國中數學公式總結

國中數學公式總結 篇1

時間單位換算

1世紀=100年1年=12月

大月(31天)有:135781012月

小月(30天)的有:46911月

平年2月28天,閏年2月29天

平年全年365天,閏年全年366天

1日=24小時1時=60分

1分=60秒1時=3600秒

重量單位換算

1噸=1000千克

1千克=1000克

1千克=1公斤

人民幣單位換算

1元=10角

1角=10分

1元=100分

體(容)積單位換算

1立方米=1000立方分米

1立方分米=1000立方厘米

1立方分米=1升

1立方厘米=1毫升

1立方米=1000升

面積單位換算

1平方千米=100公頃

1公頃=10000平方米

1平方米=100平方分米

1平方分米=100平方厘米

1平方厘米=100平方毫米

長度單位換算

1千米=1000米1米=10分米

1分米=10厘米1米=100厘米

1厘米=10毫米

和差問題的公式

(和+差)÷2=大數

(和-差)÷2=小數

和倍問題

和÷(倍數-1)=小數

小數×倍數=大數

(或者和-小數=大數)

利潤與折扣問題

利潤=售出價-成本

利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%

漲跌金額=本金×漲跌百分比

折扣=實際售價÷原售價×100%(折扣0註:方程有兩個不等的實根

b2-4ac拋物線標準方程y2=2pxy2=-2pxx2=2pyx2=-2py

直稜柱側面積S=c*h斜稜柱側面積S=c"*h

正稜錐側面積S=1/2c*h"正稜台側面積S=1/2(c+c")h"圓台側面積S=1/2(c+c")l=pi(R+r)l球的表面積S=4pi*r2圓柱側面積S=c*h=2pi*h圓錐側面積S=1/2*c*l=pi*r*l

弧長公式l=a*ra是圓心角的弧度數r>0扇形面積公式s=1/2*l*r

錐體體積公式V=1/3*S*H圓錐體體積公式V=1/3*pi*r2h斜稜柱體積V=S"L註:其中,S"是直截面面積,L是側棱長柱體體積公式V=s*h圓柱體V=pi*r2h

擴展閱讀:

國中數學公式總結 篇2

(一)運用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。(二)平方差公式1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。2.因式分解,必須進行到每一個多項式因式不能再分解為止。(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2

a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。上面兩個公式叫完全平方公式。(2)完全平方式的形式和特點①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這裡只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。(五)分組分解法

我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以原式=(am+an)+(bm+bn)

=a(m+n)+b(m+n)=(m+n)(a+b).

這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.(六)提公因式法

1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於一次項的係數.

2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:①列出常數項分解成兩個因數的積各種可能情況;②嘗試其中的哪兩個因數的和恰好等於一次項係數.3.將原多項式分解成(x+q)(x+p)的形式.(七)分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.2.分式進行約分的目的是要把這個分式化為最簡分式.

3.如果分式的.分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.(八)分數的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.

2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

4.通分的依據:分式的基本性質.5.通分的關鍵:確定幾個分式的公分母.

通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分數的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.

10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.

12.作為最後結果,如果是分式則應該是最簡分式.(九)含有字母係數的一元一次方程1.含有字母係數的一元一次方程

引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)

在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的係數,b是常數項。這個方程就是一個含有字母係數的一元一次方程。

含有字母係數的方程的解法與以前學過的只含有數字係數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。1.分式2.二次根式3.三角形4.一次函式5.四邊形6.相似7.簡單機率統計

(一)運用公式法:

我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。於是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2

如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。(二)平方差公式1.平方差公式

(1)式子:a2-b2=(a+b)(a-b)

(2)語言:兩個數的平方差,等於這兩個數的和與這兩個數的差的積。這個公式就是平方差公式。(三)因式分解

1.因式分解時,各項如果有公因式應先提公因式,再進一步分解。

2.因式分解,必須進行到每一個多項式因式不能再分解為止。(四)完全平方公式

(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2

這就是說,兩個數的平方和,加上(或者減去)這兩個數的積的2倍,等於這兩個數的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。上面兩個公式叫完全平方公式。(2)完全平方式的形式和特點①項數:三項

②有兩項是兩個數的的平方和,這兩項的符號相同。③有一項是這兩個數的積的兩倍。

(3)當多項式中有公因式時,應該先提出公因式,再用公式分解。

(4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這裡只要將多項式看成一個整體就可以了。

(5)分解因式,必須分解到每一個多項式因式都不能再分解為止。(五)分組分解法

我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)

做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續分解,所以原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).

這種利用分組來分解因式的方法叫做分組分解法.從上面的例子可以看出,如果把一個多項式的項分組並提取公因式後它們的另一個因式正好相同,那么這個多項式就可以用分組分解法來分解因式.(六)提公因式法

1.在運用提取公因式法把一個多項式因式分解時,首先觀察多項式的結構特點,確定多項式的公因式.當多項式各項的公因式是一個多項式時,可以用設輔助元的方法把它轉化為單項式,也可以把這個多項式因式看作一個整體,直接提取公因式;當多項式各項的公因式是隱含的時候,要把多項式進行適當的變形,或改變符號,直到可確定多項式的公因式.2.運用公式x2+(p+q)x+pq=(x+q)(x+p)進行因式分解要注意:1.必須先將常數項分解成兩個因數的積,且這兩個因數的代數和等於一次項的係數.

2.將常數項分解成滿足要求的兩個因數積的多次嘗試,一般步驟:①列出常數項分解成兩個因數的積各種可能情況;

②嘗試其中的哪兩個因數的和恰好等於一次項係數.3.將原多項式分解成(x+q)(x+p)的形式.(七)分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.2.分式進行約分的目的是要把這個分式化為最簡分式.

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然後再按-1的偶次方為正、奇次方為負來處理.當然,簡單的分式之分子分母可直接乘方.6.注意混合運算中應先算括弧,再算乘方,然後乘除,最後算加減.(八)分數的加減法

1.通分與約分雖都是針對分式而言,但卻是兩種相反的變形.約分是針對一個分式而言,而通分是針對多個分式而言;約分是把分式化簡,而通分是把分式化繁,從而把各分式的分母統一起來.

2.通分和約分都是依據分式的基本性質進行變形,其共同點是保持分式的值不變.3.一般地,通分結果中,分母不展開而寫成連乘積的形式,分子則乘出來寫成多項式,為進一步運算作準備.

