高一數學教學工作計畫合集 篇1
教學目標
1通過對冪函式概念的學習以及對冪函式圖象和性質的歸納與概括,讓學生體驗數學概念的形成過程,培養學生的抽象概括能力。
2使學生理解並掌握冪函式的圖象與性質,並能初步運用所學知識解決有關問題,培養學生的靈活思維能力。
3培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學重點、難點
重點:冪函式的性質及運用
難點:冪函式圖象和性質的發現過程
教學方法:問題探究法 教具:多媒體
教學過程
一、創設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關係?
(總結:根據函式的定義可知,這裡p是w的函式)
問題2:如果正方形的邊長為a,那么正方形的面積 ,這裡S是a的函式。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這裡V是a的函式。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這裡a是S的函式 問題5:如果某人 s內騎車行進了 km,那么他騎車的速度 ,這裡v是t的函式。
以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函式解析式有什麼共同點嗎?(右邊指數式,且底數都是變數) 這只是我們生活中常用到的一類函式的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什麼名字呢?(變數在底數位置,解析式右邊都是冪的形式)(適當引導:從自變數所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s , v=t-1都是自變數的若干次冪的形式。
教師指出:我們把這樣的都是自變數的若干次冪的形式的函式稱為冪函式。
冪函式的定義:一般地,我們把形如 的函式稱為冪函式(power function),其中 是自變數, 是常數。 1冪函式與指數函式有什麼區別?(組織學生回顧指數函式的概念) 結論:冪函式和指數函式都是我們高中數學中研究的兩類重要的基本初等函式,從它們的解析式看有如下區別: 對冪函式來說,底數是自變數,指數是常數 對指數函式來說,指數是自變數,底數是常數 例1判別下列函式中有幾個冪函式?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)
2冪函式具有哪些性質?研究函式應該是哪些方面的內容。前面指數函式、對數函式研究了哪些內容?
(學生討論,教師引導。學生回答。)
3冪函式的定義域是否與對數函式、指數函式一樣,具有相同的定義域?
(學生小組討論,得到結論。引導學生舉例研究。結論:冪指數 不同,定義域並不完全相同,應區別對待。)教師指出:冪函式y=xn中,當n=0時,其表達式y=x0=1;定義域為(-∞,0)U(0,+∞),特彆強調,當x為任何非零實數時,函式的值均為1,圖象是從點(0,1)出發,平行於x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函式的定義域,並指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學生解答,並歸納解決辦法。引導學生與指數函式、對數函式對照比較。引導學生具體問題具體分析,並作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函式的奇偶性也應具體分析。)
4上述函式①y=x ②y= ③y=x ④y=x 的單調性如何?如何判斷?
(學生思考,引導作圖可得。並加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示。見後附圖1
讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)
教師總評:冪函式的性質
(1)所有的冪函式在(0,+∞)上都有定義,並且圖象都過點(1,1),
(2)如果a>0,則冪函式的圖象通過原點,並在區間[0,+∞)上是增函式,
(3)如果a3等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如5<7,2≤2,試想集合間是否有類似的“大小”關係呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
②設A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
③設C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能發現兩個集合間有什麼關係嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什麼區別?
(3)結合例子④,類比實數中的結論:“若a≤b,且b≤a,則a=b”,在集合中,你發現了什麼結論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區域內,從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據從樓頂向下看的,要想直觀表示集合,聯想集合還能用什麼表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關係.
(7)任何方程的解都能組成集合,那么x2+1=0的實數根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應該如何命名呢?
(9)與實數中的結論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什麼結論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關係來考慮.規定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內.教師指出:為了直觀地表示集合間的關係,我們常用平面上封閉曲線的內部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數解.
(8)空集記為 ,並規定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發現:對於任意兩個集合A,B有下列關係:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數解.
(8)空集.
高一數學教學工作計畫合集 篇2
一、 指導思想
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展和社會進步的需要。具體目標如下:
1.突出數學基礎知識、基本技能、基本思想方法的培養
對數學基礎知識和基本技能的培養,要貼近教學實際,既注意全面,又突出重點,注重知識內在聯繫以及中學數學中所蘊涵的數學思想方法的培養。
2.重視數學基本能力的培養
數學基本能力主要包括空間想像、抽象概括、推理論證、運算求解、數據處理這幾方面的能力。根據高一上學期的內容,側重以下幾個方面:
(1)運算求解能力是思維能力和運算技能的結合,主要包括數的計算、估算和近似計算,式子的組合變形與分解變形,以及能夠針對問題探究運算方向、選擇運算公式、確定運算程式等。
(2)抽象概括能力的培養要求是:能夠通過對實例的探究發現研究對象的本質;能夠從給定的信息材料中概括出一些結論,並用於解決問題或做出新的判斷。
(3)推理論證能力的培養要求是:能夠根據已知的事實和已經獲得的正確的數學命題,運用演繹推理,論證某一數學命題的真假性。
(4)數據處理能力是指會收集、整理、分析數據,能夠從大量數據中提取對研究問題有用的信息並做出判斷,以解決給定的實際問題。
3.注重數學的套用意識和創新意識的培養
培養數學的套用意識,要求能夠運用所學的數學知識、思想和方法,構造數學模型,將一些簡單的實際問題轉化為數學問題,並加以解決。培養學生的創新意識,鼓勵學生創造性地解決問題。
4.提高學生學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。逐步認識數學的科學價值、套用價值和文化價值,崇尚數學的理性精神,體會數學的美學意義,形成批判性的思維習慣,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、 教材特點
高一上使用的是人教版《必修1》和《必修4》,這套教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑑、發展、創新的關係,體現了基礎性、時代性、典型性和可接受性等,具有如下特點:
1. 親和力:以生動活潑的呈現方式,激發學習興趣和美感,每章配有優美的章頭圖和詩一般的引言和富有哲理的數學家名言佳句。
2. 問題性:每節圍繞問題展開,設定問題情景,培養問題意識,以問題為切入點,形成問題鏈,來組織課堂教學
3. 思想性和套用性:通過不同數學內容的聯繫和啟發,強調類比、推廣、化歸和特殊化等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培養理性精神;取材具有時代感、現實感,加強數學活動,發展套用意識。
4. 可操作性:教材編寫體例就是以一堂課的全過程展開,易於學生自學、教師編寫教案,大致一節內容占三頁。
三、 學情分析
基本狀況:本年級共14個行政班級,其中2個實驗班,12個普通班。學生數共840人,由於初高中分別進行了課改,高中教材與國中教材銜接度遠遠不夠,需在新授的同時適時補充一些內容,因此時間上略緊。同時,因其底子薄弱,教學時必須注重基礎,夯實每個知識點。
四、 教學措施
1.加強自我學習,特別是兩個綱領性檔案——《普通高中數學課程標準》,《普通高中數學考試大綱》,準確把握教學要求,提高教學效率,不做無用功;
2.加強集體備課,發動全組同志,確定階段主講人,集思廣益,討論最佳化教學方案;平行班級統一進度,統一要求,統一作業,統一考試;
3.認真貫徹教學六認真的要求,精心組織教學,保護學生學習數學的積極性,重視數學學習能力培養;
4.加強銜接教學,適量打破模組式教學,使學生得到和諧的發展。
五、 教學進度
高一數學教學工作計畫合集 篇3
一 設計思想:
函式與方程是中學數學的重要內容,是銜接初等數學與高等數學的紐帶,再加上函式與方程還是中學數學四大數學思想之一,是具體事例與抽象思想相結合的體現,在教學過程中,我採用了自主探究教學法。通過教學情境的設定,讓學生由特殊到一般,有熟悉到陌生,讓學生從現象中發現本質,以此激發學生的成就感,激發學生的學習興趣和學習熱情。在現實生活中函式與方程都有著十分重要的套用,因此函式與方程在整個高中數學教學中占有非常重要的地位。
二 教學內容分析:
本節課是《普通高中課程標準》的新增內容之一,選自《普通高中課程標準實驗教課書數學I必修本(A版)》第94-95頁的第三章第一課時3.1.1方程的根與函式的的零點。
本節通過對二次函式的圖象的研究判斷一元二次方程根的存在性以及根的個數的判斷建立一元二次方程的根與相應的二次函式的零點的聯繫,然後由特殊到一般,將其推廣到一般方程與相應的函式的情形.它既揭示了國中一元二次方程與相應的二次函式的內在聯繫,也引出對函式知識的總結拓展。之後將函式零點與方程的根的關係在利用二分法解方程中(3.1.2)加以套用,通過建立函式模型以及模型的求解(3.2)更全面地體現函式與方程的關係,逐步建立起函式與方程的聯繫.滲透“方程與函式”思想。
總之,本節課滲透著重要的數學思想“特殊到一般的歸納思想”“方程與函式”和“數形結合”的思想,教好本節課可以為學好中學數學打下一個良好基礎,因此教好本節是至關重要的。
三 教學目標分析:
知識與技能:
1.結合方程根的幾何意義,理解函式零點的定義;
2.結合零點定義的探究,掌握方程的實根與其相應函式零點之間的等價關係;
3.結合幾類基本初等函式的圖象特徵,掌握判斷函式的零點個數和所在區間 的方法
情感、態度與價值觀:
1.讓學生體驗化歸與轉化、數形結合、函式與方程這三大數學思想在解決數學問題時的意義與價值;
2.培養學生鍥而不捨的探索精神和嚴密思考的良好學習習慣;
3.使學生感受學習、探索發現的樂趣與成功感
教學重點:函式零點與方程根之間的關係;連續函式在某區間上存在零點的判定方法。
教學難點:發現與理解方程的根與函式零點的關係;探究發現函式存在零點的方法。
四 教學準備
導學案,自主探究,合作學習,電子互動白板。
五 教學過程設計:
(一)、問題引人:
請同學們思考這個問題。用螢幕顯示判斷下列方程是否有實根,有幾個實根?
