這種情況下,神經網路技術就有其特有的優勢,以其並行分布、自組織、自適應、自學習和容錯性等優良性能,可以較好地適應技術創新預測和評估這類多因素、不確定性和非線性問題,它能克服上述各方法的不足。本項目以bp神經網路作為基於多因素的技術創新預測和評估模型構建的基礎,bp神經網路由輸入層、隱含層和輸出層構成,各層的神經元數目不同,由正向傳播和反向傳播組成,在進行產品技術創新預測和評估時,從輸入層輸入影響產品技術創新預測值和評估值的n個因素信息,經隱含層處理後傳入輸出層,其輸出值y即為產品技術創新技術性能指標的預測值或產品技術創新的評估值。這種n個因素指標的設定,考慮了概括性和動態性,力求全面、客觀地反映影響產品技術創新發展的主要因素和導致產品個體差異的主要因素,儘管是黑匣子式的預測和評估,但事實證明它自身的強大學習能力可將需考慮的多種因素的數據進行融合,輸出一個經非線性變換後較為精確的預測值和評估值。