。在選擇參考書方面可以聽一下老師的意見,一般來說老師會根據自己的教學方式和進度給出一定的建議,數量基本在1—2本左右,不要太多。在選好參考書以後要認真完整地做,每一本好的參考書都存在著一個知識體系,有些同學這本書做一點,那本書做一點,到最後做了許多本書但都沒有做完,無法形成一個完整的知識體系,效果反而不好。做題的時候要多做簡單題,並且要定好時間,這樣可以提高解題速度。在高考前的衝刺階段要保證1—2天做一套試捲來保持狀態。最重要的是要通過做題發現並解決自己已有的問題,總結出各類題目的解題方法並且熟練掌握。在這裡有兩個小建議:一是在做填空選擇題時可以在旁邊的空白處寫一些解題過程以方便以後複習;二是題目最好做兩遍以上,可以加深印象。
■應考時要捨得放棄
對於大部分數學基礎不是很紮實的同學來說,放棄最後兩題應該是一個比較明智的選擇。高考數學試卷的最後兩題對於能力的要求較高,數學較弱的同學不要花太多的時間在上面,而應把精力放在前面的基礎題上,這樣成績反而會有所提高。高考的大題目都是按過程給分的,所以萬一遇到不會的題也不要空著,應根據題意儘量多寫一些步驟。在對待粗心這個常見問題上,我有兩個建議:一是少打草稿,把步驟都寫在試卷上;二是規範草稿,讓草稿一目了然,這樣便不太會出現看錯或抄錯的現象了。考試中有時可以用代數字、特殊情況和計算器等方法來提高解題速度解決難題,但在考試過後一定要把題目正規的解題思路了解清楚。每一次考試的試卷和高考前各區的模擬卷都是珍貴的複習資料,一定要妥善保存。
高中高考數學知識點最新精選總結 篇13
1.數列的定義
按一定次序排列的一列數叫做數列,數列中的每一個數都叫做數列的項.
(1)從數列定義可以看出,數列的數是按一定次序排列的,如果組成數列的數相同而排列次序不同,那么它們就不是同一數列,例如數列1,2,3,4,5與數列5,4,3,2,1是不同的數列.
(2)在數列的定義中並沒有規定數列中的數必須不同,因此,在同一數列中可以出現多個相同的數字,如:-1的1次冪,2次冪,3次冪,4次冪,…構成數列:-1,1,-1,1,….
(4)數列的項與它的項數是不同的,數列的項是指這個數列中的某一個確定的數,是一個函式值,也就是相當於f(n),而項數是指這個數在數列中的位置序號,它是自變數的值,相當於f(n)中的n.
(5)次序對於數列來講是十分重要的,有幾個相同的數,由於它們的排列次序不同,構成的數列就不是一個相同的數列,顯然數列與數集有本質的區別.如:2,3,4,5,6這5個數按不同的次序排列時,就會得到不同的數列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個集合.
2.數列的分類
(1)根據數列的項數多少可以對數列進行分類,分為有窮數列和無窮數列.在寫數列時,對於有窮數列,要把末項寫出,例如數列1,3,5,7,9,…,2n-1表示有窮數列,如果把數列寫成1,3,5,7,9,…或1,3,5,7,9,…,2n-1,…,它就表示無窮數列.
(2)按照項與項之間的大小關係或數列的增減性可以分為以下幾類:遞增數列、遞減數列、擺動數列、常數列.
