初三數學扇形知識點歸納總結

初三數學扇形知識點歸納總結 篇1

用整個圓的面積表示總數,用圓內各個扇形面積表示各部分數量同總數之間的關係。也就是各部分數量占總數的百分比(因此也叫百分比圖)。

常用統計圖的優點

1、條形統計圖:可以清楚的看出各種數量的多少。

2、折線統計圖:不僅可以看出各種數量的多少,還可以清晰看出數量的增減變化情況。

3、扇形統計圖:能夠清楚的'反映出各部分數量同總數之間的關係。

扇形的面積大小

在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關,圓心角越大,扇形越大。(因此扇形面積占圓面積的百分比,同時也是該扇形圓心角度數占圓周角度數的百分比。)

易錯分析

【易錯題1】為了清楚地看出各年級人數應採用統計圖,需要清楚地看出學校各年級的人數占全校總人數的百分比情況應採用統計圖,記錄一天氣溫變化情況採用統計圖比較合適。

【錯因分析】答案:扇形,折線,條形。

本題主要考察學生對三種常用統計圖的理解情況。從回答情況看,學生沒有理解三種統計圖的特點和用途,不會根據實際情況靈活選擇合適的統計圖,因此導致出錯。

【思路點撥】條形統計圖的特點是用直條長短表示各個數量的多少;折線統計圖的特點是能清楚地表示數量增減變化的情況;扇形統計圖的特點是表示各部分與總數的百分比,以及部分與部分之間的關係。

【易錯題2】要統計牛奶中各種營養成份所占的百分比情況,你會選用。

①條形統計圖②折線統計圖③扇形統計圖④複式統計圖

【錯因分析】本題主要考察學生對扇形統計圖的掌握情況。學生容易選擇其他類型的統計圖。

初三數學扇形知識點歸納總結 篇2

①位置的確定與平面直角坐標系

位置的確定

坐標變換

平面直角坐標系內點的特徵

平面直角坐標系內點坐標的符號與點的象限位置

對稱問題:P(x,y)→Q(x,-y)關於x軸對稱P(x,y)→Q(-x,y)關於y軸對稱P(x,y)→Q(-x,-y)關於原點對稱

變數、自變數、因變數、函式的定義

函式自變數、因變數的取值範圍(使式子有意義的條件、圖象法)56、函式的圖象:變數的變化趨勢描述

②一次函式與正比例函式

一次函式的定義與正比例函式的定義

一次函式的圖象:直線,畫法

一次函式的性質(增減性)

一次函式y=kx+b(k≠0)中k、b符號與圖象位置

待定係數法求一次函式的解析式(一設二列三解四回)

一次函式的平移問題

一次函式與一元一次方程、一元一次不等式、二元一次方程的關係(圖象法)

初三數學扇形知識點歸納總結 篇3

1.解直角三角形

1.1.銳角三角函式

銳角a的正弦、餘弦和正切統稱∠a的三角函式。

如果∠a是Rt△ABC的一個銳角,則有

1.2.銳角三角函式的計算

1.3.解直角三角形

在直角三角形中,由已知的一些邊、角,求出另一些邊、角的過程,叫做解直角三角形。

2.直線與圓的'位置關係

2.1.直線與圓的位置關係

當直線與圓有兩個公共點時,叫做直線與圓相交;當直線與圓有公共點時,叫做直線與圓相切,公共點叫做切點;當直線與圓沒有公共點時,叫做直線與圓相離。

直線與圓的位置關係有以下定理:

直線與圓相切的判定定理:

經過半徑的外端並且垂直這條半徑的直線是圓的切線。

圓的切線性質:

經過切點的半徑垂直於圓的切線。

2.2.切線長定理

從圓外一點作圓的切線,通常我們把圓外這一點到切點間的線段的長叫做切線長。

切線長定理:過圓外一點所作的圓的兩條切線長相等。

2.3.三角形的內切圓

與三角形三邊都相切的圓叫做三角形的內切圓,圓心叫做三角形的內心,三角形叫做圓的外切三角形。三角形的內心是三角形的三條角平分線的交點。

3.三視圖與表面展開圖

3.1.投影

物體在光線的照射下,在某個平面內形成的影子叫做投影。光線叫做投影線,投影所在的平面叫做投影面。由平行的投射線所形成的投射叫做平行投影。

可以把太陽光線、探照燈的光線看成平行光線,它們所形成的投影就是平行投影。

3.2.簡單幾何體的三視圖

物體在正投影面上的正投影叫做主視圖,在水平投影面上的正投影叫做俯視圖,在側投影面上的正投影叫做左視圖。

主視圖、左視圖和俯視圖合稱三視圖。

產生主視圖的投影線方向也叫做主視方向。

3.3.由三視圖描述幾何體

三視圖不僅反映了物體的形狀,而且反映了各個方向的尺寸大小。

3.4.簡單幾何體的表面展開圖

將幾何體沿著某些棱“剪開”,並使各個面連在一起,鋪平所得到的平面圖形稱為幾何體的表面展開圖。

圓柱可以看做由一個矩形ABCD繞它的一條邊BC旋轉一周,其餘各邊所成的面圍成的幾何體。AB、CD旋轉所成的面就是圓柱的兩個底面,是兩個半徑相同的圓。AD旋轉所成的面就是圓柱的側面,AD不論轉動到哪個位置,都是圓柱的母線。

圓錐可以看做將一根直角三角形ACB繞它的一條直角邊(AC)旋轉一周,它的其餘各邊所成的面圍成的一個幾何體。直角邊BC旋轉所成的面就是圓錐的底面,斜邊AB旋轉所成的面就是圓錐的側面,斜邊AB不論轉動到哪個位置,都叫做圓錐的母線。

初三數學扇形知識點歸納總結 篇4

一、基本概念

1、方程、方程的解(根)、方程組的解、解方程(組)

2、分類:

二、解方程的依據—等式性質

1、a=ba+c=b+c

2、a=bac=bc(c0)

三、解法

1、一元一次方程的解法:去分母去括弧移項合併同類項

係數化成1解。

2、元一次方程組的解法:

⑴基本思想:消元

⑵方法:

①代入法

②加減法

四、一元二次方程

1、定義及一般形式:

2、解法:

⑴直接開平方法(注意特徵)

⑵配方法(注意步驟—推倒求根公式)

⑶公式法:

⑷因式分解法(特徵:左邊=0)

3、根的判別式:

4、根與係數頂的關係:

逆定理:若,則以為根的一元二次方程是:

5、常用等式:

五、可化為一元二次方程的方程

1、分式方程

⑴定義

⑵基本思想:

⑶基本解法:

①去分母法

②換元法

⑷驗根及方法

2、無理方程

⑴定義

⑵基本思想:

⑶基本解法:

①乘方法(注意技巧!)

②換元法

⑷驗根及方法

3、簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。

六、列方程(組)解套用題

一概述

列方程(組)解套用題是中學數學聯繫實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關係是什麼。

⑵設元(未知數)。

①直接未知數

②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。

⑶用含未知數的代數式表示相關的量。

⑷尋找相等關係(有的由題目給出,有的由該問題所涉及的等量關係給出),列方程。一般地,未知數個數與方程個數是相同的。

⑸解方程及檢驗。

⑹答案。

綜上所述,列方程(組)解套用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解套用題的關鍵。

二常用的相等關係

1、行程問題(勻速運動)

基本關係:s=vt

⑴相遇問題(同時出發):

⑵追及問題(同時出發):

若甲出發t小時後,乙才出發,而後在B處追上甲,則

⑶水中航行:

2、配料問題:溶質=溶液濃度

溶液=溶質+溶劑

3、增長率問題:

4、工程問題:基本關係:工作量=工作效率工作時間(常把工作量看著單位1)。

5、幾何問題:常用勾股定理,幾何體的面積、體積公式,相似形及有關比例性質等。

三注意語言與解析式的互化

如,多、少、增加了、增加為(到)、同時、擴大為(到)、擴大了。

又如,一個三位數,百位數字為a,十位數字為b,個位數字為c,則這個三位數為:100a+10b+c,而不是abc。

四注意從語言敘述中寫出相等關係。

如,x比y大3,則x—y=3或x=y+3或x—3=y。又如,x與y的差為3,則x—y=3。五注意單位換算。

如,小時分鐘的換算;s、v、t單位的一致等。

七、套用舉例(略)

第六章一元一次不等式(組)

重點一元一次不等式的性質、解法

☆內容提要☆

1、定義:ab、a

2、一元一次不等式:axb、ax

3、一元一次不等式組:

4、不等式的性質:⑴aa+cb+c

⑵abc(c0)

⑶aac

⑷(傳遞性)acc

⑸ada+cb+d、

5、一元一次不等式的解、解一元一次不等式

6、一元一次不等式組的解、解一元一次不等式組(在數軸上表示解集)

7、套用舉例(略)

初三數學扇形知識點歸納總結 篇5

1、概念:

把一個圖形繞著某一點O轉動一個角度的`圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。

旋轉三要素:旋轉中心、旋轉方面、旋轉角。

2、旋轉的性質:

(1)旋轉前後的兩個圖形是全等形;

(2)兩個對應點到旋轉中心的距離相等。

(3)兩個對應點與旋轉中心的連線段的夾角等於旋轉角。

3、中心對稱:

把一個圖形繞著某一個點旋轉180,如果它能夠與另一個圖形重合,那么就說這兩個圖形關於這個點對稱或中心對稱,這個點叫做對稱中心。

這兩個圖形中的對應點叫做關於中心的對稱點。

4、中心對稱的性質:

(1)關於中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。

(2)關於中心對稱的兩個圖形是全等圖形。

5、中心對稱圖形:

把一個圖形繞著某一個點旋轉180,如果旋轉後的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

6、坐標系中的中心對稱

兩個點關於原點對稱時,它們的坐標符號相反,

即點P(x,y)關於原點O的對稱點P(—x,—y)。

初三數學扇形知識點歸納總結 篇6

根據教研室工作安排,本周居家線上學習監控重點是對九年級教學及備考情況進行監控督導,截至目前,共聽課22節,視導學校11所,聽複習課16節,新課6節,共聽課22節(城關鎮中2節,思源中學3節,上津中學2節、店子中學1節、關防中學2節、湖北口中學2節,夾河中學3節、羊尾中學2節、縣三中2節、六郎中學1節,馬安中學2節)。其中優秀4節,良好16節,合格2節。還有部分學校將在後期繼續視導,現將本周視導情況通報如下:

一、值得肯定的成功經驗及做法

1.合理安排教學進度,科學制定備考方案。通過一周來的評課、評課交流和從收集到的和學校備考方案中發現,全縣大部分學校教學進度適中,能按照原定計畫完成教學任務,目前已經結束新課,只有極少數學校進度稍滯後,馬安、六郎、夾河、思源、土門、縣三中、已進入第一輪複習。關防、澗池、河夾、湖北口、羊尾、香口、上津、店子、外國語等學校新課基本結束,在進行最後的章節小結。大部分學校都制定了複習計畫和備考方案,提出了明確的中考目標,把握三輪複習時間節點,複習內容細化到每一天,城關鎮中、夾河中學、羊尾中學明確了每節課內容的主備操心人,體現了集體備課和分工協作。

2.紮實開展教研活動,領導重視跟蹤督辦。這次線上教學視導活動,各校高度重視,精心準備,組織校內教師認真聽課,馬安、思源、羊尾、湖北口等學校校長親自組織課後線上評課,並提出合理化建議和對後期教學要求。馬安、思源、關防落實主題教研日活動和線上集體備課,研討課堂教學,查網上常規教學落實;香口中學校長鬍利果包聯數學學科,邀請中心學校校長、教研員及時進入數學課堂,進行教學診斷;羊尾中學數學教研活動每周一主題,線上評課直擊問題,提出改進建議,下周跟蹤督導,查看問題落實情況;店子中學堅持每周一節公開課,每周一測,馬安、夾河、縣三中、店子、關防、湖北口等學校已經召開中考百日衝刺動員會,積極營造備考氛圍,確保質量不滑坡、成績不下降。

3.精心設計教學策略,增強線上教學實效。一是不管是新授課,還是複習課,每節課都有課件輔助教學,克服了線上教學展示不足,增強了課堂容量,朱富寬、王賢文、熊祥蓮等老師在課件中插入微課視頻,節約了時間,突破了難點,豐富了學生的視野。祝東旭在執教《三視圖》時,自製簡易教具演示教學,幫助學生建立立體思維,化解難點。二是認真研究教材,準確把握教學目標,結合考情,精選試題,教師緊緊圍繞導學案展開教學,特別是部分阻隔在老家的老師,手邊沒有其他資料,藉助導學案,邊做邊講,達成教學目標。三是克服線上教學的局限性,最大限度的和學生互動交流,突出學生的主體地位,鼓勵學生積極連麥,把學生的課堂練習截圖展示,充分調動學生積極參與學習。四是在解題教學中,先學後教,先做後講,注重一題多解,一題多變,探究用多種途徑解決問題,培養學生在解決問題時以不變應萬變以及求新、創新的品質。如李平、陳傳艾、胡祥立等老師在執教《圓的綜合題》時,例題講完後,讓學生思考還有沒有其他的方法或者更好的方法解決此題,引導學生從不同的角度做輔助線來分析問題,注重解題方法的歸納與總結,舉一反三、觸類旁通,幫助學生從複雜的幾何圖形中發現基本圖形,運用基本圖形思考解決問題。劉小麗老師在執教《一元二方程根與係數關係》複習課時,聚焦含有絕對值的代數式變形,對例題三次變式,充分發揮題目作用,發散學生思維,增強應變能力。

二、存在的問題及後期教學要求與建議

1.參加活動積極性有待提高。部分學校九年級數學老師認為教學工作重,線上教學局限性大,講課不方便,因此參加聽課活動不主動,不積極,給教研組長為難。反映出這部分老師日常線上教學準備不充分,設備手段套用不熟練,教學思想不端正,對教研活動的認識不足。建議各學校以此次視導活動為契機,組織學科迅速開展複習備考研討活動,包聯數學學科的校委會會班子成員深入到每個老師的課堂中,校長要堅持不定時巡課,對發現不認真備課、不落實教學常規的現象及時通報整改。

2.備考方向不明確,備考方案不具體。部分老師在複習教學中選題不夠典型,與中考題的考查方式大相逕庭,從收集起來的複習計畫和備考方案上看,部分學校沒有明確目標,缺少提高複習效率的舉措,沒有把複習任務具體到天、落實到人。建議後期複習緊扣中考說明,認真研究20__年十堰市調研試題和中考試題,明確每道題、每個知識點的考查要求,紮實做好三輪複習,準確把握每輪複習的時間節點,提高複習質量。建議第一輪複習時間為3月16日——4月30日,以教材為載體,梳理知識脈絡,構建知識體系,夯實基礎;第二輪複習時間為5月1日——5月20日,以攻克專題為主,側重培養學生數學能力,圍繞熱點、難點、重點,特別是中考試題中,難度在中上等題型逐一設專題突破,如規律探究、函式套用題、一元二次方程根與係數關係、圓的綜合題、旋轉綜合題、二次函式與幾何綜合題等;第三輪複習從5月21日——中考,以綜合訓練為主,模擬中考,查漏補缺,綜合題必須根據十堰市中考試題特點進行命制或改編,不允許直接用成套的陳題。教師要控制每一個複習階段題目的難度,不可盲目拔高,要加強備課組內交流,強化集體備課,分工協作,資源共享。

3.備課準備不充分,少數教師上課前沒有教學設計,沒有製作簡易課件。在目前線上教學各方麵條件受限的情況下,備課是對老師最基本的要求,特別是複習課教學,如果不精心設計教學過程,不精選試題,不深入研究重點、難點、考點和學生的易混易錯點,就沒有高效的課堂。建議九年級老師要在備課上多花時間、下功夫,研究學生、研究題目、研究教法,必須明確方向,突出重點,對中考“考什麼”、“怎樣考”應瞭若指掌,對必考點要高度重視,對不考內容淡化處理。同時學校要加強教學常規管理,對發現的問題要及時通報整改,落實“日查周通報”制度。

4.複習課模式單一,方法簡單。部分複習課堂習慣於先羅列知識點,花很多時間複習基本概念,然後講解例題,到學生自主練習時,時間已過大半;部分老師講的太多,不關注學情,不注重對學生學習能力、態度、習慣和思維方式的培養,只重一例一題,就題論題,不重知識建構,不拓展變式,不總結方法。建議複習要以題目為載體,單元複習先要給學生呈現一個有梯度的題組,讓學生思考、解答,教師再適當點撥,幫學生回顧、總結相關知識點,形成知識網路,然後再突破重點題目,最後檢測反饋;在複習過程中,要發揮學生主體地位作用,控制精講時間,多留給學生反思消化的機會;要重視樣題的示範性,對題目進行拓展變式,培養學生靈活性和創造性,對解題方法及時總結歸納,滲透數學思想方法,提升學生解題能力和核心素養。

初三數學扇形知識點歸納總結 篇7

我不是數學家,我對數學的了解也不多,但我想說說我所學的數學。

學習數學是一件輕鬆快樂的事情。在數學的學習中,“大事化小小事化了”的思維方式很重要。比如你撞見一道相當複雜的題目,那么把它分化成幾個簡單的小問題無疑是很明智的。

當然,就如同意蓋大樓一樣,基礎十分重要。就現在的考試來說,基礎題亦是重點。只有掌握基礎知識,才能靈活運用,並對各種題目進行變形、探究。

什麼是探究中最重要的呢?我認為是挑戰精神。只要有挑戰精神才能讓你不畏難點,攻破難點,急速向前。但挑戰精神不是萬能藥,也不是一味地蠻幹,也要伴隨著謹慎的思考,這才是終極奧義。

初三數學扇形知識點歸納總結 篇8

1.代數式與有理式

用運算符號把數或表示數的字母連結而成的式子,叫做代數式。單獨的一個數或字母也是代數式。

整式和分式統稱為有理式。

2.整式和分式

含有加、減、乘、除、乘方運算的代數式叫做有理式。

沒有除法運算或雖有除法運算但除式中不含有字母的有理式叫做整式。

有除法運算並且除式中含有字母的有理式叫做分式。

3.單項式與多項式

沒有加減運算的整式叫做單項式(數字與字母的積—包括單獨的一個數或字母)。

幾個單項式的和,叫做多項式。

說明:①根據除式中有否字母,將整式和分式區別開;根據整式中有否加減運算,把單項式、多項式區分開。②進行代數式分類時,是以所給的代數式為對象,而非以變形後的代數式為對象。劃分代數式類別時,是從外形來看。如=x,=│x│等。

4.係數與指數

區別與聯繫:①從位置上看;②從表示的意義上看;

5.同類項及其合併

條件:①字母相同;②相同字母的指數相同

合併依據:乘法分配律

6.根式

表示方根的代數式叫做根式。

含有關於字母開方運算的代數式叫做無理式。

注意:①從外形上判斷;②區別:是根式,但不是無理式(是無理數)。

7.算術平方根

⑴正數a的正的平方根([a≥0—與“平方根”的區別]);

⑵算術平方根與絕對值

①聯繫:都是非負數,=│a│

②區別:│a│中,a為一切實數;中,a為非負數。

8.同類二次根式、最簡二次根式、分母有理化

化為最簡二次根式以後,被開方數相同的二次根式叫做同類二次根式。

滿足條件:①被開方數的因數是整數,因式是整式;②被開方數中不含有開得盡方的因數或因式。

把分母中的根號划去叫做分母有理化。

9.指數

⑴(—冪,乘方運算)。

①a>0時,>0;②a<0時,>0(n是偶數),<0(n是奇數)。

⑵零指數:=1(a≠0)。

負整指數:=1/(a≠0,p是正整數)。

初三數學扇形知識點歸納總結 篇9

緊張繁忙的一個學期結束了,本學期教學的時間較長,教學的工作量較大,教學的內容包括初三上學期六章的知識和初三下學期比較難比較重要的二次函式、圓這兩章的知識,這些內容在中考占有相當大的比例。按照學期初制定的教師工作計畫,我順利完成了本學期的教學任務並取得了一定的成績。具體工作如下:

一、教學方面

認真備課,寫好教案。在備課過程中,在有限的時間吃透教材,創造性地使用教材,根據學生的實際情況,採用低起點、步步高的啟發式教學方法。在課常中,努力創設寬鬆愉悅的學習氛圍,激發學生的學習興趣,課堂上採用提問式和啟發式,使學生的思維動起來。做到重點突出,難點突破。練習量足夠,保證每節課至少15分鐘至20分鐘的時間進行練習鞏固,以彌補多數學生課後做不到的複習工作,使知識得以當場吸收和消化。每日及時批改作業並及講評,對個別同學進行面批面改。根據課型的特點在課前幾分鐘或每周抽出一節課來小測,以達到對知識複習和鞏固。新課教學時,常把練習挑選後做為當堂小測題,促使學生對新知識及時掌握,雖增加了不少批改作業的工作量,但效果很明顯。