(1)
;(2)
?
學生活動:回答,思考解法。
教師活動:第二個方程我們不會解怎么辦?你是如何思考的?有什麼想法?我們可以考慮將複雜問題簡單化,將未知問題已知化,通過對第一個問題的研究,進而來解決第二個問題。對於第一個問題大家都習慣性地用代數的方法去解決,我們應該打破思維定勢,走出自己給自己畫定的牢籠!這樣我們先把所依賴的拐杖丟掉,假如第一個方程你不會解,也不會套用判別式,你要怎樣判斷其實根個數呢?
學生活動:思考作答。
設計意圖:通過設疑,讓學生對高次方程的根產生好奇。
(二)、概念形成:
預習展示1:
你能通過觀察二次方程的根及相應的二次函式圖象,找出方程的根,圖象與軸交點的坐標以及函式零點的關係嗎?
學生活動:觀察圖像,思考作答。
教師活動:我們來認真地對比一下。用投影展示學生填寫表格
問題1:你能通過觀察二次方程的根及相應的二次函式圖象,找出方程的根,圖象與
軸交點的坐標以及函式零點的關係嗎?
學生活動:得到方程的實數根應該是函式圖象與x軸交點的橫坐標的結論。
教師活動:我們就把使方程 成立的實數x稱做函式的零點.(引出零點的概念)
根據零點概念,提出問題,零點是點嗎?零點與函式方程的根有何關係?
學生活動:經過觀察表格,得出(請學生總結)
1)概念:函式的零點並不是“點”,它不是以坐標的形式出現,而是實數。例如函式的零點為x=-1,3
2)函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標.
3)方程有實數根函式的圖象與軸有交點函式有零點。
教師活動:引導學生仔細體會上述結論。
再提出問題:如何並根據函式零點的意義求零點?
學生活動:可以解方程而得到(代數法);
可以利用函式的圖象找出零點.(幾何法).
設計意圖:由學生最熟悉的二次方程和二次函式出發,發現一般規律,並嘗試的去總結零點,根與交點三者的關係。
(三)、探究性質:
(五)、探索研究(可根據時間和學生對知識的接受程度適當調整)
討論:請大家給方程的一個解的大約範圍,看誰找得範圍更小?
[師生互動]
師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區間大小情況。
生:分組討論,各抒己見。在探究學習中得到數學能力的提高
第五階段設計意圖:
一是為用二分法求方程的近似解做準備
二是小組探究合作學習培養學生的創新能力和探究意識,本組探究題目就是為了培養學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。
(六)、課堂小結:
零點概念
零點存在性的判斷
零點存在性定理的套用注意點:零點個數判斷以及方程根所在區間
(七)、鞏固練習(略)
高一數學教學工作計畫合集 篇4
指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
教學建議
1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學套用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的.視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。
5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特徵,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。
6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
教研課題
高中數學新課程新教法
教學進度
第一周 集 合
第二周 函式及其表示
第三周 函式的基本性質
第四周 指數函式
第五周 對數函式
第六周 冪函式
第七周 函式與方程
第八周 函式的套用
第九周 期中考試
第十十一周 空間幾何體
第十二周 點,直線,面之間的位置關係
第十三十四周 直線與平面平行與垂直的判定與性質
第十五十六周 直線與方程
第十八十九周 圓與方程
第二十周 期末考試
高一數學教學工作計畫合集 篇5
教學分析
課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.
2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如57
②不等式組
③ax>b
二、創設二次不等式的生活背景實例,引入課題
採用課本上的實例,有關網路收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。
由於這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最後以課外思考題的形式設計相應習題。
(2)
採取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織並完成,並撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,儘管這些知識不完整,語言或許不規範,思維或許不嚴密。
之後,從特殊到一般,研究一般的二元一次不等式的解法。由於經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。
反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。於是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。
四、練習環節
可以說,即使到了高三,仍然有不少同學對於一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬於技能課,對於技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習題。對於練習,我採取多種方式,或叫學生上黑板板書,藉助學生練習規範解題格式;或者口答,說解題思路及答案;或者下面獨立練習。
五、課堂小結
知識,思想、方法及感悟等
六、課後作業
①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源於課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值範圍
變式一:戓將R改為空集,此時結論如何
變式二:仿上,自己改編條件,並解之。
反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。
高一數學教學工作計畫合集 篇6
教學分析
課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.
2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如5<7,2≤2,試想集合間是否有類似的“大小”關係呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
②設A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
③設C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能發現兩個集合間有什麼關係嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什麼區別?
(3)結合例子④,類比實數中的結論:“若a≤b,且b≤a,則a=b”,在集合中,你發現了什麼結論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區域內,從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據從樓頂向下看的,要想直觀表示集合,聯想集合還能用什麼表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關係.
(7)任何方程的解都能組成集合,那么x2+1=0的實數根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應該如何命名呢?
(9)與實數中的結論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什麼結論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關係來考慮.規定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內.教師指出:為了直觀地表示集合間的關係,我們常用平面上封閉曲線的內部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數解.
(8)空集記為 ,並規定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發現:對於任意兩個集合A,B有下列關係:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數解.
(8)空集.