3.數列的通項公式
數列是按一定次序排列的一列數,其內涵的本質屬性是確定這一列數的規律,這個規律通常是用式子f(n)來表示的,
這兩個通項公式形式上雖然不同,但表示同一個數列,正像每個函式關係不都能用解析式表達出來一樣,也不是每個數列都能寫出它的通項公式;有的數列雖然有通項公式,但在形式上,又不一定是的,僅僅知道一個數列前面的有限項,無其他說明,數列是不能確定的,通項公式更非.如:數列1,2,3,4。
高中高考數學知識點最新精選總結 篇14
1、課程內容:
必修課程由5個模組組成:
必修1:集合、函式概念與基本初等函式(指、對、冪函式)
必修2:立體幾何初步、平面解析幾何初步。
必修3:算法初步、統計、機率。
必修4:基本初等函式(三角函式)、平面向量、三角恆等變換。
必修5:解三角形、數列、不等式。
以上是每一個高中學生所必須學習的。
上述內容覆蓋了高中階段傳統的數學基礎知識和基本技能的主要部分,其中包括集合、函式、數列、不等式、解三角形、立體幾何初步、平面解析幾何初步等。不同的是在保證打好基礎的同時,進一步強調了這些知識的發生、發展過程和實際套用,而不在技巧與難度上做過高的要求。
此外,基礎內容還增加了向量、算法、機率、統計等內容。
2、重難點及考點:
重點:函式,數列,三角函式,平面向量,圓錐曲線,立體幾何,導數
難點:函式、圓錐曲線
高考相關考點:
⑴集合與簡易邏輯:集合的概念與運算、簡易邏輯、充要條件
⑵函式:映射與函式、函式解析式與定義域、值域與最值、反函式、三大性質、函式圖象、指數與指數函式、對數與對數函式、函式的套用
⑶數列:數列的有關概念、等差數列、等比數列、數列求和、數列的套用
⑷三角函式:有關概念、同角關係與誘導公式、和、差、倍、半公式、求值、化簡、證明、三角函式的圖象與性質、三角函式的套用
⑸平面向量:有關概念與初等運算、坐標運算、數量積及其套用
⑹不等式:概念與性質、均值不等式、不等式的證明、不等式的解法、絕對值不等式、不等式的套用
⑺直線和圓的方程:直線的方程、兩直線的位置關係、線性規劃、圓、直線與圓的位置關係
⑻圓錐曲線方程:橢圓、雙曲線、拋物線、直線與圓錐曲線的位置關係、軌跡問題、圓錐曲線的套用
⑼直線、平面、簡單幾何體:空間直線、直線與平面、平面與平面、稜柱、稜錐、球、空間向量
⑽排列、組合和機率:排列、組合套用題、二項式定理及其套用
⑾機率與統計:機率、分布列、期望、方差、抽樣、常態分配
⑿導數:導數的概念、求導、導數的套用
⒀複數:複數的概念與運算
高中高考數學知識點最新精選總結 篇15
圓與圓的位置關係的判斷方法
一、設兩個圓的半徑為R和r,圓心距為d。
則有以下五種關係:
1、d>R+r兩圓外離;兩圓的圓心距離之和大於兩圓的半徑之和。
2、d=R+r兩圓外切;兩圓的圓心距離之和等於兩圓的半徑之和。
3、d=R—r兩圓內切;兩圓的圓心距離之和等於兩圓的半徑之差。
4、d<r—rp=""兩圓內含;兩圓的圓心距離之和小於兩圓的半徑之差。
5、d<r+rp=""兩園相交;兩圓的圓心距離之和小於兩圓的半徑之和。
二、圓和圓的位置關係,還可用有無公共點來判斷:
1、無公共點,一圓在另一圓之外叫外離,在之內叫內含。
2、有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切。
3、有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
高中高考數學知識點最新精選總結 篇16