二、學習品質的培養方面

良好的學習習慣是成功的一半。認真審題,規範做答,工整的書寫,嚴密的推理表達,較強的計算能力等都是好的學習習慣。在教學過程中,我充分利用學習宣傳欄張貼書寫好的、作答質量高的作業和試卷,起到鼓勵和激勵的作用。利用課上對題目的整理、計算比賽促進同學們動手演算訓練,提高計算能力,並以中考的題型為例,說明計算的重要性,讓學生思想上得以重視。適當地以小測的形式來代替練習完成,培養他們獨立思考的習慣,改掉一遇到問題馬上就問的壞習慣。

三、繼續教育方面

1、本學期在教學上及時進行教學反思和探討,努力提高教學的有效性。

2、完成20節的聽課和參與多次網上評課,積極參與有關的講座學習,取長補短。

3、參加有關的校本教研、校本培訓、繼續教育和學習經驗交流,努力提高自身的業務水平。

初三數學扇形知識點歸納總結 篇10

拋物線

y = ax^2 + bx + c (a≠0)

就是y等於a乘以x 的平方加上 b乘以x再加上 c

置於平面直角坐標系中

a > 0時開口向上

a 0時函式圖像與y軸正方向相交

c0)

它表示拋物線的焦點在x的正半軸上,焦點坐標為(p/2,0) 準線方程為x=-p/2

由於拋物線的焦點可在任意半軸,故共有標準方程y^2=2px y^2=-2px x^2=2py x^2=-2py

初三數學扇形知識點歸納總結 篇11

1、圖形的相似

相似多邊形的對應邊的比值相等,對應角相等;

兩個多邊形的對應角相等,對應邊的比值也相等,那么這兩個多邊形相似;

相似比:相似多邊形對應邊的比值。

2、相似三角形

判定:

平行於三角形一邊的直線和其它兩邊相交,所構成的三角形和原三角形相似;

如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;

如果兩個三角形的兩組對應邊的比相等,並且相應的夾角相等,那么兩個三角形相似;

如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么兩個三角形相似。

3、相似三角形的周長和面積

相似三角形(多邊形)的周長的比等於相似比;

相似三角形(多邊形)的面積的比等於相似比的平方。

4、位似

位似圖形:兩個多邊形相似,而且對應頂點的連線相交於一點,對應邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。

初三數學扇形知識點歸納總結 篇12

一學期來,本人擔任九年級293班數學教學,在教學期間認真備課、上課、聽課、評課,及時批改作業、講評作業,做好課後輔導工作,廣泛涉獵各種知識,不斷提高自己的業務水平,充實自己的頭腦,形成比較完整的知識結構,嚴格要求學生,尊重學生,發揚教學民主,教育民主,使學生學有所得,學有所用,不斷提高,從而不斷提高自己的教學水平和思想覺悟,並順利完成了教育教學任務。

1、要提高教學質量,關鍵是上好課。為了上好課,我主要做了下面的工作。

⑴課前準備:備好課。

①認真鑽研教材,對教材的基本思想、基本概念,每句話、每個字都弄清楚,了解教材的結構,重點與難點,掌握知識的邏輯,能運用自如,知道應補充哪些資料,怎樣才能教好。

②了解學生原有的知識技能的質量,他們的興趣、需要、方法、習慣,學習新知識可能會有哪些困難,採取相應的預防措施。

③考慮教法,解決如何把已掌握的教材傳授給學生,包括如何組織教材、如何安排每節課的活動。

⑵課堂上的情況。

組織好課堂教學,關注全體學生,注意信息反饋,調動學生的有意注意,使其保持相對穩定性,同時,激發學生的情感,使他們產生愉悅的心境,創造良好的課堂氣氛,課堂語言簡潔明了,克服了以前重複的毛病,課堂提問面向全體學生,注意引發學生學數學的興趣,課堂上講練結合,布置好家庭作業,作業少而精,減輕學生的負擔。

2、要提高教學質量,還要做好課後輔導工作,國中的學生愛動、好玩,缺乏自控能力,常在學習上不能按時完成作業,有的學生抄襲作業,針對這種問題,就要抓好學生的思想教育,並使這一工作慣徹到對學生的學習指導中去,還要做好對學生學習的輔導和幫助工作,尤其在後進生的轉化上,對後進生努力做到從友善開始,比如,握握他的手,摸摸他的頭,或幫助整理衣服。從讚美著手,所有的人都渴望得到別人的理解和尊重,所以,和差生交談時,對他的處境、想法表示深刻的理解和尊重,還有在批評學生之前,先談談自己工作的不足。

3、積極參與聽課、評課,虛心向同行學習教學方法,博採眾長,提高教學水平。

4、培養多種興趣愛好,到圖書館博覽群書,不斷擴寬知識面,為教學內容注入新鮮血液。

5、"金無足赤,人無完人",在教學工作中難免有缺陷,例如,課堂語言平緩,平時考試較少,語言不夠生動。

在今後的教育教學工作中,我將更嚴格要求自己,努力工作,發揚優點,改正缺點,開拓前進,為美好的明天奉獻自己的力量。一年來,在各位領導和老師的熱心支持和幫助下,我認真做好教學工作,積極完成學校布置的各項任務。

初三數學扇形知識點歸納總結 篇13

1、絕對值

一個數的絕對值就是表示這個數的點與原點的距離,|a|≥0。零的絕對值時它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=-a,則a≤0。正數大於零,負數小於零,正數大於一切負數,兩個負數,絕對值大的反而小。

(1)一個正實數的絕對值是它本身;一個負實數的絕對值是它的相反數;0的絕對值是0.即:﹝另有兩種寫法﹞

(2)實數的絕對值是一個非負數,從數軸上看,一個實數的絕對值就是數軸上表示這個數的點到原點的距離.

(3)幾個非負數的和等於零則每個非負數都等於零。

注意:│a│≥0,符號"││"是"非負數"的標誌;數a的絕對值只有一個;處理任何類型的題目,只要其中有"││"出現,其關鍵一步是去掉"││"符號。

2、解一元二次方程

解一元二次方程的基本思想方法是通過“降次”將它化為兩個一元一次方程。

(1)直接開平方法:

用直接開平方法解形如(x-m)2=n(n≥0)的方程,其解為x=±m.

直接開平方法就是平方的逆運算.通常用根號表示其運算結果.

(2)配方法

通過配成完全平方式的方法,得到一元二次方程的根的方法。這種解一元二次方程的方法稱為配方法,配方的依據是完全平方公式。

1)轉化:將此一元二次方程化為ax^2+bx+c=0的形式(即一元二次方程的一般形式)

2)係數化1:將二次項係數化為1

3)移項:將常數項移到等號右側

4)配方:等號左右兩邊同時加上一次項係數一半的平方

5)變形:將等號左邊的代數式寫成完全平方形式

6)開方:左右同時開平方

7)求解:整理即可得到原方程的根

(3)公式法

公式法:把一元二次方程化成一般形式,然後計算判別式△=b2-4ac的值,當b2-4ac≥0時,把各項係數a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

3、圓的必考知識點

(1)圓

在一個平面內,一動點以一定點為中心,以一定長度為距離旋轉一周所形成的封閉曲線叫做圓。圓有無數條對稱軸。

(2)圓的相關特點

1)徑

連線圓心和圓上的任意一點的線段叫做半徑,字母表示為r

通過圓心並且兩端都在圓上的線段叫做直徑,字母表示為d

直徑所在的直線是圓的對稱軸。在同一個圓中,圓的直徑d=2r

2)弦

連線圓上任意兩點的線段叫做弦.在同一個圓內最長的弦是直徑。直徑所在的直線是圓的對稱軸,因此,圓的對稱軸有無數條。

3)弧

圓上任意兩點間的部分叫做圓弧,簡稱弧,以“⌒”表示。

大於半圓的弧稱為優弧,小於半圓的弧稱為劣弧,所以半圓既不是優弧,也不是劣弧。優弧一般用三個字母表示,劣弧一般用兩個字母表示。優弧是所對圓心角大於180度的弧,劣弧是所對圓心角小於180度的弧。

在同圓或等圓中,能夠互相重合的兩條弧叫做等弧。

4)角

頂點在圓心上的角叫做圓心角。

頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。圓周角等於相同弧所對的圓心角的一半。

初三數學扇形知識點歸納總結 篇14

1二次根式:形如a(a0)的式子為二次根式;性質:a(a0)是一個非負數;

a2aa0。

2二次根式的乘除:ababa0,b0;

aaa0,b0。bb3二次根式的加減:二次根式加減時,先將二次根式華為最簡二次根式,再將被開方數相同的二次根式進行合併。

4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程

1一元二次方程:等號兩邊都是整式,且只有一個未知數,未知數的最高次是2的方程。

2一元二次方程的解法

配方法:將方程的一邊配成完全平方式,然後兩邊開方;

bb24ac公式法:x2a因式分解法:左邊是兩個因式的乘積,右邊為零。

3一元二次方程在實際問題中的套用

4韋達定理:設x1,x2是方程ax2bxc0的兩個根,那么有x1x2,x1x2第三章旋轉

1圖形的旋轉旋轉:一個圖形繞某一點轉動一個角度的圖形變換性質:對應點到旋轉中心的距離相等;

對應點與旋轉中心所連的線段的夾角等於旋轉角旋轉前後的圖形全等。

2中心對稱:一個圖形繞一個點旋轉180度,和另一個圖形重合,則兩個圖形關於這個點中心對稱;

中心對稱圖形:一個圖形繞某一點旋轉180度後得到的圖形能夠和原來的圖形重合,則說這個圖形是中心對稱圖形;

3關於原點對稱的點的坐標第四章圓

1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義

2垂直於弦的直徑

圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;

垂直於弦的直徑平分弦,並且平方弦所對的兩條弧;平分弦的直徑垂直弦,並且平分弦所對的兩條弧。

3弧、弦、圓心角

在同圓或等圓中,相等的圓心角所對的弧相等,所baca對的弦也相等。

4圓周角

在同圓或等圓中,同弧或等弧所對的圓周角相等,都等於這條弧所對的圓心角的一半;

