數學試卷質量分析——教學工作總結

單項選擇題:學生一般得分為12—18分

第1題選對的占80%以上,學生對平面的基本性質中的公理及推論掌握較好。第2題選對的占70%左右,學生對兩向量垂直與兩向量數量積之間的關係掌握較好。答錯較多的是第4和第6題,其次是第5題。第5題多數錯選(a)或(b),可見學生對一般圓方程用公式求圓心和半徑不熟悉,同時用配方法化圓的一般方程為圓的標準方程,求圓心和半徑也掌握不好。特別是第4題平行坐標軸,坐標變換竟有33%的學生錯選(b)或不選(空白),可見不少學生對坐標軸平移引起坐標變換的新概念並不清楚,對新、舊坐標的概念也不清楚。第6題不少學生錯選(b),反映出學生對向量平行和垂直的條件混淆,判斷兩向量相等的條件也不明確,才會出現如此的錯誤。

第三題:(1)題是考查異面直線的成的角及長方體對角的計算。對本題的解答約80%的學生能找到異面直線a1c1與bc所成的角,但有30%~40%的學生不習慣用反正切函式表示角度,反而用反正弦或反餘弦函式表示角度,教學中應引起跑的重視。計算長方體的對角線長僅有20%的學生會用簡捷方法“長方體的對角線的平方等於長、寬、高的平方和”。其餘學生計算較繁瑣。

(2)題是考查證明三點共線問題。約有80%的學生採用不同的方法證明,有用解析法的,也有用向量法的,也有用平面幾何與解析幾何綜合知識證明的“三點連線中,兩線之和等於第三線則三點共線”,反映出各教學點對該問題給出了多種證明法和思路,值得提倡。

第(3)題考查根據不同的己知條件選用向量數量積的表達式。

第四題:1題主要考查動點的軌跡方程,學生的解答,多出現兩種方法,按軌跡滿足橢圓定義求解或按求軌跡方程的四大步驟求解,但解答中又出現不少錯誤。第五題:1題是考查由給定雙曲線的條件求它的標準方程和漸近線方程,但不少學生將雙曲線中的參數a,b與隨圓中的參數a、b、c混為一談,對漸逐近線方程掌握不好,不能根據漸逐線的位置,寫出漸近線的方程。

2題主要考查用向量法證明四邊形是矩形的方法,但不少學生隨心所意,反而用解析幾何的方法去證明,嚴格講這是錯誤的,應該引起重視。有的學生在證明中邏輯混亂,邏輯推理敘述不嚴密,在矩形的證明中,用“垂直證明垂直”。對向量

的知識掌握不牢固,求向量的坐標時,差值的順序不對,導致計算錯誤。

第六題:本題是一道立體幾何題,主要考查的知識點一是兩平面垂直的性質,二是直線與平面所成的角。本題評閱結果,有近60%的考生得滿分,這些學生是掌握了考查的知識點,解題思路清晰,能迅速地用兩平面垂直的性質,證明δabc和δbdc是直角三角形,求出bc和cd後,又用三角函式計算cd與平面  所成的角。有的學生構造三角形思路靈活,連線ad得直角δabd,在此三角形中求出ad,又在直角δdac中求出cd,最後在直角δdbc中求出dc與平面  所成的角,即∠dcb。

在20%的學生錯答的原因是找不準直角,把直角邊當成斜邊來計算,導致解答錯誤。有近20%的學生空間概念較差,交白卷,有的認為ab與cd是在一個平面上且相交,完全按平面幾何的知識來解答本題,如用全等三角形和相似三角形的知識來解,這是完全沒有空間概念的主要表現。

五、通過考試反饋的信息對今後教學的建議

通過以上考試命題,試卷質量,答卷質量,基本概況的綜合分析,實行統一命題,統一考試,統一閱卷是非常必要的。將考試成績通報各教學點,對互通信息,相互學習,取長補短,努力改進教學方法,分析和探索國中起點五年制大專教育(高職)的教學規律,也是很有必要的。特別是通過考生的答卷分析,各教學點要開展教研活動,分析教學中的薄弱環節,採取有針對性的措施,不斷的提高教學質量。