高一數學教學工作計畫合集 篇7
一、活動開展情景
在我縣,今年的教學主體是“有效教學”,為此,我組在開展教研活動時也是緊緊圍繞這一主題進行開的。在本學期內,我組主要開展過以下活動:
1、備課。本學期備課的形式主要是一個人備課為主,團體備課為輔。具體流程為個人備課→團體備課→個人備課,簡稱三級備課。
2、公開課。本學期的公開課主要是以每位教師不低於一次公開課的標準來執行的。公開課的開展形式與以往也有所不一樣,以往的公開課僅有聽課和評課兩個環節,忽視了說課環節。但本學期卻是把以往忽視了的說課環節也補上了,流程上將說課環節放在課前,構成了課前說課→聽課授課→評課議課的模式。
3、課賽。本學期我組共參加過校外課賽一人次,獲得三等獎一人次。校內不設課賽活動。
4、示範課。本學期我組上過示範課總計四人次,校內示範課三人次,校外示範課1人次。
5、數學競賽。本學期我組共組織開展過數學競賽一次,參賽學生達50餘人,占全校學生總數的近10%。向學校申請獲得專項資金710元,受益學生37人。頒發“優秀輔導教師”榮譽稱號三人次。
6、學校文化建設。本學期我組特向學校申請宣傳欄展板一塊(近3平方米),在宣傳和展
示我組的相關活動照片以及檔案精神的同時,也在完善我校的學校文化建設。
7、階段性教學質量反饋座談會。本學期共開展過兩次這類會議。
8、其他活動。外出培訓學習四人次,網路培訓學習6人次。全組成員外出交流學習兩次,其他派代表外出交流學習三次。
二、活動成效
1、促進了教師隊伍的建設和完善。本學期我組教師在以團隊合作及個人努力拚搏相得益彰的結合下,經過以上一系列的活動加強了師師之間、師生之間、生生之間的溝通協調,再加以學校對本組的大力支持,本學期我組對教師隊伍的建設取得了必須的成效。
2、開拓了教師的視野,提升了團隊的師資力量。經過外出培訓學習,網路學習以及與其他學校開展教研交流活動,不但開拓了我組教師的視野,同時也提升了我組教師的專業素養。
3、促進教師的個人成長與團隊合作精神。經過開展團體備課、公開課、示範課以及課賽等活動,不但促進了我組教師的個人成長,同時也加強了我組的團隊合作精神。
4、構成了良好的競爭觀念和大局意識。經過開展課賽活動和設立“優秀輔導教師”獎,在團隊之間有了競爭觀念,同時也經過績效的捆綁使得組內成員有了大局意識。
三、存在問題
1、缺乏領導藝術和管理本事。在我校數學組成員中,我屬最年輕的數學教師之一,自然在管理的過程中對很多老教師心存芥蒂,這是心理隔閡問題;很難做到在對老教師十分尊重的同時又讓他們對自己的主張很服從,這是本事問題,也是領導藝術問題;很難做到讓年輕教師彰顯個性的同時又讓他們能夠嚴格約束自己,這是溝通問題。
2、個人精力有限。本人在擔任我校數學教研組的同時還承擔著兩個畢業班的數學教學工作和一個畢業班的班主任工總,工作任務較為繁重。所以,各項工作難免會出現百密而一疏的漏洞。
3、缺乏組織和管理實踐經驗。參加工作才一年半就開始擔任這樣的職務,組織管理一群比自己大的成年人,這是零起點,無從談及組織和管理經驗。唯有摸著石頭過河,邊工作邊總結,逐步積累這方面的實踐經驗。
四、努力方向
對於目前存在的問題,日後改善的措施還是以人為本,尊重同事,在虛心向經驗豐富,以往從事過這方面工作的老教師請教的同時,也要加強與年輕教師的溝通,多聽取他們的意見提議,努力提高自己的業務水平和管理本事,不斷學習新的管理理念,提高自己的管理藝術和組織本事。
高一數學教學工作計畫合集 篇8
本學期擔任高一X1、X2兩班的數學教學工作,兩班學生共有X人,通過一期的高中學習,學習能力更加參差不齊,但兩個班的學生整體水平較高;部分學生學習習慣不好,不能正確評價自己,這給教學工作帶來了一定的難度,特別X1班部分同學學習方法問題嚴重:只做,不歸納總結,學習效率低。學校要求高,教學任務艱巨。為把本學期教學工作做好,制定如下教學工作計畫。
一、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究三角函式、平面向量,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)能力要求
1、培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(2)通過揭示弧度、向量有關概念、三角公式和三角函式的圖象,培養記憶能力。
2、培養學生的運算能力。
(1)通過三角函式求值與化簡問題的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過三角函式、平面向量的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
3、培養學生的思維能力。
(1)通過對簡易邏輯的教學,培養學生思維的周密性及思維的邏輯性。
(2)通過不等式、函式的一題多解、多題一解,培養思維的靈活性和敏捷性,發展發散思維能力。
(3)通過三角函式、函式有關性質的引伸、推廣,培養學生的創造性思維。
(4)加強知識的橫向聯繫,培養學生的數形結合的能力。
(5)通過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。
(三)知識目標
二、教學要求
(一)三角函式
1理解任意角的概念、弧度的意義;能正確地進行弧度與角度的換算.
2掌握任意角的正弦、餘弦、正切的定義.並會利用與單位圓有關的三角函式線表示正弦、餘弦和正切;了解任意角的餘切、正割、餘割的定義;掌握同角三角函式的基本關係式,掌握正弦、餘弦的誘導公式.
3.掌握兩角和與兩角差的正弦、餘弦、正切公式;掌握二倍角的正弦、餘弦、正切公式;通過公式的推導,了解它們的內在聯繫,從而培養邏輯推理能力
4能正確運用三角公式,進行簡單三角函式式的化簡、求值及恆等式證明(包括引出半角、積化和差、和差化積公式,但不要求記憶).
5.會用與單位圓有關的三角函式線畫正弦函式、正切函式的圖象.並在此基礎上由誘導公式畫出餘弦函式的圖象;了解周期函式與最小正周期的意義;了解奇偶函式的意義;並通過它們的圖象理解正弦函式、餘弦函式、正切函式的性質以及簡化這些函式圖象的繪製過程;會用“五點法”畫正弦函式、餘弦函式和函式y=Asin(ωx+φ)的簡圖.理解A,ω、φ的物理意義.
6.會由已知三角函式值求角.並會用符號arcsinx、arccosx、arctanx表示角。
(二)平面向量
1、理解向量的概念,掌握向量的幾何表示,了解共線問量的概念
2、掌握向量的加法與減法
3、掌握實數與向量的積,理解兩個向量共線的充要條件
4、了解平面向量的基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算.
5、掌握平面向量的數量積及其幾何意義,了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件
6、掌握平面兩點間的距離公式,掌握線段的定比分點和中點坐標公式,並能熟練運用;掌握平移公式
7、掌握正弦定理、餘弦定理,並能運用它們解斜三角形,能利用計算器解決解斜三角形的汁算問題通過解三角形的套用的教學,繼續提高運用所學知識解決實際問題的能力
8、通過“實習作業解三角形在測量中的套用”,提高套用數學知識解決實際問題的能力和實際操作的能力
9、通過“研究性學習課題:向量在物理中的套用”,學會提出問題,明確探究方向,體驗數學活動的過程·培養創新精神和套用能力,學會交流.
三、教學重點
1、掌握同角三角函式的基本關係式
2、掌握兩角和與兩角差的正弦、餘弦、正切公式;掌握二倍角的正弦、餘弦、正切公式;
3、用“五點法”畫正弦函式、餘弦函式和函式y=Asin(ωx+φ)的簡圖。
4、掌握向量的加法與減法,掌握平面向量的坐標運算.掌握實數與向量的積,理解兩個向量共線的充要條件。掌握正弦定理、餘弦定理,並能運用它們解斜三角形
四、教學難點
1、函式y=Asin(ωx+φ)的簡圖
2、會用與單位圓有關的三角函式線畫正弦函式、正切函式的圖象
3、掌握正弦定理、餘弦定理,並能運用它們解斜三角形
五、工作措施.
1、抓好課堂教學,提高教學效益。
課堂教學是教學的主要環節,因此,抓好課堂教學是教學之根本,是大面積提高數學成績的主途徑。
(1)、紮實落實集體備課,通過集體討論,抓住教學內容的實質,形成較好的教學方案,擬好典型例題、練習題、周練題、章考題。
(2)、加大課堂教改力度,培養學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養學生自主探究的精神,通過“知識的產生,發展”,逐步形成知識體系;通過“知識質疑、展活”遷移知識、套用知識,提高能力。同時要養成學生良好的學習習慣,不斷提高學生的數學素養,從而提高數學素養,並大面積提高數學成績。
2、加強課外輔導,提高競爭能力。
課外輔導是課堂的有力補充,是提高數學成績的有力手段。
(1)加強數學數學競賽的指導,提高學習興趣。
(2)加強學習方法的指導,全方面提高他們的數學能力,特別是自主能力,並通過強化訓練,不斷提高解題能力,使他們的數學成績更上一城樓。
(2)、加強對邊緣生的輔導。邊緣生是一個班級教學成敗的關鍵,因此,我將下大力氣輔導邊緣生,通過個別加集體的方法,並定時單獨測試,面批面改,從而使他們的數學成績有質的飛躍。
3、搞好單元考試、階段性考試的分析。
學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,並指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。
高一數學教學工作計畫合集 篇9
一、指導思想
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展和社會進步的需要。具體目標如下:
1.突出數學基礎知識、基本技能、基本思想方法的培養
對數學基礎知識和基本技能的培養,要貼近教學實際,既注意全面,又突出重點,注重知識內在聯繫以及中學數學中所蘊涵的數學思想方法的培養。
2.重視數學基本能力的培養
數學基本能力主要包括空間想像、抽象概括、推理論證、運算求解、數據處理這幾方面的能力。根據高一上學期的內容,側重以下幾個方面:
(1)運算求解能力是思維能力和運算技能的結合,主要包括數的計算、估算和近似計算,式子的組合變形與分解變形,以及能夠針對問題探究運算方向、選擇運算公式、確定運算程式等。
(2)抽象概括能力的培養要求是:能夠通過對實例的探究發現研究對象的本質;能夠從給定的信息材料中概括出一些結論,並用於解決問題或做出新的判斷。
(3)推理論證能力的培養要求是:能夠根據已知的事實和已經獲得的正確的數學命題,運用演繹推理,論證某一數學命題的真假性。
(4)數據處理能力是指會收集、整理、分析數據,能夠從大量數據中提取對研究問題有用的信息並做出判斷,以解決給定的實際問題。
3.注重數學的套用意識和創新意識的培養
培養數學的套用意識,要求能夠運用所學的數學知識、思想和方法,構造數學模型,將一些簡單的實際問題轉化為數學問題,並加以解決。培養學生的創新意識,鼓勵學生創造性地解決問題。
4.提高學生學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。逐步認識數學的科學價值、套用價值和文化價值,崇尚數學的理性精神,體會數學的美學意義,形成批判性的思維習慣,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點