半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。

5點和圓的位置關係點在dr點在圓上d=r點在圓內d相等,這一點和圓心的連線平分兩條切線的夾角。

三角形的內切圓:和三角形各邊都相切的圓為它的內切圓,圓心是三角形的三條角平分線的交點,為三角形的內心。

6圓和圓的位置關係

外離d>R+r外切d=R+r相交R-r第五章機率初步

1機率意義:在大量重複試驗中,事件A發生的頻率某個常數p附近,則常數p叫做事件A的機率。

2用列舉法求機率

一般的,在一次試驗中,有n中可能的結果,並且它們發生的機率相等,事件A包含其中的m中結果,那么事件A發生的機率就是p(A)=mnm穩定在n3用頻率去估計機率

初三數學扇形知識點歸納總結 篇15

第21章二次根式

1、二次根式:一般地,式子叫做二次根式。

注意:

(1)若這個條件不成立,則不是二次根式;

(2)是一個重要的非負數,即; ≥0。

2、重要公式:

3、積的算術平方根:

積的算術平方根等於積中各因式的算術平方根的積;

4、二次根式的乘法法則:。

5、二次根式比較大小的方法:

(1)利用近似值比大小;

(2)把二次根式的係數移入二次根號內,然後比大小;

(3)分別平方,然後比大小。

6、商的算術平方根:,

商的算術平方根等於被除式的算術平方根除以除式的算術平方根。

7、二次根式的除法法則:

分母有理化的方法是:分式的分子與分母同乘分母的有理化因式,使分母變為整式。

8、最簡二次根式:

(1)滿足下列兩個條件的二次根式,叫做最簡二次根式,

①被開方數的因數是整數,因式是整式,

②被開方數中不含能開的盡的因數或因式;

(2)最簡二次根式中,被開方數不能含有小數、分數,字母因式次數低於2,且不含分母;

(3)化簡二次根式時,往往需要把被開方數先分解因數或分解因式;

(4)二次根式計算的最後結果必須化為最簡二次根式。

9、同類二次根式:幾個二次根式化成最簡二次根式後,如果被開方數相同,這幾個二次根式叫做同類二次根式。

10、二次根式的混合運算:

(1)二次根式的混合運算包括加、減、乘、除、乘方、開方六種代數運算,以前學過的,在有理數範圍內的一切公式和運算律在二次根式的混合運算中都適用;

(2)二次根式的運算一般要先把二次根式進行適當化簡,例如:化為同類二次根式才能合併;除法運算有時轉化為分母有理化或約分更為簡便;使用乘法公式等。

第22章一元二次方程

1、一元二次方程的一般形式:

a≠0時,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有關問題時,多數習題要先化為一般形式,目的是確定一般形式中的a、 b、 c;其中a 、 b,、c可能是具體數,也可能是含待定字母或特定式子的代數式。

2、一元二次方程的解法:一元二次方程的四種解法要求靈活運用,其中直接開平方法雖然簡單,但是適用範圍較小;公式法雖然適用範圍大,但計算較繁,易發生計算錯誤;因式分解法適用範圍較大,且計算簡便,是首選方法;配方法使用較少。

3。一元二次方程根的判別式:當ax2+bx+c=0

(a≠0)時,Δ=b2—4ac叫一元二次方程根的判別式。請注意以下等價命題:

Δ>0 有兩個不等的實根;

Δ=0 有兩個相等的實根;Δ<0 無實根;

4。平均增長率問題————————套用題的類型題之一(設增長率為x):

(1)第一年為a ,第二年為a(1+x) ,第三年為a(1+x)2。

(2)常利用以下相等關係列方程:第三年=第三年或第一年+第二年+第三年=總和。

第23章旋轉

1、概念:

把一個圖形繞著某一點O轉動一個角度的圖形變換叫做旋轉,點O叫做旋轉中心,轉動的角叫做旋轉角。

旋轉三要素:旋轉中心、旋轉方面、旋轉角

2、旋轉的性質:

(1)旋轉前後的兩個圖形是全等形;

(2)兩個對應點到旋轉中心的距離相等

(3)兩個對應點與旋轉中心的連線段的夾角等於旋轉角

3、中心對稱:

把一個圖形繞著某一個點旋轉180°,如果它能夠與另一個圖形重合,那么就說這兩個圖形關於這個點對稱或中心對稱,這個點叫做對稱中心。

這兩個圖形中的對應點叫做關於中心的對稱點。

4、中心對稱的性質:

(1)關於中心對稱的兩個圖形,對稱點所連線段都經過對稱中心,而且被對稱中心所平分。

(2)關於中心對稱的兩個圖形是全等圖形。

5、中心對稱圖形:

把一個圖形繞著某一個點旋轉180°,如果旋轉後的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。

初三數學扇形知識點歸納總結 篇16

本學期,我繼續擔任初三兩個班的數學教學工作。一學期來,我從各方面嚴格要求自己,積極向有經驗的教師請教,結合本校的實際條件和學生的實際情況,勤勤懇懇,兢兢業業,使教學工作有計畫,有組織,有步驟地開展。立足現在,放眼未來,為使今後的工作取得更大的進步,現對本學期教學工作作出總結,希望能發揚優點,克服不足,總結檢驗教訓,繼往開來,以促進教訓工作更上一層樓。

一、認真備課,不但備學生而且備教材備教法,根據教材

內容及學生的實際,設計課的類型,擬定採用的教學方法,並對教學過程的程式及時間安排都作了詳細的記錄,認真寫好教案。每一課都做到“有備而來”,每堂課都在課前做好充分的準備,並製作各種利於吸引學生注意力的有趣教具,課後及時對該課作出總結,寫好教學後記,並認真按蒐集每課書的知識要點,歸納成集。

二、增強上課技能

提高教學質量,使講解清晰化,條理化,準確化,條理化,準確化,情感化,生動化,做到線索清晰,層次分明,言簡意賅,深入淺出。在課堂上特別注意調動學生的積極性,加強師生交流,充分體現學生的主作用,讓學生學得容易,學得輕鬆,學得愉快;注意精講精練,在課堂上老師講得儘量少,學生動口動手動腦儘量多;同時在每一堂課上都充分考慮每一個層次的學生學習需求和學習能力,讓各個層次的學生都得到提高。

三、積極實踐新課改

加強學生小組合作學習的研究與套用,課堂變成學生的課堂,並注重網路教學中的套用。

四、虛心請教其他老師。在教學上,有疑必問。

在各個章節的學習上都積極徵求其他老師的意見,學習他們的方法,同時,多聽老師的課,做到邊聽邊講,學習別人的優點,克服自己的不足,並常常邀請其他老師來聽課,徵求他們的意見,改進工作。

五、真批改作業:布置作業做到精讀精練。

有針對性,有層次性。為了做到這點,我常常到各大書店去蒐集資料,對各種輔助資料進行篩選,力求每一次練習都起到最大的效果。同時對學生的作業批改及時、認真,分析並記錄學生的作業情況,將他們在作業過程出現的問題作出分類總結,進行透切的評講,並針對有關情況及時改進教學方法,做到有的放矢。

六、做好課後輔導工作,注意分層教學。

在課後,為不同層次的學生進行相應的輔導,以滿足不同層次的學生的需求,避免了一刀切的弊端,同時加大了後進生的輔導力度。對後進生的輔導,並不限於學習知識性的輔導,更重要的是學平的輔導,要提高后進生的成績,首先要解決他們心結,讓他們意識到學習的重要性和必要性,使之對學習萌發興趣。要通過各種途徑激發他們的求知慾和上進心,讓他們意識到學習並不是一項任務,也不是一件痛苦的事情。而是充滿樂趣的。從而自覺的把身心投放到學習中去。這樣,後進生的轉化,就由原來的簡單粗暴、強制學習轉化到自覺的求知上來。使學習成為他們自我意識力度一部分。在此基礎上,再教給他們學習的方法,提高他們的技能。並認真細緻地做好查漏補缺工作。後進生通常存在很多知識斷層,這些都是後進生轉化過程中的拌腳石,在做好後進生的轉化工作時,要特別注意給他們補課,把他們以前學習的知識斷層補充完整,這樣,他們就會學得輕鬆,進步也快,興趣和求知慾也會隨之增加。

七、積極推進素質教育。

目前的考試模式仍然比較傳統,這決定了教師的教學模式要停留在應試教育的層次上,為此,我在教學工作中注意了學生能力的培養,把傳受知識、技能和發展智力、能力結合起來,在知識層面上注入了思想情感教育的因素,發揮學生的創新意識和創新能力。讓學生的各種素質都得到有效的發展和培養。

總之,在教學的過程中我不斷反思,不斷創新,使不同的學生得到不同的發展。

初三數學扇形知識點歸納總結 篇17

平方根:①如果一個正數X的平方等於A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等於A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:①如果一個數X的立方等於A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:①實數分有理數和無理數。②在實數範圍內,相反數,倒數,絕對值的意義和有理數範圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。

初三數學扇形知識點歸納總結 篇18

(三角形中位線的定理)

三角形的中位線平行於三角形的第三邊,並且等於第三邊的一半。

(平行四邊形的性質)

①平行四邊形的對邊相等;

②平行四邊形的對角相等;

③平行四邊形的對角線互相平分。

(矩形的性質)

①矩形具有平行四邊形的一切性質;

②矩形的四個角都是直角;

③矩形的對角線相等。

正方形的判定與性質

1、判定方法:

1鄰邊相等的矩形;

2鄰邊垂直的菱形;

3對角線垂直的矩形;

4對角線相等的菱形;

2、性質:

1邊:四邊相等,對邊平行;

2角:四個角都相等都是直角,鄰角互補;

3對角線互相平分、垂直、相等,且每長對角線平分一組內角。

等腰三角形的判定定理

(等腰三角形的判定方法)

1、有兩條邊相等的三角形是等腰三角形。

2、判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形簡稱:等角對等邊。

角平分線:把一個角平分的射線叫該角的角平分線。

定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

性質定理:角平分線上的點到該角兩邊的距離相等

判定定理:到角的兩邊距離相等的點在該角的角平分線上

標準差與方差

極差是什麼:一組數據中數據與最小數據的差叫做極差,即極差=值—最小值。

計算器——求標準差與方差的一般步驟:

1、打開計算器,按“ON”鍵,按“MODE”“2”進入統計SD狀態。

2、在開始數據輸入之前,請務必按“SHIFT”“CLR”“1”“=”鍵清除統計存儲器。

3、輸入數據:按數字鍵輸入數值,然後按“M+”鍵,就能完成一個數據的輸入。如果想對此輸入同樣的數據時,還可在步驟3後按“SHIET”“;”,後輸入該數據出現的頻數,再按“M+”鍵。

4、當所有的數據全部輸入結束後,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數據的標準差;