4.通分的依據:分式的基本性質.5.通分的關鍵:確定幾個分式的公分母.

通常取各分母的所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母.6.類比分數的通分得到分式的通分:

把幾個異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加減法的法則是:同分母分式相加減,分母不變,把分子相加減。

同分母的分式加減運算,分母不變,把分子相加減,這就是把分式的運算轉化為整式運算。8.異分母的分式加減法法則:異分母的分式相加減,先通分,變為同分母的分式,然後再加減.

9.同分母分式相加減,分母不變,只須將分子作加減運算,但注意每個分子是個整體,要適時添上括弧.

10.對於整式和分式之間的加減運算,則把整式看成一個整體,即看成是分母為1的分式,以便通分.

11.異分母分式的加減運算,首先觀察每個公式是否最簡分式,能約分的先約分,使分式簡化,然後再通分,這樣可使運算簡化.

12.作為最後結果,如果是分式則應該是最簡分式.(九)含有字母係數的一元一次方程1.含有字母係數的一元一次方程

引例:一數的a倍(a≠0)等於b,求這個數。用x表示這個數,根據題意,可得方程ax=b(a≠0)

在這個方程中,x是未知數,a和b是用字母表示的已知數。對x來說,字母a是x的係數,b是常數項。這個方程就是一個含有字母係數的一元一次方程。

含有字母係數的方程的解法與以前學過的只含有數字係數的方程的解法相同,但必須特別注意:用含有字母的式子去乘或除方程的兩邊,這個式子的值不能等於零。

國中數學公式總結 篇3

1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

4、同角或等角的餘角相等

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連線的所有線段中,垂線段最短

7、平行公理經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理三角形兩邊的和大於第三邊

16、推論三角形兩邊的差小於第三邊

17、三角形內角和定理三角形三個內角的和等於180°

18、推論1直角三角形的兩個銳角互余

19、推論2三角形的一個外角等於和它不相鄰的兩個內角的和

20、推論3三角形的一個外角大於任何一個和它不相鄰的內角

21、全等三角形的對應邊、對應角相等

22、邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等

23、角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等

24、推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等

25、邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

26、斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等

27、定理1在角的平分線上的點到這個角的兩邊的距離相等

28、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點的集合

30、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

31、推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊

32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

33、推論3等邊三角形的各角都相等,並且每一個角都等於60°

34、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35、推論1三個角都相等的三角形是等邊三角形

36、推論2有一個角等於60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個銳角等於30°那么它所對的直角邊等於斜邊的一半

38、直角三角形斜邊上的中線等於斜邊上的一半

39、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42、定理1關於某條直線對稱的'兩個圖形是全等形

43、定理2如果兩個圖形關於某直線對稱,那么對稱軸是對應點連線的垂直平分線

44、定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45、逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱

46、勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2

47、勾股定理的逆定理如果三角形的三邊長a、b、c有關係a^2+b^2=c^2,那么這個三角形是直角三角形

48、定理四邊形的內角和等於360°

49、四邊形的外角和等於360°

50、多邊形內角和定理n邊形的內角的和等於(n-2)×180°

51、推論任意多邊的外角和等於360°

52、平行四邊形性質定理1平行四邊形的對角相等

53、平行四邊形性質定理2平行四邊形的對邊相等

54、推論夾在兩條平行線間的平行線段相等

55、平行四邊形性質定理3平行四邊形的對角線互相平分

56、平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

57、平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

58、平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

59、平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

60、矩形性質定理1矩形的四個角都是直角

61、矩形性質定理2矩形的對角線相等

62、矩形判定定理1有三個角是直角的四邊形是矩形

63、矩形判定定理2對角線相等的平行四邊形是矩形

64、菱形性質定理1菱形的四條邊都相等

65、菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角

66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

67、菱形判定定理1四邊都相等的四邊形是菱形

68、菱形判定定理2對角線互相垂直的平行四邊形是菱形

69、正方形性質定理1正方形的四個角都是直角,四條邊都相等

70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角71定理1關於中心對稱的兩個圖形是全等的

72、定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那么這兩個圖形關於這一點對稱

74、等腰梯形性質定理等腰梯形在同一底上的。兩個角相等

75、等腰梯形的兩條對角線相等

76、等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形

77、對角線相等的梯形是等腰梯形

78、平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79、推論1經過梯形一腰的中點與底平行的直線,必平分另一腰80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81、三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半

82、梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半L=(a+b)÷2S=L×h

83、(1)比例的基本性質如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84、(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

87、推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88、定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行於三角形的第三邊

89、平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90、定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91、相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)

92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93、判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94、判定定理3三邊對應成比例,兩三角形相似(SSS)

95、定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

96、性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97、性質定理2相似三角形周長的比等於相似比

98、性質定理3相似三角形面積的比等於相似比的平方

99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值

100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

101、圓是定點的距離等於定長的點的集合

102、圓的內部可以看作是圓心的距離小於半徑的點的集合

103、圓的外部可以看作是圓心的距離大於半徑的點的集合

104、同圓或等圓的半徑相等

105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

109、定理不在同一直線上的三點確定一個圓。

110、垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111、推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112、推論2圓的兩條平行弦所夾的弧相等

113、圓是以圓心為對稱中心的中心對稱圖形

114、定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115、推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等

116、定理一條弧所對的圓周角等於它所對的圓心角的一半

117、推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118、推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

119、推論3如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形

120、定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

121、①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r

122、切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線

123、切線的性質定理圓的切線垂直於經過切點的半徑

124、推論1經過圓心且垂直於切線的直線必經過切點

125、推論2經過切點且垂直於切線的直線必經過圓心

126、切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角127圓的外切四邊形的兩組對邊的和相等

128、弦切角定理弦切角等於它所夾的弧對的圓周角

129、推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

131、推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

132、切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

133、推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓139正n邊形的每個內角都等於(n-2)×180°/n

140、定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形141正n邊形的面積Sn=pnrn/2p表示正n邊形的周長142正三角形面積√3a/4a表示邊長

143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4144弧長計算公式:L=n兀R/180

145、扇形面積公式:S扇形=n兀R^2/360=LR/2146內公切線長=d-(R-r)外公切線長=d-(R+r)147完全平方公式:(a+b)^2=a^2+2ab+b^2(a-b)^2=a^2-2ab+b^2148