一學年來,在學校領導、高三年級組的領導下,高三數學備課組按照學年初制定的複習備考計畫加以實施,並適時地加以充實和完善。全組成員,同心協力,廢寢忘食地勤奮工作,並積極進行教學改革,悉心研討和實踐旨在如何最大限度的調動學生複習主動性,充分發揮學生的主體作用的教學模式和措施。經過實驗,效果良好,以往的“學生被動的接受”的狀況得到了改觀,出現了“學生主動參與、主動思考和主動學習”的新局面,學生的創新意識和套用能力得到加強和提高,複習效率和質量也大大提高。使今年我校高考數學成績再上新台階,我校今年高考數學最高分145分,高分人數理科110多人文科48人,取得了較好的成績。成績的取得,源於各方面的因素,現總結如下:
一、系統、紮實、科學、創新的複習備考
1、研討考綱,分析考點,設定梯度。高三備課組組織教師研討高考考試說明,明確各章節知識的考點分布及其要求層次,在複習過程中根據我校大部分學生的基礎和智力都比其它幾所高中差的現狀,狠抓對基礎知識的複習,再結合知識本身的重點、難點,設定好複習題的梯度和難度。做到有的放矢,儘可能減少無效勞動。
2、團結協作,發揮特長。備課組堅持集體備課,精心設計複習教學方案,統一教學目標、要求及複習的大致進度,理清各章節內容的知識網路及其交匯點(因高考常在知識網路交匯點上命題),準確把握各複習內容的重點和難點,疑難問題集體討論,老師們各抒己見,找出最佳解決辦法,充分發揮了備課組的集體智慧。
3、回歸課本,狠抓基礎,開拓創新。備課組以課本知識點為出發點,狠抓對“三基”的落實,並選好一本主幹複習資料和套題,(第一階段用《中華第一考》和《狀元之路測試卷》,第二階段和套題用的是《全品、夯實基礎、短平快》),以自編資料為主,但又不過分依賴複習資料,對資料中過時、過偏、過難的內容,我們進行了大膽捨棄,同時,教師把富有新意、能啟迪思維、體現重要數學思想方法、反映時代氣息的習題及時補充進去,另外,老師自己也改編了一些題,重視單元小綜合,適當自編或改編知識網路交匯點上的題目,這些自編題、自造題的套用,對於培養學生的發散思維,使學生們加深對各部分知識的內在聯繫的認識,因而從中感悟出數學的真諦,最終收到了相當好的效果。
4、拓寬課堂教學渠道,全面提高學生能力。課堂教學是提高教學質量的關鍵環節,因此,在如何提高課堂複習效率和複習質量方面,幾個老師都作了積極的探索和試驗,進行了大膽教學改革。胡景雲老師試驗的自主複習指導法,經過一學年的實驗證明,效果顯著;王從志、楊曉琴、等老師的加大課堂練習容量,以學生練為主,老師的點評為輔的實驗,也取得不同程度的效果。在教學中我們注意發揮教師的主導作用和創新意識,在傳授知識的同時,指導學法,發展智力,培養能力,並適時地滲透重要的數學思想方法。教學中著力體現學生的主體作用,努力提高學生的主動參與意識,激發他們積極思維,挖掘其潛能和非智力因素,使他們養成獨立思考、勇於探索、善於反思、勤於積累、不斷創新的好習慣。大家都認識到,只有把學生的學習積極性充分調動起來了,養成了良好的學習習慣和思維品質,高考複習的質量才有保證。因為內因是決定因素,外因必須通過內因才能起作用。
5、滾動測練、螺旋式上升。高三備課組老師在備課組組長的帶領下,分工輪流做好數學每天限時訓練、每周一練、單元過關測驗、綜合訓練題、模擬考試試題的命題和制卷工作,把好質量關。通過滾動練習、限時訓練和模擬考試使學生逐步增強速度意識、質量意識,提高了學生的運算能力、邏輯思維能力、空間想像能力和綜合運用知識的能力,為高考作了較充分的準備。
6、互聽互學,揚長避短。為提高複習質量,備課組老師之間經常相互聽課。通過聽課,相互學習,取他人之長,補己之短。提高了教學水平和複習效果。