5、標準差的平方就是方差。

初三數學扇形知識點歸納總結 篇19

一學期來,本人擔任初三數學教學,在教學期間認真備課、上課、聽課、評課,及時批改作業、講評作業,做好課後輔導工作,廣泛涉獵各種知識,不斷提高自己的業務水平,充實自己的頭腦,形成比較完整的知識結構,嚴格要求學生,尊重學生,發揚教學民主,教育民主,使學生學有所得,學有所用,不斷提高,從而不斷提高自己的教學水平和思想覺悟,並順利完成了教育教學任務。

1、要提高教學質量,關鍵是上好課。為了上好課,我做了下面的工作:

⑴課前準備:備好課。

①認真鑽研教材,對教材的基本思想、基本概念,每句話、每個字都弄清楚,了解教材的結構,重點與難點,掌握知識的邏輯,能運用自如,知道應補充哪些資料,怎樣才能教好。②了解學生原有的知識技能的質量,他們的興趣、需要、方法、習慣,學習新知識可能會有哪些困難,採取相應的預防措施。

③考慮教法,解決如何把已掌握的教材傳授給學生,包括如何組織教材、如何安排每節課的活動。

⑵課堂上的情況。

組織好課堂教學,關注全體學生,注意信息反饋,調動學生的有意注意,使其保持相對穩定性,同時,激發學生的情感,使他們產生愉悅的心境,創造良好的課堂氣氛,課堂語言簡潔明了,克服了以前重複的毛病,課堂提問面向全體學生,注意引發學生學數學的興趣,課堂上講練結合,布置好家庭作業,作業少而精,減輕學生的負擔。

2、要提高教學質量,還要做好課後輔導工作,國中的學生愛動、好玩,缺乏自控能力,常在學習上不能按時完成作業,有的學生抄襲作業,針對這種問題,就要抓好學生的思想教育,並使這一工作慣徹到對學生的學習指導中去,還要做好對學生學習的輔導和幫助工作,尤其在後進生的轉化上,對後進生努力做到從友善開始,比如,握握他的手,摸摸他的頭,或幫助整理衣服。從讚美著手,所有的人都渴望得到別人的理解和尊重,所以,和差生交談時,對他的處境、想法表示深刻的理解和尊重,還有在批評學生之前,先談談自己工作的不足。

3、積極參與聽課、評課,虛心向同行學習教學方法,博採眾長,提高教學水平。

4、培養多種興趣愛好,到圖書館博覽群書,不斷擴寬知識面,為教學內容注入新鮮血液。

5、"進無足赤,人無完人",在教學工作中難免有缺陷,例如,課堂語言平緩,平時考試較少,語言不夠生動。

在今後的教育教學工作中,我將更嚴格要求自己,努力工作,發揚優點,改正缺點,開拓前進,為美好的明天奉獻自己的力量。一年來,在各位領導和老師的熱心支持和幫助下,我認真做好教學工作,積極完成學校布置的各項任務。

初三數學扇形知識點歸納總結 篇20

矩形知識點

1、矩形的概念

有一個角是直角的平行四邊形叫做矩形。

2、矩形的性質

(1)具有平行四邊形的一切性質

(2)矩形的四個角都是直角

(3)矩形的對角線相等

(4)矩形是軸對稱圖形

3、矩形的判定

(1)定義:有一個角是直角的平行四邊形是矩形(2)定理1:有三個角是直角的四邊形是矩形

(3)定理2:對角線相等的平行四邊形是矩形

4、矩形的面積:S矩形=長×寬=ab

正方形知識點

1、正方形的概念

有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形。

2、正方形的性質

(1)具有平行四邊形、矩形、菱形的一切性質;

(2)正方形的四個角都是直角,四條邊都相等;

(3)正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角;

(4)正方形是軸對稱圖形,有4條對稱軸;

(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。

3、正方形的判定

(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:

先證它是矩形,再證有一組鄰邊相等。

先證它是菱形,再證有一個角是直角。

(2)判定一個四邊形為正方形的一般順序如下:

先證明它是平行四邊形;

再證明它是菱形(或矩形);

最後證明它是矩形(或菱形)。

圓知識點

圓的面積s=π×r×r

其中,π是周圍率,約等於3.14

r是圓的半徑。

圓的周長計算公式為:C=2πR.C代表圓的周長,r代表圓的半徑。圓的面積公式為:S=πR2(R的平方).S代表圓的面積,r為圓的半徑。

橢圓周長計算公式

橢圓周長公式:L=2πb+4(a-b)

橢圓周長定理:橢圓的周長等於該橢圓短半軸長為半徑的圓周長(2πb)加上四倍的該橢圓長半軸長(a)與短半軸長(b)的差。

橢圓面積計算公式

橢圓面積公式:S=πab

橢圓面積定理:橢圓的面積等於圓周率(π)乘該橢圓長半軸長(a)與短半軸長(b)的乘積。

以上橢圓周長、面積公式中雖然沒有出現橢圓周率T,但這兩個公式都是通過橢圓周率T推導演變而來。常數為體,公式為用。

對數公式

對數公式是數學中的一種常見公式,如果a^x=N(a>0,且a≠1),則x叫做以a為底N的對數,記做x=log(a)(N),其中a要寫於log右下。其中a叫做對數的底,N叫做真數。通常我們將以10為底的對數叫做常用對數,以e為底的對數稱為自然對數。

拓展閱讀:數學學習技巧

1.求教與自學相結合

在學習過程中,即要爭取教師的指導和幫助,但是又不能過分依賴教師,必須自己主動地去學習、去探索、去獲取,應該在自己認真學習和研究的基礎上去尋求教師和同學的幫助。

2.學習與思考相結合

在學習過程中,對課本的內容要認真研究,提出疑問,追本究源。對每一個概念、公式、定理都要弄清其來龍去脈、前因後果、內在聯繫,以及蘊含於推導過程中的數學思想和方法。在解決問題時,要儘量採用不同的途徑和方法,要克服那種死守書本、機械呆板、不知變通的學習方法。

3.學用結合,勤於實踐

在學習過程中,要準確地掌握抽象概念的本質含義,了解從實際模型中抽象為理論的演變過程。對所學理論知識,要在更大範圍內尋求它的具體實例,使之具體化,儘量將所學的理論知識和思維方法套用於實踐。

4.博觀約取,由博返約

課本是獲得知識的主要來源,但不是唯一的來源。在學習過程中,除了認真研究課本以外,還要閱讀有關的課外資料,來擴大知識領域。同時在廣泛閱讀的基礎上,進行認真研究,掌握其知識結構。

5.既有模仿,又有創新

模仿是數學學習中不可缺少的學習方法,但是決不能機械地模仿,應該在消化理解的基礎上,開動腦筋,提出自己的見解和看法,而不拘泥於已有的`框框,不囿於現成的模式。

6.及時複習增強記憶

課堂上學習的內容,必須當天消化,要先複習,後做練習,複習工作必須經常進行,每一單元結束後,應將所學知識進行概括整理,使之系統化、深刻化。

7.總結學習經驗,評價學習效果

學習中的總結和評價有利於知識體系的建立、解題規律的掌握、學習方法與態度的調整和評判能力的提高。在學習過程中,應注意總結聽課、閱讀和解題中的收穫和體會。

初三數學扇形知識點歸納總結 篇21

1、拋物線是軸對稱圖形。對稱軸為直線x=—b/2a。

對稱軸與拋物線唯一的.交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)

2、拋物線有一個頂點P,坐標為:P(—b/2a,(4ac—b^2)/4a)當—b/2a=0時,P在y軸上;當=b^2—4ac=0時,P在x軸上。

3、二次項係數a決定拋物線的開口方向和大小。

當a0時,拋物線向上開口;當a0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

4、一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab0),對稱軸在y軸左;

當a與b異號時(即ab0),對稱軸在y軸右。

5、常數項c決定拋物線與y軸交點。

拋物線與y軸交於(0,c)

6、拋物線與x軸交點個數

=b^2—4ac0時,拋物線與x軸有2個交點。

=b^2—4ac=0時,拋物線與x軸有1個交點。

=b^2—4ac0時,拋物線與x軸沒有交點。X的取值是虛數(x=—bb^2—4ac的值的相反數,乘上虛數i,整個式子除以2a)

初三數學扇形知識點歸納總結 篇22

等腰三角形的判定方法

1.有兩條邊相等的三角形是等腰三角形。

2.判定定理:如果一個三角形有兩個角相等,那么這個三角形是等腰三角形(簡稱:等角對等邊)。

角平分線:把一個角平分的射線叫該角的角平分線。

定義中有幾個要點要注意一下的,學習方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角個角平分線就是到角兩邊距離相等的點

性質定理:角平分線上的點到該角兩邊的距離相等

判定定理:到角的兩邊距離相等的點在該角的角平分線上

標準差與方差

極差是什麼:一組數據中數據與最小數據的差叫做極差,即極差=值-最小值。

計算器——求標準差與方差的一般步驟:

1.打開計算器,按“ON”鍵,按“MODE”“2”進入統計(SD)狀態。

2.在開始數據輸入之前,請務必按“SHIFT”“CLR”“1”“=”鍵清除統計存儲器。

3.輸入數據:按數字鍵輸入數值,然後按“M+”鍵,就能完成一個數據的輸入。如果想對此輸入同樣的數據時,還可在步驟3後按“SHIET”“;”,後輸入該數據出現的頻數,再按“M+”鍵。

4.當所有的數據全部輸入結束後,按“SHIFT”“2”,選擇的是“標準差”,就可以得到所求數據的標準差;

5.標準差的平方就是方差。

初三數學扇形知識點歸納總結 篇23

1、矩形的概念

有一個角是直角的平行四邊形叫做矩形。

2、矩形的性質

(1)具有平行四邊形的一切性質。

(2)矩形的四個角都是直角。

(3)矩形的對角線相等。

(4)矩形是軸對稱圖形。

3、矩形的判定

(1)定義:有一個角是直角的平行四邊形是矩形。

(2)定理1:有三個角是直角的四邊形是矩形。

(3)定理2:對角線相等的平行四邊形是矩形。

4、矩形的面積:S矩形=長×寬=ab

初三數學重點知識點(四)

1、正方形的概念

有一組鄰邊相等並且有一個角是直角的平行四邊形叫做正方形。

2、正方形的性質

(1)具有平行四邊形、矩形、菱形的一切性質;

(2)正方形的四個角都是直角,四條邊都相等;

(3)正方形的兩條對角線相等,並且互相垂直平分,每一條對角線平分一組對角;

(4)正方形是軸對稱圖形,有4條對稱軸;

(5)正方形的一條對角線把正方形分成兩個全等的等腰直角三角形,兩條對角線把正方形分成四個全等的小等腰直角三角形;