國中數學公式總結 篇4

1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的餘角相等

5過一點有且只有一條直線和已知直線垂直

6直線外一點與直線上各點連線的所有線段中,垂線段最短7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行15定理三角形兩邊的和大於第三邊16推論三角形兩邊的差小於第三邊

17三角形內角和定理三角形三個內角的和等於180°18推論1直角三角形的兩個銳角互余

19推論2三角形的一個外角等於和它不相鄰的兩個內角的和20推論3三角形的一個外角大於任何一個和它不相鄰的內角21全等三角形的對應邊、對應角相等

22邊角邊公理(SAS)有兩邊和它們的夾角對應相等的兩個三角形全等23角邊角公理(ASA)有兩角和它們的夾邊對應相等的兩個三角形全等24推論(AAS)有兩角和其中一角的對邊對應相等的兩個三角形全等25邊邊邊公理(SSS)有三邊對應相等的兩個三角形全等

26斜邊、直角邊公理(HL)有斜邊和一條直角邊對應相等的兩個直角三角形全等27定理1在角的平分線上的點到這個角的兩邊的距離相等28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上29角的平分線是到角的兩邊距離相等的所有點的集合

30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)31推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33推論3等邊三角形的各角都相等,並且每一個角都等於60°

34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

35推論1三個角都相等的三角形是等邊三角形36推論2有一個角等於60°的等腰三角形是等邊三角形

37在直角三角形中,如果一個銳角等於30°那么它所對的直角邊等於斜邊的一半38直角三角形斜邊上的中線等於斜邊上的一半

39定理線段垂直平分線上的點和這條線段兩個端點的距離相等

40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42定理1關於某條直線對稱的兩個圖形是全等形

43定理2如果兩個圖形關於某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱

46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2

47勾股定理的逆定理如果三角形的三邊長a、b、c有關係a2+b2=c2,那么這個三角形是直角三角形

48定理四邊形的內角和等於360°49四邊形的外角和等於360°

50多邊形內角和定理n邊形的內角的和等於(n-2)×180°51推論任意多邊的外角和等於360°

52平行四邊形性質定理1平行四邊形的對角相等53平行四邊形性質定理2平行四邊形的對邊相等54推論夾在兩條平行線間的平行線段相等

55平行四邊形性質定理3平行四邊形的對角線互相平分

56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形60矩形性質定理1矩形的四個角都是直角61矩形性質定理2矩形的對角線相等

62矩形判定定理1有三個角是直角的四邊形是矩形63矩形判定定理2對角線相等的平行四邊形是矩形64菱形性質定理1菱形的四條邊都相等

65菱形性質定理2菱形的對角線互相垂直,並且每一條對角線平分一組對角66菱形面積=對角線乘積的一半,即S=(a×b)÷267菱形判定定理1四邊都相等的四邊形是菱形68菱形判定定理2對角線互相垂直的平行四邊形是菱形69正方形性質定理1正方形的四個角都是直角,四條邊都相等

70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71定理1關於中心對稱的兩個圖形是全等的

72定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那么這兩個圖形關於這一點對稱

74等腰梯形性質定理等腰梯形在同一底上的兩個角相等75等腰梯形的兩條對角線相等

76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形77對角線相等的梯形是等腰梯形

78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊81三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半82梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半

L=(a+b)÷2S=L×h

83(1)比例的基本性質如果a:b=c:d,那么ad=bc,如果ad=bc,那么a:b=c:d84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),

那么(a+c+…+m)/(b+d+…+n)=a/b

86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例

87推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行於三角形的第三邊

89平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例

90定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91相似三角形判定定理1兩角對應相等,兩三角形相似(ASA)92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(SAS)94判定定理3三邊對應成比例,兩三角形相似(SSS)

95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似

96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比97性質定理2相似三角形周長的比等於相似比98性質定理3相似三角形面積的比等於相似比的平方

99任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值

101圓是定點的距離等於定長的點的集合

102圓的內部可以看作是圓心的距離小於半徑的點的集合103圓的外部可以看作是圓心的距離大於半徑的點的集合104同圓或等圓的半徑相等

105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109定理不在同一直線上的三點確定一個圓。

110垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的.兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112推論2圓的兩條平行弦所夾的弧相等113圓是以圓心為對稱中心的中心對稱圖形

114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等

116定理一條弧所對的圓周角等於它所對的圓心角的一半

117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119推論3如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形120定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角121①直線L和⊙O相交d<r②直線L和⊙O相切d=r③直線L和⊙O相離d>r122切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線123切線的性質定理圓的切線垂直於經過切點的半徑124推論1經過圓心且垂直於切線的直線必經過切點125推論2經過切點且垂直於切線的直線必經過圓心

126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角

127圓的外切四邊形的兩組對邊的和相等128弦切角定理弦切角等於它所夾的弧對的圓周角

129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等

131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項

133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等

134如果兩個圓相切,那么切點一定在連心線上135①兩圓外離d>R+r

②兩圓外切d=R+r

③兩圓相交R-r<d<R+r(R>r)④兩圓內切d=R-r(R>r)⑤兩圓內含d<R-r(R>r)

136定理相交兩圓的連心線垂直平分兩圓的公共弦137定理把圓分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

(n2)180139正n邊形的每個內角都等於

n140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

pnrn141正n邊形的面積Sn=p表示正n邊形的周長

2142正三角形面積

32aa表示邊長4143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,

k(n2)180360化為(n-2)(k-2)=4因此

n144弧長計算公式:L=

nR180nR2LR145扇形面積公式:S扇形==

3602146內公切線長=d-(R-r)外公切線長=d-(R+r)

公式分類及公式表達式

乘法與因式分:a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b(a2+ab+b2)三角不等式:|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|

一元二次方程的解

bb24ac2a

根與係數的關係:X1+X2=-b/aX1*X2=c/a註:韋達定理判別式

b2-4ac=0註:方程有兩個相等的實根b2-4ac>0註:方程有兩個不等的實根b2-4ac

國中數學公式總結 篇5

一元一次方程定義

通過化簡,只含有一個未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬於整式方程,即方程兩邊都是整式。

一元指方程僅含有一個未知數,一次指未知數的次數為1,且未知數的係數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,並且a≠0)叫一元一次方程的標準形式。這裡a是未知數的係數,b是常數,x的次數必須是1。

即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的係數不為0。

一元一次方程的五個核心問題

一、什麼是等式?1+1=1是等式嗎?