高一上使用的是人教版《必修1》和《必修4》,這套教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑑、發展、創新的關係,體現了基礎性、時代性、典型性和可接受性等,具有如下特點:
1.親和力:以生動活潑的呈現方式,激發學習興趣和美感,每章配有優美的章頭圖和詩一般的引言和富有哲理的數學家名言佳句。
2.問題性:每節圍繞問題展開,設定問題情景,培養問題意識,以問題為切入點,形成問題鏈,來組織課堂教學
3.思想性和套用性:通過不同數學內容的聯繫和啟發,強調類比、推廣、化歸和特殊化等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培養理性精神;取材具有時代感、現實感,加強數學活動,發展套用意識。
4.可操作性:教材編寫體例就是以一堂課的全過程展開,易於學生自學、教師編寫教案,大致一節內容占三頁。
三、學情分析
基本狀況:本年級共14個行政班級,其中2個實驗班,12個普通班。學生數共840人,由於初高中分別進行了課改,高中教材與國中教材銜接度遠遠不夠,需在新授的同時適時補充一些內容,因此時間上略緊。同時,因其底子薄弱,教學時必須注重基礎,夯實每個知識點。
四、教學措施
1.加強自我學習,特別是兩個綱領性檔案——《普通高中數學課程標準》,《普通高中數學考試大綱》,準確把握教學要求,提高教學效率,不做無用功;
2.加強集體備課,發動全組同志,確定階段主講人,集思廣益,討論最佳化教學方案;平行班級統一進度,統一要求,統一作業,統一考試;
3.認真貫徹教學六認真的要求,精心組織教學,保護學生學習數學的積極性,重視數學學習能力培養;
4.加強銜接教學,適量打破模組式教學,使學生得到和諧的發展。
五、教學進度
略
高一數學教學工作計畫合集 篇10
一、具體目標:
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學……
二、本學期要到達的教學目標
1、雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其資料反映出來的數學思想和方法。在基本技能方面能按照必須的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2、本事培養:
能運用數學概念、思想方法,辨明數學關係,構成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,構成數學的意思;從而經過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3、思想教育:
培養高一學生,學習數學的興趣、信心和毅力及實事求是的科學態度,勇於探索創新的精神,及欣賞數學的美學價值,並懂的數學來源於實踐又反作用於實踐的觀點;數學中普遍存在的對立統一、運動變化、相互聯繫、相互轉化等觀點。
高一數學教學計畫上學期 篇6
一、具體目標:
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學
二、本學期要達到的教學目標
1.雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2.能力培養:
能運用數學概念、思想方法,辨明數學關係,形成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,形成數學的意思;從而通過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3. 思想教育:
高一數學教學工作計畫合集 篇11
一、教材依據
本節課是北師大版數學(必修2)第二章《解析幾何初步》第一節《1。2直線的方程》第一部分《直線方程的點斜式》內容。
二、教材分析
直線方程的點斜式給出了根據已知一個點和斜率求直線方程的方法和途徑。在求直線的方程中,直線方程的點斜式是基本的,直線方程的斜截式、兩點式都是由點斜式推出的。從國中代數中的一次函式引入,自然過渡到本節課想要解決的問題求直線方程問題。在引入,過程中要讓學生弄清直線與方程的一一對應關係,理解研究直線可以從研究方程和方程的特徵入手。在推導直線方程的點斜式時,根據直線這一結論,先猜想確定一條直線的條件,再根據猜想得到的條件求出直線方程。
三、教學目標
知識與技能:
(1)理解直線方程的點斜式、斜截式的形式特點和適用範圍;
(2)能正確利用直線的點斜式、斜截式公式求直線方程。
(3)體會直線的斜截式方程與一次函式的關係。
過程與方法:在已知直角坐標系內確定一條直線的幾何要素直線上的一點和直線的傾斜角的基礎上,通過師生探討,得出直線的點斜式方程;學生通過對比理解截距與距離的區別。
情態與價值觀:通過讓學生體會直線的斜截式方程與一次函式的關係,進一步培養學生數形結合的思想,滲透數學中普遍存在相互聯繫、相互轉化等觀點,使學生能用聯繫的觀點看問題。
四、教學重點
重點:直線的點斜式方程和斜截式方程。
五、教學難點
難點:直線的點斜式方程和斜截式方程的套用。
要點:運用數形結合的思想方法,幫助學生分析描述幾何圖形。
六、教學準備
1、教學方法的選擇:啟發、引導、討論。
創設問題情境,採用啟發誘導式的教學模式引導學生探索討論,學生主動參與提出問題、探索問題和解決問題的過程,突出以學生為主體的。探究性學習活動。
2、通過讓學生觀察、討論、辨析、畫圖,親身實踐,調動多感官去體驗數學建模的思想;學生要學會用數形結合的方法建立起代數問題與幾何問題間的密切聯繫。為使學生積極參與課堂學習,我主要指導了以下的學習方法:
①讓學生自己發現問題,自己通過觀察圖像歸納總結,自己評析解題對錯,從而提高學生的參與意識和數學表達能力。
②分組討論。
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、高一上冊數學教學教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承、借簽、發展、創新之間的關係,體現基礎性、時代性、典型性和可接受性等,具有如下特點:
1、親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2、問題性:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、科學性與思想性:通過不同數學內容的聯繫與啟發,強調類比、化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4、時代性與套用性:以具有時代感和現實感的素材創設情境,加強數學活動,發展套用意識。
三、高一上冊數學教學教法分析:
1、選取與內容密切相關的、典型的、豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的衝動,以達到培養其興趣的目的。
2、通過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3、在教學中強調類比、化歸等數學思想方法,儘可能養成其邏輯思維的習慣。
四、學情分析
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長。面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從國中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。
五、高一上冊數學教學教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力和解決實際問題的能力,提高學生的自學能力,養成善於分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、重視數學套用意識及套用能力的培養。
高一數學教學工作計畫合集 篇12
一.學情分析
20xx年秋季起,x省高中新課程實驗工作已經實行5個年頭,我校選用的數學教材是由人民教育出版社、課程教材研究所、中學數學課程教材研究開發中心編著的A版教材。與舊教材作一比較,發現本套教材是在繼承我國高中數學教科書編寫優良傳統和基礎上積極創新,充分體現了數學的美學價值和人文精神。我校雖是一所省級重點中學,但學生基礎較差,學習興趣不大,怎樣調動學生的學習興趣是本期在教學中要解決的重要問題。
二:能力要求
1、培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示立體集合、函式、數列有關概念、公式和圖形的對應關係,培養記憶能力。
2、培養學生的運算能力。
(1)通過機率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過函式、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
三:教學任務與目的
本學期擔任高一(9)(10)兩班的數學教學工作,兩班學生共有120人,國中的基礎參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計畫。
1.加強集體備課與個人學習,個人要加強自我學習和養成解數學題的習慣,提高個人專業素養和教學基本功。
2、注重培養學生自主學習的能力,轉變學生學習數學的方式。學生是學習和發展的主人,教學中要體現學生的主體地位,增強學生的自我學習,自我教育與發展的意識和能力。改善學生的學習方式是高中數學新課程追求的基本理念。
3、了解新課程教學基本程式,掌握新課程教學常規策略,立足於提高課堂教學效率。
4、與學生多溝通、多交流,真正成為學生的良師益友。
5、要深刻理解領悟新教材的立意進行教學,而不要盲目地加深難度。
通過了解數學知識在生活和科技發展中所起到的促進作用,激發學習數學的興趣。通過閱讀和舉例領略數學與身邊事物的密切聯繫,感悟數學在生活中的套用。
高一數學教學工作計畫合集 篇13
一、指導思想:
在我校整體建構和諧教學模式下,使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(a版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關係,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:
1.“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2.“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3.“科學性”與“思想性”:通過不同數學內容的聯繫與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4.“時代性”與“套用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展套用意識。
高一數學教學工作計畫合集 篇14
教學分析
課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.