7、勤字為首,真情感化。晚自習下班輔導工作抓得緊,做到常下班、常輔導,不僅輔導本學科知識,還有針對性地找學生談心,勾通了思想,聯絡了感情,也消除他們的心理障礙。王從志、楊曉琴等老師堅持每晚下班輔導至少一節,其他教師也紛紛仿效,不少老師一直輔導到學校要求最後熄燈的十一點為止。高考前還在時時寄語高三學生,指導答題技巧,以及如何調整好心理狀態,做到輕裝上陣。
8、認真反饋,不斷改進。做好本備課組教學情況的收集、反饋工作,各個老師自覺根據各班教學情況進行了學生評教活動,對幫助科任教師改進不足之處,提高教學水平起到了一定的促進作用。
9、培養“尖子”、診治“拐子”。做好單科尖子學生的培養和鼓勵工作,各科任教師根據幾次模擬考試成績確定出各班尖子生名單,及時找他們談心,並加以指導和鼓勵。根據班級的.跟蹤對象,大部分尖子的成績較穩定。同時也主動配合級組、班級抓好臨界生、“拐子”生的輔導工作。
二、備課組濃厚的高考研究氣氛
隨著高考改革力度的加大,高考更加突出對各種數學能力與素質、潛能的考查,因此,要提高高考成績,必須走教科研之路。
1、集體研討,團結攻堅。高三備課組教師和其他有豐富高考指導經驗的教師結成對子。充分發揮非高三任課教師的其他成員的作用,先後請他們參加了若干次高三數學備課組活動,重點對近幾年來的高考試題進行了深入的研究和探討。並為我們獻計獻策,使我們的高考備考少走了彎路,複習更具有針對性。
2、中心開花,備課組每周組織一次集研活動,設定中心問題,每個教師暢所欲言,然後各個擊破。由於高考是高三全年的攻堅戰,因此備課組的活動始終圍繞高考備考這箇中心進行。我們分階段研討中心問題如下:
1)如何處理好複習課中教師講解與學生練習的時間比例及矛盾。
2)複習課中如何激發學生的興趣和挖掘學生的潛能?
3)今年高考重點、熱點預測和研討。
4)如何精選高考複習題,它應遵循什麼原則?
5)如何命制高考模擬題,它的選題原則是什麼?
6)如何上好第二輪專題複習課。
7)如何克服高三學生常犯的“眼高手低”的壞毛病?
8)強化訓練階段,如何滲透和強化各種數學思想和方法?
9)高考套用題數學模型的建立的探討;
3、促使學生突變,創設突變機遇。我們認為:學生在第二、三階段是數學成績提高的良好階段,教師在這兩階段的課堂教學是幫助學生“歸納提高”的導航。因此,我們認真做好第二、三階段複習的研討工作,王從志、楊曉琴老師分別承擔了的第二、三階段高考複習研討觀摩課,準備充分,具有觀摩性和示範性,為學生知識歸類提高設定了明確的航標。
4、採集信息,科學巧幹。備課組注意採集各地高考備考及高考命題方面信息,通過去偽存真,及時加工,科學地複習提高,為高考贏得時間,也做到有的放矢。這方面吳家強、陳雲、楊斌等老師做了大量的工作。
總之,因為有上級領導、學校行政、教務處、數學組、高三年級組的正確領導,有全備課組老師的勤奮工作,還有其他老師的大力支持和學生的奮力拚搏,才使我校今年數學高考成績再上新台階,再創新輝煌。
儘管今年我們取得了較好的成績,積累了一些成功經驗,但仍有許多不足和遺憾:
1、各班學生成績參差不齊,這給我們在教學上帶來一定的困難,例如,到底應該以哪一層學生為主攻對象更合適、更科學?因為現在錄取率這么高,怕甩掉了不該甩的學生,同時若只照顧優生,差生也有意見,真是左右為難。
2、各班之間的發展還不夠平衡,各班的成績差距較大;
3、各科之間的協調還不夠,治“拐”力度不夠。如有些學生數學成績上了重點線,但其它科卻沒有上,或者是其它科上了重點線,而數學又沒有上。
4、對尖子生的培養措施和力度還不夠。
5、對差生的學習積極性還沒有完全調動起來,對其非智力因素挖掘得不夠,練習還不夠到位,沒有形成應有的能力,故這部分學生的高考成績不夠理想。
6、老師有時講得過多,包得過多的教法還需進一步改進。