表示相等關係的式子叫做等式,等式可分三類:第一類是恆等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恆等式,如2+4=6,a+b=b+a等都是恆等式;第二類是條件等式,也就是方程,這類等式只能取某些數值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

一個等式中,如果等號多於一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

等式與代數式不同,等式中含有等號,代數式中不含等號。

等式有兩個重要性質1)等式的兩邊都加上或減去同一個數或同一個整式,所得結果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數除數不為零,所得結果仍然是一個等式。

二、什麼是方程,什麼是一元一次方程?

含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數,兩者缺一不可。

只含有一個未知數,並且含未知數的式子都是整式,未知數的次數是1,係數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式後才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡後,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。

凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。

三、等式有什麼牛掰的基本性質嗎?

將方程中的某些項改變符號後,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質1。

移項時不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會顯得簡便些。

去分母,將未知數的係數化為1,則是依據等式的基本性質2進行的。

四、等式一定是方程嗎?方程一定是等式嗎?

等式與方程有很多相同之處。如都是用等號連線的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說,等式包含方程;反過來,方程並不包含所有的等式。如,13+5=18,18-13=5都屬於等式,但它們並不是方程。因此,等式一定是方程的說法是不對的。

五、"解方程"與"方程的解"是一回事兒嗎?

方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

國中數學公式總結 篇6

其實角的大小與邊的長短沒有關係,角的大小決定於角的兩條邊張開的程度。

角的靜態定義

具有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。

角的動態定義

一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊

角的符號

角的符號:∠

角的種類

在動態定義中,取決於旋轉的方向與角度。角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優角、劣角、0角這10種。以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。

銳角:大於0°,小於90°的角叫做銳角。

直角:等於90°的角叫做直角。

鈍角:大於90°而小於180°的角叫做鈍角。

平角:等於180°的角叫做平角。

優角:大於180°小於360°叫優角。

劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。

角周角:等於360°的角叫做周角。

負角:按照順時針方向旋轉而成的角叫做負角。

正角:逆時針旋轉的角為正角。

0角:等於零度的角。

特殊角

餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。

對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。

鄰補角:兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關係的兩個角,互為鄰補角。

內錯角:互相平行的兩條直線直線,被第三條直線所截,如果兩個角都在兩條直線的

內側,並且在第三條直線的兩側,那么這樣的一對角叫做內錯角(alternateinteriorangle)。如:∠1和∠6,∠2和∠5

同旁內角:兩個角都在截線的同一側,且在兩條被截線之間,具有這樣位置關係的一對角互為同旁內角。如:∠1和∠5,∠2和∠6

同位角:兩個角都在截線的同旁,又分別處在被截的兩條直線同側,具有這樣位置關係的一對角叫做同位角(correspondingangles):∠1和∠8,∠2和∠7

外錯角:兩條直線被第三條直線所截,構成了八個角。如果兩個角都在兩條被截線的外側,並且在截線的兩側,那么這樣的一對角叫做外錯角。例如:∠4與∠7,∠3與∠8。

同旁外角:兩個角都在截線的同一側,且在兩條被截線之外,具有這樣位置關係的一對角互為同旁外角。如:∠4和∠8,∠3和∠7

終邊相同的角:具有共同始邊和終邊的角叫終邊相同的角。與角a終邊相同的角屬於集合:

A{bb=k_360+a,k∈Z}表示角度制;

B{bb=2kπ+a,k∈Z}表示弧度制

國中數學公式總結 篇7

橢圓知識:平面內與兩定點F1、F2的距離的和等於常數2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。

橢圓的第一定義

即:│PF1│+│PF2│=2a

其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。

長軸為 2a; 短軸為 2b。

橢圓的第二定義

平面內到定點F的距離與到定直線的距離之比為常數e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數為小於1的正數) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。

橢圓的其他定義

根據橢圓的一條重要性質,也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內與兩定點的連線的斜率之積是常數k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等於-1。

簡單幾何性質

1、範圍

2、對稱性:關於X軸對稱,Y軸對稱,關於原點中心對稱。

3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)

4、離心率:e=c/a

5、離心率範圍 0

知識歸納:離心率越大橢圓就越扁,越小則越接近於圓。

國中數學知識點總結:平面直角坐標系

平面直角坐標系

平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

國中數學知識點:平面直角坐標系的構成

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

國中數學知識點:點的坐標的性質

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的'。

國中數學知識點:因式分解的一般步驟

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個範圍內因式分解,應該是指在有理數範圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

國中數學知識點:因式分解

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關係:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法:①係數是整數時取各項最大公約數

②相同字母取最低次冪

③係數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合併。

國中數學公式總結 篇8

一.有理數

知識網路:

概念、定義:

1、大於0的數叫做正數(positive number)。

2、在正數前面加上負號“-”的數叫做負數(negative number)。

3、整數和分數統稱為有理數(rational number)。

4、人們通常用一條直線上的點表示數,這條直線叫做數軸(number axis)。

5、在直線上任取一個點表示數0,這個點叫做原點(origin)。

6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value)。

7、由絕對值的定義可知:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。

8、正數大於0,0大於負數,正數大於負數。

9、兩個負數,絕對值大的反而小。

10、有理數加法法則

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。

12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

13、有理數減法法則

減去一個數,等於加上這個數的相反數。

14、有理數乘法法則

兩數相乘,同號得正,異號得負,並把絕對值向乘。

任何數同0相乘,都得0。

15、有理數中仍然有:乘積是1的兩個數互為倒數。

16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。

17、三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。

18、一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。

19、有理數除法法則

除以一個不等於0的數,等於乘這個數的倒數。

20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。

21、求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪(power)。在an 中,a叫做底數(basenumber),n叫做指數(exponeht)

22、根據有理數的乘法法則可以得出

負數的奇次冪是負數,負數的偶次冪是正數。

顯然,正數的任何次冪都是正數,0的任何次冪都是0。

23、做有理數混合運算時,應注意以下運算順序:

(1)先乘方,再乘除,最後加減;

(2)同級運算,從左到右進行;