2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如50。a≠1並不是必須的,常函式在高等數學裡是基本函式,也有重要的意義。為了使指數函式與對數函式能構成反函式,規定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”。
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變數在指數位置,從而初步建立函式模型y=ax。
[教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現y=(-2)x最好,更便於引發對a的討論,但一般不會出現。進而提出這類函式一般形式y=ax。
Ⅵ.教後反思回顧
一、對於指數函式概念的認識
指數函式是一種函式模型,其基本特徵是自變數在指數位置。底數取值範圍有規定,使得這一模型形式簡單又不失本質。不必糾結於“y=22x是否為指數函式”,把重點放在概念的合理性的理解以及體會模型思想。
二、對於培養學生思維習慣的考慮
在學生自主探索的過程中,教師應注意培養學生良好的思維習慣。實際上,選擇底數a的數據的大小和數量,需要對指數函式的性質有預判;從列表到作圖的過程中,都可以感受到指數函式單調性等性質;觀察並歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數函式的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數學知識,也初步體驗了研究問題的基本方法。
三、關於設計定位的反思
本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應採用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什麼”等問話形式,促使學生暴露思維過程。
高一數學教學工作計畫合集 篇15
一、基本情況
高一計算機1323班共有學生55人,其中男生42人,女生13人。高一新生剛進入高中,學習環境新,好奇心強.但是普遍學習習慣不好,數學基礎較差,學習興趣不濃.所以工作的重心在於提高學生對數學科的興趣,以及在補足國中知識漏洞的前提下,進一步的夯實學生基礎.
二、指導思想
全面提高學生的科學文化素養,圍著課堂教學這箇中心,更新教育觀念,進一步提高教學水平,培養學生分析問題解決問題的能力,同時扎紮實實抓好基礎知識,注意學生習慣的培養,為三年後高考打下堅實的基礎。
三、工作任務和措施
任務:基礎模組第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函式(11月份
第四章指數函式與對數函式(12月份-1月份
措施:
1.夯實三基
知識、技能和能力三者關係是互相依存、互相促進的整體,能力是在知識的教學和技能的培訓中形成的,通過數學思想的形成和數學方法的掌握,能力才得到培養和發展,同時,能力的提高又會對知識的理解和掌握起促進作用。因此,在教學中應注意:
A.教學面向全體學生。
B.重視概念的歸納、規律的總結、技能的訓練。
C.重視知識的產生、發展過程。
D.加強知識過關檢測,做好查漏補缺工作。
2.最佳化課堂教學結構
A.精心設計課堂教學:
B.課堂練習典型化;
C.教學語言精練化
D.板書規範化。
3.加強學習方法指導:
A.指導學生看書,培養學生主動學習的習慣。
B.指導學生整理知識,總結解題規律,歸納典型例題解法及一題多解與多題一解。
4.加強學風建設與學習習慣的培養。
適當安排作業,認真檢查督促,加強優生和後進生的輔導,對學生的作業儘量做到面批。
四、各章節授課具體時間安排:
(基礎模組第一章集合(約12課時
(1理解集合、元素及其關係,掌握集合的表示法。
(2掌握集合之間的關係(子集、真子集、相等。
(3理解集合的運算(交、並、補。
(4了解充要條件。
(基礎模組第二章不等式(約12課時
(1理解不等式的基本性質。
(2掌握區間的概念。高一上數學教學計畫高一上數學教學計畫。
(3掌握一元二次不等式的解法。
基礎模組)第三章函式(約20課時
(1理解函式的概念和函式的三種表示法。
(2理解函式的單調性與奇偶性。
(3能運用函式的知識解決有關實際問題。
(基礎模組第四章指數函式與對數函式(約20課時
(1理解有理指數冪,掌握實數指數冪及其運算法則,掌握利用計算器進行冪的計算方法。
(2了解冪函式的概念及其簡單性質。
(3理解指數函式的概念、圖像及性質。
(4理解對數的概念(含常用對數、自然對數及積、商、冪的對數,掌握利用計算器求對數值的方法。
(5理解對數函式的概念、圖像及性質。
(6能運用指數函式與對數函式的知識解決有關實際問題。
高一數學教學工作計畫合集 篇16
一、指導思想:
遵循“教育要面向世界,面向未來,面向現代化”和“教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人”的指導思想,使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會提高的需要。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承、借簽、發展、創新之間的關係,體現基礎性、時代性、典型性和可理解性等,具有如下特點:
1、“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習活力。
2、“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、“科學性”與“思想性”:經過不一樣數學資料的聯繫與啟發,強調類比、化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維本事,培育理性精神。
4、“時代性”與“套用性”:以具有時代感和現實感的素材創設情境,加強數學活動,發展套用意識。
三、教法分析:
1、選取與資料密切相關的、典型的、豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以到達培養其興趣的目的。
2、經過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改善學生的學習方式。
3、在教學中強調類比、化歸等數學思想方法,儘可能養成其邏輯思維的習慣。
四、學情分析:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長。應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際本事出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫忙學生解決好從國中到高中學習方法的過渡。從高一齊就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和提高。
2、注意從實例出發,從感性提高到理性;注意運用比較的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維本事和解決實際問題的本事,提高學生的自學本事,養成善於分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
5、重視數學套用意識及套用本事的培養。
高一數學教學工作計畫合集 篇17
一.學情分析
我校選用的數學教材是由人民教育出版社、課程教材研究所、中學數學課程教材研究開發中心編著的A版教材。與舊教材作一比較,發現本套教材是在繼承我國高中數學教科書編寫優良傳統和基礎上積極創新,充分體現了數學的美學價值和人文精神。我校是一所普通的高中,在重點高中和私立學校擴招的影響下,我校新生的素質可想而知了。學生基礎差,學習興趣不大,怎樣調動學生的學習興趣是本期在教學中要解決的重要問題。
二.教材分析
本教材有下列幾個特點:
1、更加注重強調數學知識的實際背景和套用,使教材具有很強的“親和力”,即以生動活潑的呈現方式,激發學生的興趣和美感,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,使學生興趣盎然地投入學習。
2. 以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神,體現了問題性,本套教材的一個很大特點是每一章都可以看到“觀察”“思考”“探索”以及用“問號性”圖示呈現的“邊空”等欄目,利用這些欄目,在知識形過過程的“關鍵點”上,在運用數學思想方法產生解決問題策略的“關節點”上,在數學知識之間聯繫的“聯結點”上,在數學問題變式的“發散點”上,在學生思維的“最近發展區”內,提出恰當的、對學生數學思維有適度啟發的問題,以引導學生的數學探究活動,切實轉變學生的學習方式。
3. 信息技術是一種強有力的認識工具,在教材的編寫過程體現了積極探索數學課程與信息技術的整合,幫助學生利用信息技術的力量,對數學的本質作進一步的理解。
4.關注學生數學發展的不同需求,為不同學生提供不同的發展空間,促進學生個性和潛能的發展提供了很好的平台。例如教材通過設定“觀察與猜想”、“閱讀與思考”、“探究與發現”等欄目,一方面為學生提供了一些關於探究性、拓展性、思想性、時代性和套用性的選學材料,拓展學生的數學活動空間和擴大學生的數學知識面,另一方面也體現了數學的科學價值,反映了數學在推動其他科學和整個文化進步中的作用。
5. 新教材注重數學史滲透,特別是注重介紹我國對數學的貢獻,充分體現數學的人文價值,科學價值和文化價值,激發了學生的愛國主義情感和民族自豪感。
三. 教學任務與目的
1.了解集合的含義與表示,理解集合間的關係和運算,感受集合語言的意義和作用。進一步體會函式是描述變數之間的依賴關係的重要數學模型,會用集合與對應的語言描述函式,體會對應關係在刻畫函式概念中的作用。了解函式的構成要素,會求簡單函式定義域和值域,會根據實際情境的不同需要選擇恰當的方法表示函式。
通過已學過的具體函式,理解函式的單調性、最大(小)值及其幾何意義,了解奇偶性的含義,會用函式圖象理解和研究函式的性質。根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(克卜勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關資料,了解函式概念的發展歷程。
2. 了解指數函式模型的實際背景。理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。理解指數函式的概念和意義,能藉助計算器或計算機畫出具體指數函式的圖象,探索並理解指數函式的單調性與特殊點。在解決簡單實際問題的過程中,體會指數函式是一類重要的函式模型。
理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及對簡化運算的作用。通過具體實例,直觀了解對數函式模型所刻畫的數量關係,初步理解對數函式的概念,體會對數函式是一類重要的函式模型;能藉助計算器或計算機畫出具體對數函式的圖象,探索並了解對數函式的單調性與特殊點。知道指數函式y=ax 與對數函式y=loga x互為反函式(a > 0, a≠1)。通過實例,了解冪函式的概念;結合函式y=x, y=x2, y=x3, y=1/x, y=x1/2 的圖象,了解它們的變化情況。
3. 結合二次函式的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函式的零點與方程根的聯繫.根據具體函式的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法.利用計算工具,比較指數函式、對數函式以及冪函式間的增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函式類型增長的含義.收集一些社會生活中普遍使用的函式模型,了解函式模型的廣泛套用。
4. 利用實物模型、計算機軟體觀察大量空間圖形,認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)製作模型,會用斜二側法畫出它們的直觀圖。
通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。完成實習作業,如畫出某些建築的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求)。了解球、稜柱、稜錐、台的表面積和體積的計算公式(不要求記憶公式)。
5以長方體為載體,使學生在直觀感知的基礎上,認識空間中點、直線、平面之間的位置關係。通過對大量圖形的觀察、實驗、操作和說理,使學生進一步了解平行、垂直判定方法以及基本性質。學會準確地使用數學語言表述幾何對象的位置關係,體驗公理化思想,培養邏輯思維能力,並用來解決一些簡單的推理論證及套用問題.