(6)正方形的一條對角線上的一點到另一條對角線的兩端點的距離相等。

3、正方形的判定

(1)判定一個四邊形是正方形的主要依據是定義,途徑有兩種:

先證它是矩形,再證有一組鄰邊相等。

先證它是菱形,再證有一個角是直角。

(2)判定一個四邊形為正方形的一般順序如下:

先證明它是平行四邊形;

再證明它是菱形(或矩形);

最後證明它是矩形(或菱形)。

初三數學扇形知識點歸納總結 篇24

本學期以來,我所擔任初三(1)、(2)兩個班的數學教學取的較好效果,,我堅持"以學生髮展為本"的指導思想,關注每位學生,幫助他們在原有基礎上得到提高和發展,初三數學教學總結。經過一個學期的努力,現將具體工作總結如下:

一、面向全體因材施教

在教學實踐中,全面貫徹教育方針,面向全體學生,採用抓兩頭、促中間,實施分層教學,因材施教,因人施教,使全體學生都能學有所得。

1、備課。精心鑽研教材,細心備課;做到:重點難點突出,易混易錯知識點清晰,並掌握好、中、差學生的認知能力,分層次設計練習題,分層次落實訓練內容,使全體學生都能輕鬆學習,學有所獲。

2、授課。一是從問題出發進行教學。讓學生自己發現問題,自己提出問題,自己解決問題。尤其鼓勵學生自己提出問題,因為提出一個問題比解決一個問題更重要。二是情感教學。深刻領會"親其師、信其道、樂其學"的效應,與學生建立深厚的師生感情,在課堂上,始終做到和善愉快的教育學生,在沒有歐打、沒有哭泣、沒有暴力、沒有厭惡的氣氛下進行教學。正確對學生進行學法指導,使學生願學、樂學、會學。

3、創造成功體驗的機會。一是從多個方面給學困生創設學習時間空間,採用課堂多提問,一幫一合作學習,作業分層照顧,指導學困生自己提出問題等措施;二是利用課後時間與其談心,樹立正確積極向上的人生觀,同時經常在學困生的作業上、試卷上寫上一些鼓勵的語言,及時與家長交流學生學習的情況,做到學校、家庭齊關心。

二、團結奉獻拼博進取

1、團隊合作。我們五位數學老師團結在一起,把初三教學工作擺在首位,齊心協力,採用聽課、評課,使初三的數學教學達到揚長避短的目的。

2、努力拚搏。在複習階段,老師們團結合作,齊心協力,找題、選題、編題,並對一些資料進行剪貼重組,自編大量資料,使習題具有典型性,科學性、實效性。而自己也對於每次單元測試,摸擬測試,不管每天幾點鐘考完,當天必須批改。

初三數學扇形知識點歸納總結 篇25

第21章二次根式知識框圖

理解並掌握下列結論:

(1)是非負數;(2);(3);

I.二次根式的定義和概念:

1、定義:一般地,形如√ā(a≥0)的代數式叫做二次根式。當a>0時,√a表示a的算數平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式。√ā(a≥0)是一個非負數。

II.二次根式√ā的簡單性質和幾何意義

1)a≥0;√ā≥0[雙重非負性]

2)(√ā)^2=a(a≥0)[任何一個非負數都可以寫成一個數的平方的形式]3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論。

IV.二次根式的乘法和除法

1運算法則

√a√b=√ab(a≥0,b≥0)

√a/b=√a/√b(a≥0,b>0)

二數二次根之積,等於二數之積的二次根。2共軛因式

如果兩個含有根式的代數式的積不再含有根式,那么這兩個代數式叫做共軛因式,也稱互為有理化根式。

V.二次根式的加法和減法

1同類二次根式

一般地,把幾個二次根式化為最簡二次根式後,如果它們的被開方數相同,就把這幾個二次根式叫做同類二次根式。2合併同類二次根式

把幾個同類二次根式合併為一個二次根式就叫做合併同類二次根式。

3二次根式加減時,可以先將二次根式化為最簡二次根式,再將被開方數相同的進行合併

Ⅵ.二次根式的混合運算

1確定運算順序2靈活運用運算定律3正確使用乘法公式4大多數分母有理化要及時

5在有些簡便運算中也許可以約分,不要盲目有理化

VII.分母有理化

分母有理化有兩種方法I.分母是單項式

如:√a/√b=√a×√b/√b×√b=√ab/b

II.分母是多項式要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項式要利用平方差公式

如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知識框圖

旋轉的定義

旋轉對稱中心

大於360°)。

把一個圖形繞著一個定點旋轉一個角度後,與初始圖形重合,這種

圖形叫做旋轉對稱圖形,這個定點叫做旋轉對稱中心,旋轉的角度叫做旋轉角(旋轉角小於0°,

也就是說:

①中心對稱圖形:如果把一個圖形繞著某一點旋轉180度後能與自身重合,那么我們就說,這個圖形成中心對稱圖形。

②中心對稱:如果把一個圖形繞著某一點旋轉180度後能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱。

中心對稱圖形

正(2N)邊形(N為大於1的正整數),線段,矩形,菱形,圓

只是中心對稱圖形

平行四邊形等.第24章圓知識框圖

圓和點的位置關係:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內,PO<r。

直線與圓有3種位置關係:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。以直線AB與圓O為例(設OP⊥AB於P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。

兩圓之間有5種位置關係:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內切P=R-r;內含P<R-r。

圓的平面幾何性質和定理

一有關圓的基本性質與定理

⑴圓的確定:不在同一直線上的三個點確定一個圓。

圓的對稱性質:圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。垂徑定理:垂直於弦的直徑平分這條弦,並且平分弦所對的2條弧。逆定理:平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的2條弧。

⑵有關圓周角和圓心角的性質和定理在同圓或等圓中,如果兩個圓心角,兩個圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應的其餘各組量都分別相等。一條弧所對的圓周角等於它所對的圓心角的一半。直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

⑶有關外接圓和內切圓的性質和定理

①一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形三個頂點距離相等;

②內切圓的圓心是三角形各內角平分線的交點,到三角形三邊距離相等。③S三角=1/2*△三角形周長*內切圓半徑

④兩相切圓的連心線過切點(連心線:兩個圓心相連的線段)

⑤圓O中的弦PQ的中點M,過點M任作兩弦AB,CD,弦AD與BC分別交PQ於X,Y,則M為XY之中點。

〖有關切線的性質和定理〗

圓的切線垂直於過切點的半徑;經過半徑的一端,並且垂直於這條半徑的直線,是這個圓的切線。

切線的判定方法:經過半徑外端並且垂直於這條半徑的直線是圓的切線。

切線的性質:(1)經過切點垂直於這條半徑的直線是圓的切線。(2)經過切點垂直於切線的直線必經過圓心。(3)圓的切線垂直於經過切點的半徑。

切線長定理:從圓外一點到圓的兩條切線的長相等,那點與圓心的連線平分切線的夾角。〖有關圓的計算公式〗

1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/1804.扇形面積S=π(R^2-r^2)5.圓錐側面積S=πrl

第25章機率初步知識框圖

第26章二次函式

知識框圖

定義與定義表達式

一般地,自變數x和因變數y之間存在如下關係:

一般式:y=ax^2+bx+c(a≠0,a、b、c為常數),則稱y為x的二次函式。頂點式:y=a(x-h)^2+k

交點式(與x軸):y=a(x-x1)(x-x2)

重要概念:(a,b,c為常數,a≠0,且a決定函式的開口方向,a>0時,開口方向向上,a

1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。

對稱軸與拋物線唯一的交點為拋物線的頂點P。

特別地,當b=0時,拋物線的對稱軸是y軸(即直線x=0)2.拋物線有一個頂點P,坐標為P(-b/2a,(4ac-b)/4a)當-b/2a=0時,P在y軸上;當Δ=b-4ac=0時,P在x軸上。3.二次項係數a決定拋物線的開口方向和大小。

當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。

4.一次項係數b和二次項係數a共同決定對稱軸的位置。

當a與b同號時(即ab>0),對稱軸在y軸左;因為若對稱軸在左邊則對稱軸小於0,也就是-b/2a0,所以b/2a要小於0,所以a、b要異號

事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函式解析式(一次函式)的斜率k的值。可通過對二次函式求導得到。5.常數項c決定拋物線與y軸交點。拋物線與y軸交於(0,c)6.拋物線與x軸交點個數

Δ=b-4ac>0時,拋物線與x軸有2個交點。Δ=b-4ac=0時,拋物線與x軸有1個交點。_______

Δ=b-4ac<0時,拋物線與x軸沒有交點。X的取值是虛數(x=-b±√b-4ac的值的相反數,乘上虛數i,整個式子除以2a)

當a>0時,函式在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函式;拋物線的開口向上;函式的值域是{y|y≥4ac-b/4a}相反不變

當b=0時,拋物線的對稱軸是y軸,這時,函式是偶函式,解析式變形為y=ax+c(a≠0)解析式:

第27章相似知識框圖

相似三角形的認識

對應角相等,對應邊成比例的.兩個三角形叫做相似三角形。(similartriangles)。互為相似形的三角形叫做相似三角形

相似三角形的判定方法

根據相似圖形的特徵來判斷。(對應邊成比例,對應角相等)

1.平行於三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構成的三角形與原三角形相似;

(這是相似三角形判定的引理,是以下判定方法證明的基礎。這個引理的證明方法需要平行線分線段成比例的證明)

2.如果一個三角形的兩個角與另一個三角形的兩個角對應相等,那么這兩個三角形相似;

直角三角形相似判定定理

1.斜邊與一條直角邊對應成比例的兩直角三角形相似。

2.直角三角形被斜邊上的高分成的兩個直角三角形與原直角三角形相似,並且分成的兩個直角三角形也相似。射影定理

三角形相似的判定定理推論

推論一:頂角或底角相等的那個的兩個等腰三角形相似。推論二:腰和底對應成比例的兩個等腰三角形相似。推論三:有一個銳角相等的兩個直角三角形相似。

推論四:直角三角形被斜邊上的高分成的兩個直角三角形和原三角形都相似。

推論五:如果一個三角形的兩邊和其中一邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。

推論六:如果一個三角形的兩邊和第三邊上的中線與另一個三角形的對應部分成比例,那么這兩個三角形相似。

相似三角形的性質

1.相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等於相似比。

2.相似三角形周長的比等於相似比。3.相似三角形面積的比等於相似比的平方。

相似三角形的特例

能夠完全重合的兩個三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特徵:1.形狀完全相同,相似比是k=1。