(3)如有括弧,先做括弧內的運算,按小括弧、中括弧、大括弧依次進行。

24、把一個大於10數表示成a×10n 的形式(其中a是整數數位只有一位的數,n是正整數),使用的是科學計數法。

25、接近實際數字,但是與實際數字還是有差別,這個數是一個近似數(approximate number)。

26、從一個數的左邊的第一個非0數字起,到末尾數字止,所有的數字都是這個數的有效數字(significant digit)

註:黑體字為重要部分

二.整式的加減

知識網路:

概念、定義:

1、都是數或字母的積的式子叫做單項式(monomial),單獨的一個數或一個字母也是單項式。

2、單項式中的數字因數叫做這個單項式的係數(coefficient)。

3、一個單項式中,所有字母的指數的和叫做這個單項式的次數(degree of a monomial)。

4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數項(constantly

term)。

5、多項式里次數最高項的次數,叫做這個多項式的次數(degree of a polynomial)。

6、把多項式中的同類項合併成一項,叫做合併同類項。

合併同類項後,所得項的係數是合併前各同類項的係數的和,且字母部分不變。

7、如果括弧外的因數是正數,去括弧後原括弧內各項的符號與原來的符號相同;

8、如果括弧外的因數是負數,去括弧後原括弧內各項的符號與原來的符號相反。

9、一般地,幾個整式相加減,如果有括弧就先去括弧,然後再合併同類項。

三.一元一次方程

知識網路:

概念、定義:

1、列方程時,要先設字母表示未知數,然後根據問題中的相等關係,寫出還有未知數的等式——方程(equation)。

2、含有一個未知數(元),未知數的次數都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。

3、分析實際問題中的數量關係,利用其中的等量關係列出方程,是用數學解決實際問題的一種方法。

4、等式的性質1:等式兩邊加(或減)同一個數(或式子),結果仍相等。

5、等式的性質2:等式兩邊乘同一個數,或除以一個不為0的數,結果仍相等。

6、把等式一邊的某項變號後移到另一邊,叫做移項。

7、套用:行程問題:s=v×t 工程問題:工作總量=工作效率×時間

盈虧問題:利潤=售價-成本 利率=利潤÷成本×100%

售價=標價×折扣數×10% 儲蓄利潤問題:利息=本金×利率×時間

本息和=本金+利息

四.圖形初步認識

知識網路:

概念、定義:

1、我們把實物中抽象的各種圖形統稱為幾何圖形(geometric figure)。

2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的.各部分不都在同一平面內,它們是立體圖形(solidfigure)。

3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內,它們是平面圖形(planefigure)。

4、將由平面圖形圍成的立體圖形表面適當剪開,可以展開成平面圖形,這樣的平面圖形稱為相應立體圖形的展開圖(net)。

5、幾何體簡稱為體(solid)。

6、包圍著體的是面(surface),面有平的面和曲的面兩種。

7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。

8、點動成面,面動成線,線動成體。

9、經過探究可以得到一個基本事實:經過兩點有一條直線,並且只有一條直線。

簡述為:兩點確定一條直線(公理)。

10、當兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。

11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。

12、經過比較,我們可以得到一個關於線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)

13、連線兩點間的線段的長度,叫做這兩點的距離(distance)。

14、角∠(angle)也是一種基本的幾何圖形。

15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。

16、從一個角的頂點出發,把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。

17、如果兩個角的和等於90°(直角),就是說這兩個叫互為餘角(complementary

angle),即其中的每一個角是另一個角的餘角。

18、如果兩個角的和等於180°(平角),就說這兩個角互為補角(supplementary

angle),即其中一個角是另一個角的補角

19、等角的補角相等,等角的餘角相等。

國中數學公式總結 篇9

國中數學長方形的中考知識點集錦

長方形也就是我們所說的矩形,是基礎的平面圖形。

長方形

有一個角是直角的平行四邊形叫做長方形 (rectangle)。又叫矩形。

長方形長與寬的定義:

第一種意見:長方形長的那條邊叫長,短的那條邊叫寬。

第二種意見:和水平面同方向的叫做長,反之就叫做寬。長方形的長和寬是相對的,不能絕對的說“長比寬長”,但習慣地講,長的為長,短的為寬。

長方形的性質

①兩條對角線相等;

②兩條對角線互相平分;

③兩組對邊分別平行;

④兩組對邊分別相等 ;

⑤四個角都是直角;

⑥有2條對稱軸(正方形有4條)。

以上的內容是長方形的性質及定義,請大家做好筆記了。

國中數學公式總結 篇10

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素

①結果必須是整式

②結果必須是積的形式

③結果是等式

④因式分解與整式乘法的關係:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法

①係數是整數時取各項最大公約數。

②相同字母取最低次冪

③係數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟:

①確定公因式。

②確定商式

③公因式與商式寫成積的形式。

分解因式注意;

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合併。

通過上面對因式分解內容知識的講解學習,相信同學們已經能很好的掌握了吧,希望上面的內容給同學們的學習很好的幫助。

國中數學公式總結 篇11

我們來自農村的教師得以與眾多專家、學者面對面地座談、交流,傾聽他們對數學教學的理解,感悟他們的教育教學思想方法。這次培訓內容豐富,安排合理,使學員們受益匪淺。

一、理論學習,飛的更高。

(一)專家講座,思想理念的提升!

我們這次培訓班名稱是:“國培計畫”——國中數學骨幹教師培訓班,班主任是易才鳳老師,副班主任是劉詠梅和虞秀雲老師,班主任助理是周玲芳和陳艷鳳。本次培訓,聽了專家胡惠閔教授《基於學生經驗的學習活動設計研究》等講座14個,從師德、當前教育教學改革動向、教科研、課堂教學專題、教材解讀、現代教育技術套用等多方面進行,各位知名專家、學者、特級教師從自己切身的經驗體會出發,暢談了他們對師德以及教學等教育教學各個領域的獨特見解。讓我們更清晰地意識到作為一個農村教師該如何看待自己所處的位置,該如何去提升自己的專業水平。在知識方面,我們深感知識學問浩如煙海,也深深地體會到教學相長的深刻內涵。教師要有精深的學科專業知識,廣博的科學文化知識,豐富的教育和心理科學知識。知識結構要合理,當今的自然科學,社會科學和人文科學互相滲透,相互融合,只懂自己專業的知識是遠遠不夠的,這一點我們在學習中體會很深。精深的專業知識是教師擔任教學工作的基礎。這就要求教師要紮實的掌握本學科的基礎理論,基礎知識以及相應的技能,並運用自如。熟悉本學科的學習方法和研究方法,同時還要具備一定的與本學科相關的知識。學員們在這次培訓中發現自己專業知識還很欠缺。只有掌握全面的學科知識才能在教學過程中高屋建瓴的處理好教材,把握住教材的難點,才能有對教材內容深入淺出的講解。從而保證教學流暢地進行,使學生既學到知識,又掌握學習方法和發展能力。

(二)學員論壇,思想交流的園地!