6. 在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。能根據斜率判定兩條直線平行或垂直。
根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函式的關係。能用解方程組的方法求兩直線的交點坐標。探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
四.教學措施和活動
1. 加強集體備課與個人學習,個人要加強自我學習和養成解數學題的習慣,提高個人專業素養和教學基本功。
2、注重培養學生自主學習的能力,轉變學生學習數學的方式。學生是學習和發展的主人,教學中要體現學生的主體地位,增強學生的自我學習,自我教育與發展的意識和能力。改善學生的學習方式是高中數學新課程追求的基本理念。
3、了解新課程教學基本程式,掌握新課程教學常規策略,立足於提高課堂教學效率。
4、與學生多溝通、多交流,真正成為學生的良師益友。
5、要深刻理解領悟新教材的立意進行教學,而不要盲目地加深難度。
高一數學教學工作計畫合集 篇18
針對我校高一學生的具體情況,我在高一數學新教材教學實踐與探究中,貫徹因人施教,因材施教原則。以學法指導為突破口;著重在讀、講、練、輔、作業等方面下功夫,取得一定效果。
加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計畫、課前自學、專心上課、及時複習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
制定計畫使學習目的明確,時間安排合理,不慌不忙,穩紮穩打,它是推動學生主動學習和克服困難的內在動力。但計畫一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨鍊學習意志。
課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,儘可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。學然後知不足,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時複習是高效率學習的重要一環,通過反覆閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯繫起來,進行分析比較,一邊複習一邊將複習成果整理在筆記上,使對所學的新知識由懂到會。
獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由會到熟。
解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不捨的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反覆思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來複習強化,作適當的重複性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由熟到活。
系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統複習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯繫.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由活到悟。
課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情。
1、讀。俗話說不讀不憤,不憤不悱。首先要讀好概念。讀概念要咬文嚼字,掌握概念內涵和外延及辨析概念。例如,集合是數學中的一個原始概念,是不加定義的。它從常見的我校高一年級學生、我家的家用電器、太平洋、大西洋、印度洋、北冰洋及自然數等事物中抽象出來,但集合的概念又不同於特殊具體的實物集合,集合的確定及性質特徵是由一組公理來界定的。確定性、無序性、互異性常常是集合的代名詞。
再如象限角的概念,要向學生解釋清楚,角的始邊與_軸的非負半軸重合和與_軸的正半軸重合的細微差別;根據定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導學生從多層次,多角度去認識和掌握數學概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結論。如高一新教材(上)等比數列的前n項和Sn.有q1和q=1兩種情形;對數計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規範。如在解對數函式題時,要注意真數大於0的隱含條件;解有關二次函式題時要注意二次項係數不為零的隱含條件等。讀書要鼓勵學生相互議論。俗語說議一議知是非,爭一爭明道理。例如,讓學生議論數列與數集的聯繫與區別。數列與數的集合都是具有某種共同屬性的全體。數列中的數是有順序的,而數集中的元素是沒有順序的;同一個數可以在數列中重複出現,而數集中的元素是沒有重複的(相同的數在數集中算作同一個元素)。在引導學生閱讀時,教師要經常幫助學生歸類、總結,儘可能把相關知識表格化。如一元二次不等式的解情況列表,三角函式的圖象與性質列表等,便於學生記憶掌握。
2、講。外國有一位教育家曾經說過:教師的作用在於將冰冷的知識加溫後傳授給學生。講是實踐這種傳授的最直接和最有效的教學手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天衝刺一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功紮實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
每堂新授課中,在複習必要知識和展示教學目標的基礎上,老師著重揭示知識的產生、形成、發展過程,解決學生疑惑。比如在學習兩角和差公式之前,學生已經掌握五套誘導公式,可以將求任意角三角函式值問題轉化為求某一個銳角三角函式值的問題。此時教師應進一步引導學生:對於一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函式就呼之欲出了,極大激發了學生的學習興趣。講課要注意從簡單到複雜的過程,要讓學生從感性認識上升到理性認識。鼓勵學生應積極、主動參與課堂活動的全過程,教、學同步。讓學生自己真正做學習的主人。
例如,講解函式的圖象應從振幅、周期、相位依次各自進行變化,然後再綜合,並儘可能利用多媒體輔助教學,使學生容易接受。其次講要注重突出數學思想方法的教學,注重學生數學能力的培養。例如講到等比數列的概念、通項公式、等比中項、等比數列的性質、等比數列的前n項和。可以引導學生對照等差數列的相應的內容,比較聯繫。讓學生更清楚等差數列和等比數列是兩個對偶概念。
3、練。數學是以問題為中心。學生怎么套用所學知識和方法去分析問題和解決問題,必須進行練習。首先練習要重視基礎知識和基本技能,切忌過早地進行高、深、難練習。鑒於目前我校高一的生源現狀,基礎訓練是很有必要的。課本的例題、練習題和習題要求學生要題題過關;補充的練習,應先是課本中練習及習題的簡單改造題,這有利於學生鞏固基礎知識和基本技能。讓學生通過認真思考可以完成。即讓學生跳一跳可以摸得著。一定要讓學生在練習中強化知識、套用方法,在練習中分步達到教學目標要求並獲得再練習的興趣和信心。例如根據數列前幾項求通項公式練習,在新教材高一(上)P111例題2上簡單地做一些改造,便可以變化出各種求解通項公式方法的題目;再如數列複習參考題第12題;就是一個改造性很強的數學題,教師可以在上面做很多文章。其次要講練結合。學生要練習,老師要評講。多講解題思路和解題方法,其中包括成功的與錯誤的。特別是注意要充分暴露錯誤的思維發生過程,在課堂造就民主氣氛,充分傾聽學生意見,哪怕走點彎路 ,吃點苦頭另一方面,則引導學生各抒己見,評判各方面之優劣,最後選出大家公認的最佳方法。還可適當讓學生涉及一些一題多解的題目,拓展思維空間,培養學生思維的多面性和深刻性。
例如,高一(下)P26例5求證。可以從一邊證到另一邊,也可以作差、作商比較,還可以用分析法來證明;再如解不等式。常用的解法是將無理不等式化為有理不等式求解。但還可以利用換元法,將無理不等式化為關於t的一元二次不等式求解。除此之外,亦可利用圖象法求解。在同一直角坐標系中作出它們的圖像。求兩圖在_軸上方的交點的橫坐標為2,最終得解。要求學生掌握通解通法同時,也要講究特殊解法。最後練習要增強套用性。例如用函式、不等式、數列、三角、向量等相關知識解實際套用題。引導學生學會建立數學模型,並套用所學知識,研究此數學模型。
4、作業。鑒於學生現有的知識、能力水平差異較大,為了使每一位學生都能在自己的最近發展區更好地學習數學,得到最好的發展,制定分層次作業。即將作業難度和作業量由易到難分成A、B、C三檔,由學生根據自身學習情況自主選擇,然後在充分尊重學生意見的基礎上再進行協調。以後的時間裡,根據學生實際學習情況,隨時進行調整。
5、輔導。輔導指兩方面,培優和補差。對於數學尖子生,主要培養其自學能力、獨立鑽研精神和集體協作能力。具體做法:成立由三至六名學生組成的討論組,教師負責為他們介紹高考、競賽參考書,並定期提供學習資料和諮詢、指導。下面著重談談補差工作。輔導要鼓勵學生多提出問題,對於不能提高的同學要從平時作業及練習考試中發現問題,跟蹤到人,跟蹤到具體知識。要有計畫,有針對性和目的性地輔導,切忌冷飯重抄和無目標性。要及時檢查輔導效果,做到學生人人知道自己存在問題(越具體越好),老師對輔導學生情況要了如指掌。對學有困難的同學,要耐心細緻輔導,還要注意鼓勵學生戰勝自己,提高自已的分析和解決問題的能力。
高一數學教學工作計畫合集 篇19
教學分析
課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.