全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。

因此,相似三角形包括全等三角形。全等三角形的定義

能夠完全重合的兩個三角形稱為全等三角形。(註:全等三角形是相似三角形中的特殊情況)當兩個三角形完全重合時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。

由此,可以得出:全等三角形的對應邊相等,對應角相等。

(1)全等三角形對應角所對的邊是對應邊,兩個對應角所夾的邊是對應邊;(2)全等三角形對應邊所對的角是對應角,兩條對應邊所夾的角是對應角;(3)有公共邊的,公共邊一定是對應邊;(4)有公共角的,角一定是對應角;(5)有對頂角的,對頂角一定是對應角;三角形全等的判定公理及推論

1、三組對應邊分別相等的兩個三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩定性的原因。

2、有兩邊及其夾角對應相等的兩個三角形全等(SAS或“邊角邊”)。3、有兩角及其夾邊對應相等的兩個三角形全等(ASA或“角邊角”)。由3可推到

4、有兩角及一角的對邊對應相等的兩個三角形全等(AAS或“角角邊”)

5、直角三角形全等條件有:斜邊及一直角邊對應相等的兩個直角三角形全等(HL或“斜邊,直角邊”)

所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。

注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的形狀。A是英文角的縮寫(angle),S是英文邊的縮寫(side)。全等三角形的性質

1、全等三角形的對應角相等、對應邊相等。2、全等三角形的對應邊上的高對應相等。3、全等三角形的對應角平分線相等。4、全等三角形的對應中線相等。5、全等三角形面積相等。6、全等三角形周長相等。

7、三邊對應相等的兩個三角形全等。(SSS)

8、兩邊和它們的夾角對應相等的兩個三角形全等。(SAS)9、兩角和它們的夾邊對應相等的兩個三角形全等。(ASA)

10、兩個角和其中一個角的對邊對應相等的兩個三角形全等。(AAS)11、斜邊和一條直角邊對應相等的兩個直角三角形全等。(HL)全等三角形的運用

1、性質中三角形全等是條件,結論是對應角、對應邊相等。而全等的判定卻剛好相反。2、利用性質和判定,學會準確地找出兩個全等三角形中的對應邊與對應角是關鍵。在寫兩個三角形全等時,一定把對應的頂點,角、邊的順序寫一致,為找對應邊,角提供方便。3,當圖中出現兩個以上等邊三角形時,應首先考慮用SAS找全等三角形。

第28章銳角三角函式

知識框圖

第29章投影與視圖知識框圖

代數重點難點總結

方程(組)

一、基本概念

1.方程、方程的解(根)、方程組的解、解方程(組)二、一元二次方程1.定義及一般形式:

2.解法:⑴直接開平方法(注意特徵)⑵配方法(注意步驟推倒求根公式)⑶公式法:⑷因式分解法(特徵:左邊=0)3.根的判別式:b24ac

bc4.根與係數的關係(韋達定理):x1+x2=,x1x2=

aa逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:

三、可化為一元二次方程的方程1.分式方程⑴定義

⑵基本思想:去分母

⑶基本解法:①去分母法②換元法(如,)⑷驗根及方法2.無理方程⑴定義

⑵基本思想:分母有理化

⑶基本解法:①乘方法(注意技巧!!)②換元法(例,)⑷驗根及方法

3.簡單的二元二次方程組

由一個二元一次方程和一個二元二次方程組成的二元二次方程組都可用代入法解。四、列方程解套用題一概述

列方程(組)解套用題是中學數學聯繫實際的一個重要方面。其具體步驟是:

⑴審題。理解題意。弄清問題中已知量是什麼,未知量是什麼,問題給出和涉及的相等關係是什麼。

⑵設元(未知數)。①直接未知數②間接未知數(往往二者兼用)。一般來說,未知數越多,方程越易列,但越難解。

⑶用含未知數的代數式表示相關的量。

⑷尋找相等關係(有的由題目給出,有的由該問題所涉及的等量關係給出),列方程。一般地,未知數個數與方程個數是相同的。⑸解方程及檢驗。⑹答案。

綜上所述,列方程解套用題實質是先把實際問題轉化為數學問題(設元、列方程),在由數學問題的解決而導致實際問題的解決(列方程、寫出答案)。在這個過程中,列方程起著承前啟後的作用。因此,列方程是解套用題的關鍵。

函式及其圖象

★重難點★二次函式的圖象和性質。一、平面直角坐標系

1.各象限內點的坐標的特點2.坐標軸上點的坐標的特點

3.關於坐標軸、原點對稱的點的坐標的特點4.坐標平面內點與有序實數對的對應關係二、函式

1.表示方法:⑴解析法;⑵列表法;⑶圖象法。

2.確定自變數取值範圍的原則:⑴使代數式有意義;⑵使實際問題有意義。

3.畫函式圖象:⑴列表;⑵描點;⑶連線。三、二次函式(定義→圖象→性質)⑴定義:

⑵圖象:拋物線(用描點法畫出:先確定頂點、對稱軸、開口方向,再對稱地描點)。用配方法變為,則頂點為(h,k);對稱軸為直線x=h;a>0時,開口向上;a0時,在對稱軸左側,右側;a

四邊形

★重難點★相交線與平行線、三角形、四邊形的有關概念、判定、性質。分類表:

1.一般性質(角)⑴內角和:360°

⑵順次連結各邊中點得平行四邊形。

推論1:順次連結對角線相等的四邊形各邊中點得菱形。

推論2:順次連結對角線互相垂直的四邊形各邊中點得矩形。⑶外角和:360°2.特殊四邊形

⑴研究它們的一般方法:

⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質和判定⑶判定步驟:四邊形→平行四邊形→矩形→正方形┗→菱形↑

⑷對角線的紐帶作用:3.對稱圖形

⑴軸對稱(定義及性質);⑵中心對稱(定義及性質)4.有關定理:①平行線等分線段定理及其推論1、2②三角形、梯形的中位線定理

③平行線間的距離處處相等。(如,找下圖中面積相等的三角形)

5.重要輔助線:①常連結四邊形的對角線;②梯形中常“平移一腰”、“平移對角線”、“作高”、“連結頂點和對腰中點並延長與底邊相交”轉化為三角形。6.作圖:任意等分線段。

第十章圓

★重難點★①圓的重要性質;②直線與圓、圓與圓的位置關係;③與圓有關的角的定理;④與圓有關的比例線段定理。一、圓的基本性質1.圓的定義

2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。3.“三點定圓”定理4.垂徑定理及其推論

5.“等對等”定理及其推論

5.與圓有關的角:⑴圓心角定義(等對等定理)⑵圓周角定義(圓周角定理,與圓心角的關係)⑶弦切角定義(弦切角定理)二、直線和圓的位置關係

1.三種位置及判定與性質:相離、相切、相交2.切線的性質(重點)

3.切線的判定定理(重點)。圓的切線的判定有⑴⑵

4.切線長定理

三、圓換圓的位置關係

1.五種位置關係及判定與性質:(重點:相切)外離、外切、相交、內切、內含

2.相切(交)兩圓連心線的性質定理3.兩圓的公切線:⑴定義⑵性質四、與圓有關的比例線段1.相交弦定理2.切割線定理

五、與和正多邊形

1.圓的內接、外切多邊形(三角形、四邊形)2.三角形的外接圓、內切圓及性質3.圓的外切四邊形、內接四邊形的性質4.正多邊形及計算中心角:

內角的一半:(解Rt△OAM可求出相關元素等)六、一組計算公式1.圓周長公式2.圓面積公式3.扇形面積公式4.弧長公式

5.弓形面積的計算方法

6.圓柱、圓錐的側面展開圖及相關計算七、點的軌跡六條基本軌跡八、有關作圖

1.作三角形的外接圓、內切圓2.平分已知弧

3.作已知兩線段的比例中項4.等分圓周:4、8;6、3等分九、基本圖形十、重要輔助線1.作半徑

2.見弦往往作弦心距

3.見直逕往往作直徑上的圓周角4.切點圓心莫忘連

5.兩圓相切公切線(連心線)6.兩圓相交公共弦

初三數學扇形知識點歸納總結 篇26

直角三角形的判定方法:

判定1:定義,有一個角為90°的三角形是直角三角形。

判定2:判定定理:以a、b、c為邊的三角形是以c為斜邊的直角三角形。如果三角形的三邊a,b,c滿足a2+b2=c2,那么這個三角形就是直角三角形。(勾股定理的逆定理)。

判定3:若一個三角形30°內角所對的邊是某一邊的一半,則這個三角形是以這條長邊為斜邊的直角三角形。

判定4:兩個銳角互為餘角(兩角相加等於90°)的三角形是直角三角形。

判定5:若兩直線相交且它們的斜率之積互為負倒數,則兩直線互相垂直。那么

判定6:若在一個三角形中一邊上的中線等於其所在邊的一半,那么這個三角形為直角三角形。

判定7:一個三角形30°角所對的邊等於這個三角形斜邊的一半,則這個三角形為直角三角形。(與判定3不同,此定理用於已知斜邊的三角形。)

初三數學扇形知識點歸納總結 篇27

一、考試成績分析

1、試卷分析

1)試卷共三道大題,28道小題。

2)試卷滿分130分。考試時間為120分鐘。

3)難易程度:難:中:易=6:3:1

4)知識結構:本次考試共考二章內容,分別是一元二次方程、圓。

2、各班成績分析

1班:平均分:59.90及格率:24.14%

2班:平均分:63.62及格率:41.38%

3班:平均分:62.57及格率:42.86%

4班:平均分:60.94及格率:48.39%

5班:平均分:101.47及格率:93.62%優秀率:34.04%

6班:平均分:98.13及格率:82.69%優秀率:28.85%

3、錯題原因分析:

填空選擇題的錯題是10題,18題,19題,20題。原因:概念掌握不紮實。不會套用性質靈活地解決問題。21題:計算能力差。22題:粗心。23題、24題、25題、26題:(題目難度在加大)學生一看到這幾個題目就有點恐懼,一時產生退縮的心理;再加上基礎不紮實,時間緊,導致所學的知識不能靈活的套用,不會整體代入進行計算,對方程的根的情況沒有系統掌握,對幾何定理的理解不夠透徹。28題,(難度)靈活運用直線與圓相切的性質和三角形相似,解決問題的能力差。

反思:本次考試基礎性較強,概念題占比例較大,學生答題情況很不理想,許多基礎性的東西都有錯誤,特別是涉及到的一些計算題,學生的錯誤率是相當高的。這也說明了在今後的教學中應該注重學生的計算能力和基礎知識的落實和鞏固。