在理論培訓階段,為了提升每位學員自身的理論水平,安排了三次小組交流。在小組討論中,學員們暢所欲言,許多提出的觀點和問題,都是農村數學教學中的實際問題,引起全體學員的一致共鳴的同時,也得到專家們的重視,他們的回答也給了我們很好的啟示,對於我們今後的教學有著積極的促進作用。對每一個專題進行總結,有了自己的看法,有了自己的思想,有些觀點非常精髓,有獨到的見解,我們有些學員開玩笑的說:“我們自己也有一些專家的天份!”。

(三)反思,理論水平提高的源泉!

這次培訓要求每個學員每天都要做筆記,寫反思學習日誌,寫心得體會,提出困惑。也為我們學習和交流提供了一平台。認識到繼續教育的重要性,樹立終身學習的目標,這次培訓,就自身更新最佳化而言,使學員們樹立了終身學習的思想。通過培訓,感覺以前所學的知識太有限了,看問題的眼光也太膚淺了。教師只有樹立“活到老,學到老”的終身教育思想,才能跟上時代前進和知識發展的步伐,才能勝任複雜而又富有創造性的教育工作。“問渠那得清如許,唯有源頭活水來。”只有不斷學習,不斷充實自己的知識,不斷更新自己的教育觀念,不斷否定自己,才能不斷進步,擁有的知識才能像‘泉水”般沽沽湧出,而不只是可憐的“一桶水”了。

二、同行交流,取長補短!

本次培訓,匯聚了全省各地的骨幹教師,每位培訓教師都有豐富的教學經驗,教學的外部條件也非常相似,但也存在著許多的差異,為我們之間的相互交流提供了很好的一個交流平台。因此,成員之間的互動交流成為每位培訓人員提高自己教學業務水平的一條捷徑。在培訓過程中,學員們在交流過程中,了解到各區縣的新課程開展情況,並且注意到他們是如何處理新課程中遇到的種種困惑,以及他們對新課程教材的把握與處理。在培訓中,我們不斷地交流,真正做到彼此之間的相互促進,共同提高。

三、教學實踐,飛得更遠!

(一)教學實踐,本身就是一種環境的體驗。

在職研修自主學習安排三個月,12月18日開始,我們回到學校進行教學實踐分散學習。通過教學策略的修正,對比教學,使我感觸到自身課堂教學中最本源的東西,在教學中反思,在反思中成長。同時,在教學實踐的過程中,積極參與學校的校本教研活動,經常聽一些優秀教師講課,學習他們規範的組織方式,感受他們濃厚的教研氛圍,積極尋找差距所在,當然,也積極報名參加上公開課,接受自我反思和導師與同伴的診斷,使我對於校本教研有了更好的認識與把握。

(二)校本教研,診斷提高

在集體備課的前提下,採用“示範—診斷—提升”的實踐模式:指定教師上示範課,其餘教師觀摩——我和同伴聽課診斷——我指導教師進行診斷性說課、評課——我指導教師修改教案—指定教師上第二次課(提高課)、我和同伴聽課——我指導教師進行教學反思和總結。通過實實在在的行為,加深教師對教學的理解,加深對課堂的掌控,加深對細節的把握,從而提高課堂教學藝術。

四個月的培訓是短暫的,但是留給我的記憶與思考是永恆的,通過這次培訓,使我提高了認識,理清了思路,找到了自身的不足之處以及與一名優秀教師的差距所在,對於今後如何更好的提高自己必將起到巨大的推動作用,我將以此為起點,讓“差距”成為自身發展的原動力,不斷梳理與反思自我,促使自己不斷成長。

國中數學公式總結 篇12

1、通過猜想,驗證,計算得到的定理:

(1)全等三角形的判定定理:

(2)與等腰三角形的相關結論:

①等腰三角形兩底角相等(等邊對等角)

②等腰三角形頂角的平分線,底邊上的中線,底邊上的高互相重合(三線合一)

③有兩個角相等的三角形是等腰三角形(等角對等邊)

(3)與等邊三角形相關的結論:

①有一個角是60°得等腰三角形是等邊三角形

②三個角都相等的三角形是等邊三角形

③三條邊都相等的三角形是等邊三角形

(4)與直角三角形相關的結論:

①勾股定理:在直角三角形中,兩直角邊的平方和等於斜邊的平方

②勾股定理逆定理:在一個三角形中兩直角邊的平方和等於斜邊的平方,那么這個三角形一定是直角三角形

③HL定理:斜邊和一條直角邊對應相等的兩個三角形全等

④在三角形中30°角所對的直角邊等於斜邊的一半

2、兩條特殊線

(1)線段的垂直平分線

①線段的垂直平分線上的點到線段兩邊的距離相等互為逆定理{

②到一條線段兩個端點距離相等的點在這條線段的垂直平分線上

③三角形的三條垂直平分線交於一點,並且這一點到這三個頂點的距離相等

(2)角平分線

①角平分線上的點到這個角的兩邊距離相等互為逆定理{

②在一個角的內部,並且到這個角的兩邊距離相等的的點,在這個角的角平分線上

3、命題的逆命題及真假

①在兩個命題中,如果一個命題的條件與結論是另一個命題的結論與條件,我們就說這兩個命題互為逆命題,其中一個是另一個的逆命題

②如果一個定理的逆命題是真命題,那么他也是一個定理,我們稱這兩個定理為互逆定理

③反正法:從否定命題的結論入手,並把對命題結論的否定作為推理的已知條件,進行正確的邏輯推理,使之得到與已知條件,定理相矛盾,矛盾的原因是假設不成立,所以肯定了命題的結論,使命題獲得了證明

