《清史稿》卷五百七 列傳二百九十四
又於同治十三年,與英士傅蘭雅共譯代數術二十五卷,衡芳序之曰:“代數之術,其已知、未知之數,皆代之以字,而乘、除、加、減各有記號,以為區別,可如題之曲折以相赴。迨夫層累已明,階級已見,乃以所代之數入之,而所求之數出焉。故可以省算學之工,而心亦較逸,以其可不假思索而得也。雖然,代數之術誠簡便矣,試問工此術者,遂能不病其繁乎?則又不能也。夫人之用心,日進而不已,苟不至昏眊迷亂,必不肯終輟。故始則因繁而求簡,及其既簡也,必更進焉,而復遇其繁,雖疊代數十次,其能免哉?自是知代數之意,乃為數學中鉤深索隱之用,非為淺近之算法設也。若米鹽零雜之事,而概欲以代數施之,未有不為市儈所笑者也。至於代數、天元之異同優劣,讀此書者自能知之,無待余言也。”
又與傅蘭雅共譯微積溯源八卷,序之曰:“吾以為古時之算法,惟有加、減而已。其乘與除乃因加減之不勝其繁,故更立二術以使之簡易也。開方之法,又所以濟除法之窮者也。蓋學算者自有加、減、乘、除、開方五法,而一切簡易淺近之數,無不可通矣。惟人之心思智慮日出不窮,往往以能人之所不能者為快,遇有窒礙難通之處,輒思立法以濟其窮,故有減其所不可減,而正負之名不得不立矣;除其所不受除,而寄母通分之法又不得不立矣。代數中種種記號之法,皆出於不得已而立者也。惟每立一法,必能使繁者為簡,難者為易,遲者為速,而算學之境界,藉此得更進一層。如是屢進不已,而所立之法,於是乎日多矣。微分、積分者,蓋又因乘、除、開方之不勝其繁,且有窒礙難通之處,故更立此二術以濟其窮,又使簡易而速者也。試觀圜徑求周、真數求對數之事,雖無微分、積分之時,亦未嘗不可求,惟須乘、除、開方數十百次,其難有不可言喻者。不如用微積之法,理明而數捷也。然則謂加、減、乘、除、代數之外,更有二術焉,一曰微分,一曰積分可也。其積分猶微分之還原,猶之開方為自乘之還原,除法為乘法之還原,減法為加法之還原也。然加與乘,其原無不可還,而微分之原,有可還有不可還者,是猶算式中有不可還原之方耳,又何怪焉!如必曰加減乘除開方已足供吾之用,何必更求其精?是舍舟車之便利,而必欲負重遠行也。其用力多而成功少,蓋不待智者而辨矣。又代數術中末卷之中,載求平員周率簡捷法式,為猶拉所設。未有此法之時,曾有算學士固靈用平員內容外切之多等邊形,費極大工夫,算得三十六位之數。設徑為一,周為三一四一五九二六五三五八九七九三二三八四六二六四三三八三二七九五零二八八。其臨死之時,囑其家以此數刻於墓碑,蓋平時得意之作,恐其磨滅,故欲傳之永久,亦猶亞基默得之墓,刻一球形與員柱形也。”
又與傅氏共譯三角數理,此書為英士海麻士所譔。海麻士專精三角、八線之學,著書十有二卷,皆言三角數理,即用為名。首明三角用比例之理;次論兩角或多角諸比例數;次論造八線比例表之法;次解平三角諸形;次論諸角比例乘約變化之理;紀彼國算士棣弗美創例也,附以專論對數術及諸三角形設題一百則,為書三卷,以引學者;次總說球上各圈及弧三角形之界;次解正弧斜弧三角形之法;次雜論求弧三角數種特設之表;終以弧三角形設題二十七則焉。然書中說解過於煩費,仍不能變外角和較與垂弧、次形、總較諸舊法,故自海氏書出,益覺徐有壬拾遺三術難能可貴,超越西人。
又與傅氏共譯代數難題解法十六卷。
其弟世芳,字若溪。亦通算術,著有近代疇人著述記。