2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如512 則 x>16
( 4 )若3x>12則 x>4
【設計意圖】(1)、(2)小題喚起對舊知識等式的基本性質的回憶,(3)、(4)小題引導學生大膽說出自己的想法。通過複習既找準了舊知停靠點,又創設了一種情境,給學生提供了類比、想像的空間,為後續學習做好了鋪墊。
溫故知新
問題1.由等式性質1你能猜想一下不等式具有什麼樣的性質嗎?
等式性質1:等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。
估計學生會猜:不等式兩邊都加上或減去同一個數(或同一個整式),所得結果仍是不等式。教師引導:“=”沒有方向性,所以可以說所得結果仍是等式,而不等號:“>,b經過怎樣的變形得到的,應該套用不等式的哪條基本性質。由學生思考後口答。
【設計意圖】對學生進行推理訓練,讓學生明白,敘述要有根據,進一步提高學生的邏輯思維能力和語言表達能力。
2、你認為在運用不等式的基本性質時哪一條性質最容易出錯,應該怎樣記住?
【設計意圖】及時進行學習反思,總結經驗,通過相互評價學習效果,及時發現問題、解決知識盲點,培養學生的創新精神和實踐能力。
3.小明的困惑:
小明用不等式的基本性質將不等式m>n進行變形,兩邊都乘以4,4m>4n,兩邊都減去4m, 0>4n-4m,即0>4(n-m),兩邊都除以(n-m),得0>4,0怎么會大於4呢?
小明可糊塗了……聰明的同學,你能告訴小軍他究竟錯在什麼地方嗎?同桌討論。
【設計意圖】通過替人排憂解難,強化對不等式三個基本性質的理解與運用,突出重點,突破難點。
4.火眼金睛
①a>2, 則3a___2a
②2a>3a,則 a ___ 0
【設計意圖】通過變式訓練,加深學生對新知的理解,培養學生分析、探究問題的能力。
課堂小結:
這節課你有哪些收穫?有何體會?你認為自己的表現如何?教師引導學生回顧、思考、交流。
【設計意圖】回顧、總結、提高。學生自覺形成本節的課的知識網路。
思考題:你來決策
咱們班的王帥同學準備在五、一期間和他的爸爸、媽媽外出旅遊。青年旅行社的標準為:大人全價,小孩半價;方正旅行社的標準為:大人、小孩一律八折。若兩家旅行社的基本價一樣,你能幫王帥同學考慮一下選擇哪家旅行社更合算嗎?
【設計意圖】利用所學的數學知識,解決生活中的問題,加強數學與生活的聯繫,體驗數學是描述現實世界的重要手段。既培養了學生用數學知識解決實際問題的能力,又樹立了學好數學的信心。
高一數學教學工作計畫合集 篇20
一.指導思想:
(1)隨著素質教育的深入展開,《新課程標準》提出了“教育要面向世界,面向未來,面向現代化”和“教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。其內容包括代數、幾何、三角的基本概念、規律和它們反映出來的思想方法,機率、統計的初步知識,計算機的使用等。
(2)培養學生的邏輯思維能力、運算能力、空間想像能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的能力。
(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯繫和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數據、製作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
二.學情分析:
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:
1、進一步學習條件不具備.高中數學與國中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合套用題及實際套用問題等.客觀上這些觀點就是分化點,有的內容還是高國中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中後,還像國中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計畫,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯繫,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、對自己學習數學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。
4、不能計畫學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。
5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學生數學學習興趣不濃厚,不具備套用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重製約著學生數學成績的提高
三、教學目標與要求
必修1,主要涉及兩章內容:
第一章:集合
通過本章學習,使學生感受到用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言表示數學對象,為以後的學習奠定基礎。
1.了解集合的含義,體會元素與集合的屬於關係,並初步掌握集合的表示方法;
2.理解集合間的包含與相等關係,能識別給定集合的子集,了解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的並集和交集的含義,會求兩個簡單集合的並集和交集;
5.滲透數形結合、分類討論等數學思想方法;
6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關係等數學知識的過程中,培養學生的思維能力。
第二章:函式的概念與基本初等函式Ⅰ
教學本章時應立足於現實生活從具體問題入手,以問題為背景,按照“問題情境—數學活動—意義建構—數學理論—數學套用—回顧反思”的順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數學地提出、分析和解決問題。通過本章學習,使學生進一步感受函式是探索自然現象、社會現象基本規律的工具和語言,學會用函式的思想、變化的觀點分析和解決問題,達到培養學生的創新思維的目的。
1.了解函式概念產生的背景,學習和掌握函式的概念和性質,能藉助函式的知識表述、刻畫事物的變化規律;
2.理解有理指數冪的意義,掌握有理指數冪的運算性質;掌握指數函式的概念、圖象和性質;理解對數的概念,掌握對數的運算性質,掌握對數函式的概念、圖象和性質;了解冪函式的概念和性質,知道指數函式、對數函式、冪函式時描述客觀世界變化規律的重要數學模型;
第三章:函式的套用
函式的套用是學習函式的一個重要方面,學生學習函式的套用,目的就是利用已有的函式知識分析問題和解決問題.通過函式的套用,對完善函式思想,激發學生套用數學的意識,培養分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助。
1.了解函式與方程之間的關係;會用二分法求簡單方程的近似解;了解函式模型及其意義;
2.培養學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創新意識與探究能力、數學建模能力以及數學交流的能力。
必修4:主要涉及三章內容:
第一章:三角函式
通過本章學習,有助於學生認識三角函式與實際生活的緊密聯繫,以及三角函式在解決實際問題中的廣泛套用,從中感受數學的價值,學會用數學的思維方式觀察、分析現實世界、解決日常生活和其他學科學習中的問題,發展數學套用意識。
1.了解任意角的概念和弧度制;
2.掌握任意角三角函式的定義,理解同角三角函式的基本關係及誘導公式;
3.了解三角函式的周期性;
4.掌握三角函式的圖像與性質。
第二章:平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數學和物理中的一些問題,發展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數乘的運算;
3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;
4.理解平面向量數量積的含義,會用平面向量的數量積解決有關角度和垂直的問題。
第三章:三角恆等變換
通過推導兩角和與差的餘弦、正弦、正切公式,二倍角的正弦、餘弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經歷和參與數學發現活動的基礎上,體會向量與三角函式的聯繫、向量與三角恆等變換公式的聯繫,理解並掌握三角變換的基本方法。
1.掌握兩角和與差的餘弦、正弦、正切公式;
2.掌握二倍角的正弦、餘弦、正切公式 ;
3.能正確運用三角公式進行簡單的三角函式式的化簡、求值和恆等式證明。
四、具體措施
(一)重視課本,夯實基礎,建立良好知識結構和認知結構體系
課本是考試內容的載體,是高考命題的依據,也是學生智慧型的生長點,是最有參考價值的資料。只有吃透課本上的例題、習題,才能全面、系統地掌握基礎知、基本技能和基本方法,構建數學的知識網路,以不變應萬變。在求活、求新、求變的命題的指導思想下,高考數學試題雖然不可能考查單純背誦、記憶的內容,也不會考查課本上的原題,但對高考試卷進行分析就不難發現,許多題目都能在課本上找到“影子”,不少高考題就是將課本題目進行引申、拓寬和變化,高考試題千變萬化,異彩紛呈,但無論怎樣變化、創新,都是基本數學問題的組合。所以,對基本數學問題的認識,基本數學問題解法模式的研究,基本問題所涉及的數學知識、技能、思想方法的理解,乃是數學複習課的重心。多年的教學實踐,使我們深刻體會到:基礎題、中檔題不需要題海,高檔題題海也是不能解決的。