第二章一元二次方程

1、一元二次方程:只含有一個未知數X的整式方程,並且可以化成aX?+bX+C=0(a≠0)形式稱它為一元二次方程

aX?+bX+C=0(a≠0)→一般形式

aX?叫二次項bX叫一次項C叫常數項a叫二次項係數b叫一次項係數

2、一元二次方程解法:

(1)配方法:(X±a)?=b(b≥0)註:二次項係數必須化為1

(2)公式法:aX?+bX+C=0(a≠0)確定a,b,c的值,計算b?-4ac≥0

若b?-4ac>0則有兩個不相等的實根,若b?-4ac=0則有兩個相等的實根,若b?-4ac<0則無解

若b?-4ac≥0則用公式X=-b±√b?-4ac/2a註:必須化為一般形式

(3)分解因式法

①提公因式法:ma+mb=0→m(a+b)=0

平方差公式:a?-b?=0→(a+b)(a-b)=0

②運用公式法:{

完全平方公式:a?±2ab+b?=0→(a±b)?=0

③十字相乘法

例題:X?-2X-3=0

1/111

×}X?的係數為1則可以寫成{常數項係數為3則可寫成{

1/-31-3

--------

-3+1=-2交叉相乘在相加求值,值必須等於一次項係數

(X+1)(X-3)=o

國中數學公式總結 篇13

參加國中數學遠程培訓二個多月時間了,通過這段培訓,我受益匪淺,感受很多。下面就是我的.點滴體會:

一.對新教材有了初步了解

學習了義務教育新課標的理念和課例解讀後,我對於未曾變動的舊的知識點,考綱上有所變化的做到了心中有數。對於新增內容,哪些是中考必考內容,哪些是選講內容,對於不同的內容應該分別講解到什麼程度,也更明確了。這樣才能做到面對新教材中的新內容不急不躁、從容不迫,不至於面對新問題產生陌生感和緊張感。通過學習,使我清楚地認識到國中數學新課程的內容是由哪些模組組成的,各模組又是由哪些知識點組成的,以及各知識點之間又有怎樣的聯繫與區別。專家們所提供的專業分析對我們理解教材,把握教材有著非常重要而又深遠的意義。對於必修課程必須講深講透,對於部分選學內容,應視學校和學生的具體情況而定。

二.對課堂教學設計、教學案例的編寫方面的內容有了提高。

培訓活動中,自己通過視頻觀看學習了“案例導入”、“專家講座”、“互動討論”、“課例作業”等內容,使自己在教學設計、教學案例以及課堂教學等方面有了進一步的提升和加強,特別是在課堂教學設計,令人豁然開朗。通過視頻觀看學習了《有序數對》和《圖形的旋轉》,感覺很有收穫。如以往聽課從未記錄過講課者教學過程各個環節的時間分配,聽課時只注意了講課者的知識傳授情況,而沒注意欣賞、品析講課者的教學追求、洞察其教學的理論依據等。特別是聽了專家講座後,自己才知道還有很多不足。自己今後將認真按專家的指點開展教學活動。

三、教學實戰能力得到加強

本次培訓充分關注培訓教師的實際需要,不僅傳授了現代教學技術和手段,在大的緯度上幫助教師構建理論體系,同時更關注新課程背景下課堂教學深層問題。專家向我們講授了“計算機教學手段套用”“中學教師標準解讀”“教學技術及套用”“新課標解讀”等,先進的教學理念及其別具一格的教學風格使本人在觀摩、思考、碰撞中得到提高。整個培訓活動從實際到理論,再由理論到實際,循序漸進,降低了學習的難度,提高了學習的實效。

四、通過培訓學習,使我清楚地認識到整體把握國中數學新課程的重要性及其常用方法。

整體把握國中數學新課程不僅可以使我們清楚地認識到國中數學的主要脈絡,而且可以使我們站在更高層次上面對國中數學新課程。整體把握國中數學新課程不僅可以提高教師自身的素質,也有助於培養學生的數學素養。只有讓學生具備良好的數學素養才能使他們更好地適應社會的發展與進步。與學生的總結、交流能促進我們產生更多更好的授課方式、方法,產生更多更新的科學思維模式。這對於我們提高課堂教學質量具有非常現實而深遠的意義。

總之,此次培訓活動,使自己的教育教學觀念、教學行為方法、專業化水平,教育教學理論均有了很大的提升。今後,自己充分將所學、所悟、所感的內容套用到教學實踐中去,做新時期的合格的國中數學教師。

國中數學公式總結 篇14

圓周角知識點

1、定義:頂點在圓上,角的兩邊都與圓相交的角。(兩條件缺一不可)

2、定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半。

3、推論:

1)在同圓或等圓中,相等的圓周角所對的弧相等。

2)直徑(半圓)所對的圓周角是直角;900的圓周角所對的弦為直徑。(①常見輔助線:有直徑可構成直角,有900圓周角可構成直徑;②找圓心的方法:作兩個900圓周角所對兩弦交點)

4、圓內接四邊形的性質定理:圓內接四邊形的對角互補。(任意一個外角等於它的內對角)

補充:

1、兩條平行弦所夾的弧相等。

2、圓的兩條弦1)在圓外相交時,所夾角等於它所對的兩條弧度數差的一半。2)在圓內相交時,所夾的角等於它所夾兩條弧度數和的一半。

3、同弧所對的(在弧的同側)圓內部角其次是圓周角,最小的是圓外角。

平均數中位數與眾數知識點

1、數據13,10,12,8,7的平均數是10

2、數據3,4,2,4,4的眾數是4

3、數據1,2,3,4,5的中位數是3

有理數知識點

1、大於0的數叫做正數。

2、在正數前面加上負號“-”的數叫做負數。

3、整數和分數統稱為有理數。

4、人們通常用一條直線上的點表示數,這條直線叫做數軸。

5、在直線上任取一個點表示數0,這個點叫做原點。

6、一般的,數軸上表示數a的點與原點的距離叫做數a的絕對值。

7、由絕對值的定義可知:

一個正數的絕對值是它本身;

一個負數的絕對值是它的相反數;

0的絕對值是0。

8、正數大於0,0大於負數,正數大於負數。

9、兩個負數,絕對值大的反而小。

10、有理數加法法則:

(1)同號兩數相加,取相同的符號,並把絕對值相加。

(2)絕對值不相等的異號兩數相加,取絕對值較大的加數的負號,並用較大的絕對值減去較小的絕對值,互為相反數的兩個數相加得0。

(3)一個數同0相加,仍得這個數。

11、有理數的加法中,兩個數相加,交換交換加數的位置,和不變。

12、有理數的加法中,三個數相加,先把前兩個數相加,或者先把後兩個數相加,和不變。

13、有理數減法法則:減去一個數,等於加上這個數的相反數。

14、有理數乘法法則:兩數相乘,同號得正,異號得負,並把絕對值向乘。任何數同0相乘,都得0。

15、有理數中仍然有:乘積是1的兩個數互為倒數。

16、一般的,有理數乘法中,兩個數相乘,交換因數的位置,積相等。

17、三個數相乘,先把前兩個數相乘,或者先把後兩個數相乘,積相等。

18、一般地,一個數同兩個數的和相乘,等於把這個數分別同這兩個數相乘,再把積相加。

19、有理數除法法則:除以一個不等於0的數,等於乘這個數的倒數。

20、兩數相除,同號得正,異號得負,並把絕對值相除。0除以任何一個不等於0的數,都得0。

國中數學公式總結 篇15

圓柱體要領:如果用垂直於軸的兩個平面去截圓柱面,那么兩個截面和圓柱面所圍成的幾何體叫做直圓柱,簡稱圓柱。

圓柱體的定義

1、旋轉定義法:一個長方形以一邊為軸順時針或逆時針旋轉一周,所經過的空間叫做圓柱體。

2、平移定義法:以一個圓為底面,上或下移動一定的距離,所經過的空間叫做圓柱體。

性質 1.圓柱的兩個圓面叫底面,周圍的面叫側面,一個圓柱體是由兩個底面和一個側面組成的。

2.圓柱體的兩個底面是完全相同的兩個圓面。兩個底面之間的距離是圓柱體的高。

3.圓柱體的側面是一個曲面,圓柱體的側面的展開圖是一個長方形或正方形。

圓柱的側面積=底面周長x高,即:

S側面積=Ch=2πrh

底面周長C=2πr=πd

圓柱的表面積=側面積+底面積x2=2πr2+Ch=2πr(r+h)

4.圓柱的體積=底面積x高

即 V=S底面積×h=(π×r×r)h

5.等底等高的圓柱的體積是圓錐的3倍 6.圓柱體可以用一個平行四邊形圍成

圓柱的表面積= 圓柱的表面積=側面積+底面積x2

6.把圓柱沿底面直徑分成兩個同樣的部分,每一個部分叫半圓柱。這時與原來的圓柱比較,體積不變、表面積增加兩個直徑X高的長方形。

7.圓柱的軸截面是直徑x高的長方形,橫截面是與底面相同的圓。

國中數學公式總結 篇16

平方根表示法

一個非負數a的平方根記作,讀作正負根號a。a叫被開方數。

中被開方數的取值範圍

被開方數a≥0

平方根性質:

①一個正數的平方根有兩個,它們互為相反數。

②0的平方根是它本身0。

③負數沒有平方根開平方;求一個數的平方根的運算,叫做開平方。

平方根與算術平方根區別:

1、定義不同。

2表示方法不同。

3、個數不同。

4、取值範圍不同。

聯繫:

1、二者之間存在著從屬關係。

2、存在條件相同。

3、0的算術平方根與平方根都是0

含根號式子的意義:表示a的平方根,表示a的算術平方根,表示a的負的平方根。

求正數a的算術平方根的方法;

完全平方數類型:

①想誰的平方是數a。

②所以a的平方根是多少。

③用式子表示。

求正數a的算術平方根,只需找出平方後等於a的正數。

國中數學公式總結 篇17

1、二次函式的概念

1.二次函式的概念:一般地,形如(是常數,)的函式,叫做二次函式。這裡需要強調:和一元二次方程類似,二次項係數,而可以為零。二次函式的定義域是全體實數。

2.二次函式的結構特徵:

⑴等號左邊是函式,右邊是關於自變數的二次式,的最高次數是2。

⑵是常數,是二次項係數,是一次項係數,是常數項。

2、初三數學二次函式的三種表達式

一般式:y=ax^2+bx+c(a,b,c為常數,a≠0)。

頂點式:y=a(x-h)^2+k[拋物線的頂點P(h,k)]。

交點式:y=a(x-x?)(x-x?)[僅限於與x軸有交點A(x?,0)和B(x?,0)的拋物線]。

註:在3種形式的互相轉化中,有如下關係:h=-b/2ak=(4ac-b^2)/4ax?,x?=(-b±√b^2-4ac)/2a。

3、二次函式的性質

1.性質:(1)在一次函式上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函式與y軸交點的坐標總是(0,b),與x軸總是交於(-b/k,0)正比例函式的圖像總是過原點。

2.k,b與函式圖像所在象限:

當k>0時,直線必通過一、三象限,y隨x的增大而增大;

當k<0時,直線必通過二、四象限,y隨x的增大而減小。

當b>0時,直線必通過一、二象限;

當b=0時,直線通過原點;

當b<0時,直線必通過三、四象限。

特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函式的圖像。

這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。

4、初三數學二次函式圖像

對於一般式:

①y=ax2+bx+c與y=ax2-bx+c兩圖像關於y軸對稱。

②y=ax2+bx+c與y=-ax2-bx-c兩圖像關於x軸對稱。

③y=ax2+bx+c與y=-ax2-bx+c-b2/2a關於頂點對稱。

④y=ax2+bx+c與y=-ax2+bx-c關於原點中心對稱。(即繞原點旋轉180度後得到的圖形)

對於頂點式:

①y=a(x-h)2+k與y=a(x+h)2+k兩圖像關於y軸對稱,即頂點(h,k)和(-h,k)關於y軸對稱,橫坐標相反、縱坐標相同。

②y=a(x-h)2+k與y=-a(x-h)2-k兩圖像關於x軸對稱,即頂點(h,k)和(h,-k)關於x軸對稱,橫坐標相同、縱坐標相反。

③y=a(x-h)2+k與y=-a(x-h)2+k關於頂點對稱,即頂點(h,k)和(h,k)相同,開口方向相反。

④y=a(x-h)2+k與y=-a(x+h)2-k關於原點對稱,即頂點(h,k)和(-h,-k)關於原點對稱,橫坐標、縱坐標都相反。(其實①③④就是對f(x)來說f(-x),-f(x),-f(-x)的情況)