高中高考數學知識點最新精選總結 篇17
1、直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°
2、直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
高中高考數學知識點最新精選總結 篇18
易錯點1 遺忘空集致誤
錯因分析:由於空集是任何非空集合的真子集,因此,對於集合B高三經典糾錯筆記:數學A,就有B=A,φ≠B高三經典糾錯筆記:數學A,B≠φ,三種情況,在解題中如果思維不夠縝密就有可能忽視了 B≠φ這種情況,導致解題結果錯誤。尤其是在解含有參數的集合問題時,更要充分注意當參數在某個範圍內取值時所給的集合可能是空集這種情況。空集是一個特殊的集合,由於思維定式的原因,考生往往會在解題中遺忘了這個集合,導致解題錯誤或是解題不全面。
易錯點2 忽視集合元素的三性致誤
錯因分析:集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數的集合,實際上就隱含著對字母參數的一些要求。在解題時也可以先確定字母參數的範圍後,再具體解決問題。
易錯點3 四種命題的結構不明致誤
錯因分析:如果原命題是“若 A則B”,則這個命題的逆命題是“若B則A”,否命題是“若┐A則┐B”,逆否命題是“若┐B則┐A”。這裡面有兩組等價的命題,即“原命題和它的逆否命題等價,否命題與逆命題等價”。在解答由一個命題寫出該命題的其他形式的命題時,一定要明確四種命題的結構以及它們之間的等價關係。另外,在否定一個命題時,要注意全稱命題的否定是特稱命題,特稱命題的否定是全稱命題。如對“a,b都是偶數”的否定應該是“a,b不都是偶數”,而不應該是“a ,b都是奇數”。
易錯點4 充分必要條件顛倒致誤
錯因分析:對於兩個條件A,B,如果A=>B成立,則A是B的充分條件,B是A的必要條件;如果B=>A成立,則A是B的必要條件,B是A的充分條件;如果A<=>B,則A,B互為充分必要條件。解題時最容易出錯的就是顛倒了充分性與必要性,所以在解決這類問題時一定要根據充要條件的概念作出準確的判斷。
易錯點5 邏輯聯結詞理解不準致誤
錯因分析:在判斷含邏輯聯結詞的命題時很容易因為理解不準確而出現錯誤,在這裡我們給出一些常用的判斷方法,希望對大家有所幫助:p∨q真<=>p真或q真,命題p∨q假<=>p假且q假(概括為一真即真);命題p∧q真<=>p真且q真,p∧q假<=>p假或q假(概括為一假即假);┐p真<=>p假,┐p假<=>p真(概括為一真一假)。 函式與導數
易錯點6 求函式定義域忽視細節致誤
錯因分析:函式的定義域是使函式有意義的自變數的取值範圍,因此要求定義域就要根據函式解析式把各種情況下的自變數的限制條件找出來,列成不等式組,不等式組的解集就是該函式的定義域。在求一般函式定義域時要注意下面幾點:
(1)分母不為0;
(2)偶次被開放式非負;
3)真數大於0;
(4)0的0次冪沒有意義。
函式的定義域是非空的數集,在解決函式定義域時不要忘記了這點。對於複合函式,要注意外層函式的定義域是由內層函式的值域決定的。
易錯點7 帶有絕對值的函式單調性判斷錯誤
錯因分析:帶有絕對值的函式實質上就是分段函式,對於分段函式的單調性,有兩種基本的判斷方法:
一是在各個段上根據函式的解析式所表示的函式的單調性求出單調區間,最後對各個段上的單調區間進行整合;
二是畫出這個分段函式的圖象,結合函式圖象、性質進行直觀的判斷。研究函式問題離不開函式圖象,函式圖象反應了函式的所有性質,在研究函式問題時要時時刻刻想到函式的圖象,學會從函式圖象上去分析問題,尋找解決問題的方案。對於函式的幾個不同的單調遞增(減)區間,千萬記住不要使用並集,只要指明這幾個區間是該函式的單調遞增(減)區間即可。