這屆初三隻有極少的學生基礎知識掌握得較好,概念理解得較透徹,計算題和解方程的準確率較高,但部分學生理解能力較差,套用題審題不清,導致出現不少錯誤。幾何證明題分析問題的思路上不去,分析問題的方法掌握得不夠好。另外,部分學生學習習慣較差,接受能力較差,懶動腦懶動筆,碰到思維力度較強的題目就無法解答,特別是回家作業的質量是相當低的,只有一小部分的學生能獨立完成。在今後的教學中,要特別注重對發展不理想學生的輔導,注重對學生理解能力、分析問題解決問題能力的培養,更要重視學生的學習習慣的養成教育。

今後工作的做法:

1、在鑽研教材,研究考點,解題方法的指導上下功夫,作為初三教師在練習中不斷反思,歸納。加強備課和上課的針對性,對於學生的知識掌握情況要做到心中有數。

2、在日常的教學中合理地套用分層教學,尤其是複習階段,力爭讓每個人每節課都有所收穫。並狠抓學生基礎知識的鞏固和落實情況。

3、加強學生計算能力培養,加強綜合題目的訓練,逐步培養學生自己分析問題,解決問題的能力。

4、加大對後進生學習方法的指導,重視對優等生的提優,力爭不同層次學生實現不同層次的發展。

5、考場經驗不足,部分同學對於時間的分配,一些大題的技巧還不行。

6、重視課堂監測和平時作業的質量,發現問題要及時彌補,不能拖後。

初三數學扇形知識點歸納總結 篇28

三角形的外心定義:

外心:是三角形三條邊的垂直平分線的交點,即外接圓的圓心。

外心定理:三角形的三邊的垂直平分線交於一點。該點叫做三角形的外心。

三角形的外心的性質:

1、三角形三條邊的垂直平分線的交於一點,該點即為三角形外接圓的圓心;

2、三角形的外接圓有且只有一個,即對於給定的三角形,其外心是的,但一個圓的內接三角形卻有無數個,這些三角形的外心重合;

3、銳角三角形的外心在三角形內;

鈍角三角形的外心在三角形外;

直角三角形的外心與斜邊的中點重合。

在△ABC中

4、OA=OB=OC=R

5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA

6、S△ABC=abc/4R

初三數學扇形知識點歸納總結 篇29

一學期在忙忙碌碌中又將過去,本學期我們初三年級數學老師依據教學計畫認真開展工作,充分發揮備課組功能,每位教師兢兢業業,平時相互學習,團結協作,思考教學中遇到的問題,積極尋找對策,共同提高,比較順利地完成了學期初制定的計畫。現對本學期的工作作一簡要回顧:

一、不斷學習,提高教學實踐能力。

本學期,二期課改的新教材在一年級開始使用,我們十分關心新教材的內容及新教法,通過聽課和組織教師學習“教師培訓學習包”,每位教師或多或少都有了新的收穫,為我們提供了學習的好平台。大家邊看邊記錄,然後進行討論、交流,最後撰寫學習體會。整個過程每位教師都能積極參與,因為這是很好的學習和提高的機會,對每位教師的課堂教學也有一定的指導作用。

二、同伴互助、共同提高。

備課組是一個集體,組內教師和睦相處,平時互相討論教學設計、作業設計,交流成功的教學方法,教學中遇到的疑難問題,總能及時有效作好溝通,相互取長補短,共同提高教學能力。本學期,三年級的數學教學任務非常繁重,為此我們老師總能及時把三年級的階段性測試及期末複習練習卷的出卷任務扛起來,使我們能有更多的時間投入在班教學中。

三、教學常規工作持抓不懈

備好課是上好課的前提。組內教師都能提前備課,針對本班學生實際進行教學設計,課後能寫教後感。大家注重課堂教學,注重每個學生的發展,在課內創設輕鬆、和諧的課堂教學氛圍,以學生為學習的主體,教師進行適時指導、點撥。。每位教師重視調動學生的課堂氣氛,尤其是把提問用在刀刃上,找準了切入點、抓住了學生的困惑點、矛盾點進行及時的啟發式提問!有效培養了學生的學習興趣、信心。

精心設計、批改作業,我們充分認識到作業對學生學習的重要性,於是針對教學重點和教學難點精心設計作業,力求減輕學生的學習負擔。我們也重視作業的`批改和訂正,做到今天的事情決不拖到第二天。

反思過去,我們的工作中還存在著很多不足。教師的課堂教學能力還需進一步提高。學生的計算能力仍較薄弱,還須加強,在綜合性題目的解題方面還須有計畫地進行指導。下學期我們將更努力地工作,使各項工作更上一層樓!

初三數學扇形知識點歸納總結 篇30

第1章 二次根式

學生已經學過整式與分式,知道用式子可以表示實際問題中的數量關係。解決與數量關係有關的問題還會遇到二次根式。二次根式 一章就來認識這種式子,探索它的性質,掌握它的運算。

在這一章,首先讓學生了解二次根式的概念,並掌握以下重要結論:

註:關於二次根式的運算,由於二次根式的乘除相對於二次根式的加減來說更易於掌握,教科書先安排二次根式的乘除,再安排二次根式的加減。二次根式的乘除一節的內容有兩條發展的線索。一條是用具體計算的例子體會二次根式乘除法則的合理性,並運用二次根式的乘除法則進行運算;一條是由二次根式的乘除法則得到

並運用它們進行二次根式的化簡。

二次根式的加減一節先安排二次根式加減的內容,再安排二次根式加減乘除混合運算的內容。在本節中,注意類比整式運算的有關內容。例如,讓學生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運算中,多項式乘法法則和乘法公式仍然適用。這些處理有助於學生掌握本節內容。

第2章 一元二次方程

學生已經掌握了用一元一次方程解決實際問題的方法。在解決某些實際問題時還會遇到一種新方程 一元二次方程。一元二次方程一章就來認識這種方程,討論這種方程的解法,並運用這種方程解決一些實際問題。

本章首先通過雕像設計、製作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然後讓學生通過數值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,並給出一元二次方程的根的概念,

22.2降次解一元二次方程一節介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。

(1)在介紹配方法時,首先通過實際問題引出形如 的方程。這樣的方程可以化為更為簡單的形如 的方程,由平方根的概念,可以得到這個方程的解。進而舉例說明如何解形如 的方程。然後舉例說明一元二次方程可以化為形如 的方程,引出配方法。最後安排運用配方法解一元二次方程的例題。在例題中,涉及二次項係數不是1的一元二次方程,也涉及沒有實數根的一元二次方程。對於沒有實數根的一元二次方程,學了公式法以後,學生對這個內容會有進一步的理解。

(2)在介紹公式法時,首先藉助配方法討論方程 的解法,得到一元二次方程的求根公式。然後安排運用公式法解一元二次方程的例題。在例題中,涉及有兩個相等實數根的一元二次方程,也涉及沒有實數根的一元二次方程。由此引出一元二次方程的解的三種情況。

(3)在介紹因式分解法時,首先通過實際問題引出易於用因式分解法的一元二次方程,引出因式分解法。然後安排運用因式分解法解一元二次方程的例題。最後對配方法、公式法、因式分解法三種解一元二次方程的方法進行小結。

22.3實際問題與一元二次方程一節安排了四個探究欄目,分別探究傳播、成本下降率、面積、勻變速運動等問題,使學生進一步體會方程是刻畫現實世界的一個有效的數學模型。

初三數學扇形知識點歸納總結 篇31

三角函式關係

倒數關係

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的關係

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關係

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函式關係六角形記憶法

構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

倒數關係

對角線上兩個函式互為倒數;

商數關係

六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。(主要是兩條虛線兩端的三角函式值的乘積,下面4個也存在這種關係。)。由此,可得商數關係式。

平方關係

在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。

銳角三角函式定義

銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),餘割(csc)都叫做角A的銳角三角函式。

正弦(sin)等於對邊比斜邊;sinA=a/c

餘弦(cos)等於鄰邊比斜邊;cosA=b/c

正切(tan)等於對邊比鄰邊;tanA=a/b

餘切(cot)等於鄰邊比對邊;cotA=b/a

正割(sec)等於斜邊比鄰邊;secA=c/b

餘割(csc)等於斜邊比對邊。cscA=c/a

互餘角的三角函式間的關係

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方關係:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

積的關係:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

中考數學知識點

1、反比例函式的概念

一般地,函式(k是常數,k0)叫做反比例函式。反比例函式的解析式也可以寫成的形式。自變數x的取值範圍是x0的一切實數,函式的取值範圍也是一切非零實數。

2、反比例函式的圖像

反比例函式的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函式中自變數x0,函式y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。

3、反比例函式的性質

反比例函式k的符號k>0k0時,函式圖像的兩個分支分別在第一、三象限。在每個象限內,y隨x的增大而減小。

①x的取值範圍是x0,

y的取值範圍是y0;

②當k<0時,函式圖像的兩個分支分別在第二、四象限。在每個象限內,y隨x的增大而增大。

4、反比例函式解析式的確定

確定及誒是的方法仍是待定係數法。由於在反比例函式中,只有一個待定係數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。

5、反比例函式的幾何意義

設是反比例函式圖象上任一點,過點P作軸、軸的垂線,垂足為A,則:

(1)△OPA的面積.

(2)矩形OAPB的面積。這就是係數的幾何意義.並且無論P怎樣移動,△OPA的面積和矩形OAPB的'面積都保持不變。

初三數學扇形知識點歸納總結 篇32

1、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。

2、三邊關係:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。

3、高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。

4、中線:在三角形中,連線一個頂點和它對邊中點的線段叫做三角形的中線。

5、角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。

6、三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。

7、多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。

8、多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。

9、多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。

10、多邊形的對角線:連線多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。

11、正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫正多邊形。

12、平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做多邊形覆蓋平面(平面鑲嵌)。鑲嵌的條件:當圍繞一點拼在一起的幾個多邊形的內角加在一起恰好組成一個時,就能拼成一個平面圖形。

13、公式與性質:

⑴三角形的內角和:三角形的內角和為180°

⑵三角形外角的性質:

性質1:三角形的一個外角等於和它不相鄰的兩個內角的和。

性質2:三角形的一個外角大於任何一個和它不相鄰的內角。

⑶多邊形內角和公式:邊形的內角和等於·180°

⑷多邊形的外角和:多邊形的外角和為360°。

⑸多邊形對角線的條數:①從邊形的一個頂點出發可以引條對角線,把多邊形分成個三角形、②邊形共有條對角線。