易錯點8 求函式奇偶性的常見錯誤
錯因分析:求函式奇偶性的常見錯誤有求錯函式定義域或是忽視函式定義域,對函式具有奇偶性的前提條件不清,對分段函式奇偶性判斷方法不當等。判斷函式的奇偶性,首先要考慮函式的定義域,一個函式具備奇偶性的必要條件是這個函式的定義域區間關於原點對稱,如果不具備這個條件,函式一定是非奇非偶的函式。在定義域區間關於原點對稱的前提下,再根據奇偶函式的定義進行判斷,在用定義進行判斷時要注意自變數在定義域區間內的任意性。
易錯點9 抽象函式中推理不嚴密緻誤
錯因分析:很多抽象函式問題都是以抽象出某一類函式的共同“特徵”而設計出來的,在解決問題時,可以通過類比這類函式中一些具體函式的性質去解決抽象函式的性質。解答抽象函式問題要注意特殊賦值法的套用,通過特殊賦值可以找到函式的不變性質,這個不變性質往往是進一步解決問題的突破口。抽象函式性質的證明是一種代數推理,和幾何推理證明一樣,要注意推理的嚴謹性,每一步推理都要有充分的條件,不可漏掉一些條件,更不要臆造條件,推理過程要層次分明,書寫規範。
易錯點10 函式零點定理使用不當致誤
錯因分析:如果函式y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,並且有f(a)f(b)<0,那么,函式y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也是方程f(c)=0的根,這個結論我們一般稱之為函式的零點定理。函式的零點有“變號零點”和“不變號零點”,對於“不變號零點”,函式的零點定理是“無能為力”的,在解決函式的零點時要注意這個問題。
易錯點11 混淆兩類切線致誤
錯因分析:曲線上一點處的切線是指以該點為切點的曲線的切線,這樣的切線只有一條;曲線的過一個點的切線是指過這個點的曲線的所有切線,這個點如果在曲線上當然包括曲線在該點處的切線,曲線的過一個點的切線可能不止一條。因此求解曲線的切線問題時,首先要區分是什麼類型的切線。
易錯點12 混淆導數與單調性的關係致誤
錯因分析:對於一個函式在某個區間上是增函式,如果認為函式的導函式在此區間上恆大於0,就會出錯。研究函式的單調性與其導函式的關係時一定要注意:一個函式的導函式在某個區間上單調遞增(減)的充要條件是這個函式的導函式在此區間上恆大(小)於等於0,且導函式在此區間的任意子區間上都不恆為零。
易錯點13 導數與極值關係不清致誤
錯因分析:在使用導數求函式極值時,很容易出現的錯誤就是求出使導函式等於0的點,而沒有對這些點左右兩側導函式的符號進行判斷,誤以為使導函式等於0的點就是函式的極值點。出現這些錯誤的原因是對導數與極值關係不清。可導函式在一個點處的導函式值為零隻是這個函式在此點處取到極值的必要條件,在此提醒廣大考生在使用導數求函式極值時一定要注意對極值點進行檢驗。
易錯點14 用錯基本公式致誤
錯因分析:等差數列的首項為a1、公差為d,則其通項公式an=a1+(n-1)d,前n項和公式Sn=na1+n(n-1)d/2=(a1+an)d/2;等比數列的首項為a1、公比為q,則其通項公式an=a1pn-1,當公比q≠1時,前n項和公式Sn=a1(1-pn)/(1-q)=(a1-anq)/(1-q),當公比q=1時,前n項和公式Sn=na1。在數列的基礎性試題中,等差數列、等比數列的這幾個公式是解題的根本,用錯了公式,解題就失去了方向。 易錯點15 an,Sn關係不清致誤