(二)提升能力,適度創新
考查能力是高考的重點和永恆主題。教育部已明確指出高考從“以知識立意命題”轉向“以能力立意命題”。新課標提出能力是指思維能力、運算能力、空間想像能力以及實踐能力和創新意識,包括提出問題、分析問題和解決問題的能力,數學究能力、數學建模能力、數學交流能力、數學實踐能力、直覺猜想、歸納抽象、符號表示、運算求解、演繹證明、體系構建等諸多方面,能夠對客觀事物中的數量關係和數學模式做出思考和判斷。
其中理性思維能力是數學能力的核心,而分析問題和解決問題的能力(實踐能力)是數學的一種綜合能力,需將思維、運算、空間想像有機結合去完成的一種複合型能力,是思維能力的更高層次。邏輯思維能力在解題中表現為:①領會題意、明確目標;②尋找解題方向和有效解題步驟;③正確推理和運算,表述解題過程。能力的培養首先應重視知識與技能的學習、思想方法的滲透。知識與技能的掌握有助於能力的提高,思想方法的掌握有助於廣泛遷移的實現。
實踐能力在考試中表現為解答套用問題。創新是指在新的問題情境中,綜合靈活地套用所學知識、思想和方法,進行獨立思考、探索和研究,選擇有效的方法和手段分析和處理信息,提出解決問題的思路,創造性地解決問題。創新意識是理性思維高層次表現,對數學問題的“觀察、猜測、抽象、概括、證明,是發現問題和解決問題的重要途徑,對數學知識的遷移、組合、融匯的程度越高,顯示出的創新意識也就越強。
(三)強化數學思想方法
數學不僅僅是一種重要的工具,更重要的是一種思維模式,一種思想。注重對數學思想方法的考查也是高考數學命題的顯著特點之一。數學思想方法是對數學知識最高層次上的概括提煉,它蘊涵於數學知識的發生、發展和套用過程中,能夠遷移且廣泛套用於相關科學和社會生活。數學思想方法是數學的精髓,是適用於數學全部內容的通法,對於數學思想和方法的考查必然要與數學知識考查結合進行。只有運用數學思想方法,才能把數學的知識與技能轉化為分析問題和解決問題的能力。因此,在各個階段的複習中,要結合具體問題不失時機地運用、滲透數學思想方法,對其進行多次再現、不斷深化,逐步內化為自己能力的組成部分,實現“知識型”向“能力型”的轉化。
(四)強化思維過程,提高解題質量
數學基礎知識的學習要充分重視知識的形成過程,解數學題要著重研究解題的思維過程,弄清基本數學知識和基本數學思想在解題中的意義和作用,注意多題一解、一題多解和一題多變。多題一解有利於培養學生的求同思維;一題多解有利於培養學生的求異思維;一題多變有利於培養學生思維的靈活性與深刻性。在分析解決問題的過程中既構建知識的橫向聯繫,又養成學生多角度思考問題的習慣。
當處理的題目達到一定的量後,決定複習效果的關鍵因素就不再是題目的數量,而在於題目的質量和處理水平。一節課與其抓緊時間大汗淋淋地講三道題,不如愉快寬鬆的引導學生探討完兩道題。
我建議“教師跳進題海,學生跳出題海”。教師有計畫的精心研究全國各地的高考題和模擬題,從中精選和改編部分面目新,質量高,難度適中,針對性強的試題,有計畫的組織學生訓練,講評,以少勝多,提高效益。對學生要求“會、快、對”,“會”即有方法,會動手;“快”強調速度,在規定的時間內完成規定的題量;“對”即準確,指解答正確。只有會,才有可能得分;只有快,才能多得分(指整套試卷);只有對,才能得滿分(指某道試題)。
在複習中,首先要訓練學生解題有“辦法”,能動手,但決不滿足於此,尤其對“會而不對”、“對而不全”、“眼高手低”的現象要引起足夠的重視;從以往的月考中可以找出各班的多數學生都有這個通病。要從審題的仔細、思維的嚴謹、表述的規範、計算的準確等方面下功夫,做到“會做的不丟分”。要儘可能穩中求快,對基本題提高熟悉程度,才有時間去思考新題、難題,對基礎題、中檔題要清楚明白,準確熟練,對難題要量力而行。
(五)認真總結每一次測試的得失,提高試卷的講評效果
試卷講評要有科學性、針對性、輻射性。講評不是簡單的公布正確答案,一是幫學生分析探求解題思路,二是分析錯誤原因,吸取教訓,三是適當變通、聯想、拓展、延伸,以例及類,探求規律。還可橫向比較,與其他班級比較,尋找個人教學的薄弱環節。
(六)加強應試指導
培養非智力因素充分利用每一次練習、測試的機會,培養學生的應試技巧,提高學生的得分能力,如對選擇題、填空題,要注意尋求合理、簡潔的解題途經,要力爭“保準求快”,對解答題要規範做答,努力作到“會而對,對而全”,減少無謂失分,指導學生經常總結臨場時的審題答題順序、技巧,總結考前和考場上心理調節的做法與經驗,力爭找到適合自己的心理調節方式和臨場審題、答題的具體方法,逐步提高自己的應試能力;幫助學生樹立信心、糾正不良的答題習慣、最佳化答題策略、強化一些注意事項.
高一數學教學工作計畫合集 篇21
教學目標
1、通過對冪函式概念的學習以及對冪函式圖象和性質的歸納與概括,讓學生體驗數學概念的形成過程,培養學生的抽象概括能力。
2、使學生理解並掌握冪函式的圖象與性質,並能初步運用所學知識解決有關問題,培養學生的靈活思維能力。
3、培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學重點、難點
重點:冪函式的性質及運用
難點:冪函式圖象和性質的發現過程
教學方法:
問題探究法
教具:多媒體
教學過程
一、創設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關係?
(總結:根據函式的定義可知,這裡p是w的函式)
問題2:如果正方形的邊長為a,那么正方形的面積,這裡S是a的函式。問題3:如果正方體的邊長為a,那么正方體的體積,這裡V是a的函式。問題4:如果正方形場地面積為S,那么正方形的邊長,這裡a是S的函式問題5:如果某人s內騎車行進了km,那么他騎車的速度,這裡v是t的函式。
以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函式解析式有什麼共同點嗎?(右邊指數式,且底數都是變數)這只是我們生活中常用到的一類函式的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什麼名字呢?(變數在底數位置,解析式右邊都是冪的形式)(適當引導:從自變數所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s,v=t-1都是自變數的若干次冪的形式。
教師指出:我們把這樣的都是自變數的若干次冪的形式的函式稱為冪函式。
冪函式的定義:一般地,我們把形如的函式稱為冪函式(power function),其中是自變數,是常數。
1、冪函式與指數函式有什麼區別?(組織學生回顧指數函式的概念)結論:冪函式和指數函式都是我們高中數學中研究的兩類重要的基本初等函式,從它們的解析式看有如下區別:對冪函式來說,底數是自變數,指數是常數對指數函式來說,指數是自變數,底數是常數例1判別下列函式中有幾個冪函式?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨(由學生獨立思考、回答)
2、冪函式具有哪些性質?研究函式應該是哪些方面的內容。前面指數函式、對數函式研究了哪些內容?
(學生討論,教師引導。學生回答。)
3、冪函式的定義域是否與對數函式、指數函式一樣,具有相同的定義域?
(學生小組討論,得到結論。引導學生舉例研究。結論:冪指數不同,定義域並不完全相同,應區別對待。)教師指出:冪函式y=xn中,當n=0時,其表達式y=x0=1;定義域為(-∞,0)U(0,+∞),特彆強調,當x為任何非零實數時,函式的值均為1,圖象是從點(0,1)出發,平行於x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函式的定義域,並指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學生解答,並歸納解決辦法。引導學生與指數函式、對數函式對照比較。引導學生具體問題具體分析,並作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函式的奇偶性也應具體分析。)
4、上述函式①y=x ②y= ③y=x ④y=x的單調性如何?如何判斷?
(學生思考,引導作圖可得。並加上y=x和y=x-1圖象)接下來,在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示。見後附圖1
讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)
教師總評:冪函式的性質
(1)所有的冪函式在(0,+∞)上都有定義,並且圖象都過點(1,1),
(2)如果a>0,則冪函式的圖象通過原點,並在區間[0,+∞)上是增函式,
(3)如果a<0,則冪函式在(0,+∞)上是減函式,在第一區間內,當x從右邊趨向於原點時,圖象在y軸右方無限地趨近y軸;當x趨向於+∞,圖象在x軸上方無限地趨近x軸。
5、通過觀察例1,在冪函式y=xa中,當a是(1)正偶數、(2)正奇數時,這一類函式有哪種性質?
學生思考,教師講評:(1)在冪函式y=xa中,當a是正偶數時,函式都是偶函式,在第一象限內是增函式。(2)在冪函式y=xa中,當a是正奇數時,函式都是奇函式,在第一象限內是增函式。
例3鞏固練習寫出下列函式的定義域,並指出它們的奇偶性和單調性:①y=x ②y=x ③y=x 。
例4簡單套用1:比較下列各組中兩個值的大小,並說明理由:
①0、75,0、76;
②(-0、95),(-0、96);
③0、23,0、24;
④0、31,0、31
例5簡單套用2:冪函式y=(m -3m-3)x在區間上是減函式,求m的值。
例6簡單套用2:
已知(a+1)<(3-2a),試求a的取值範圍。
課堂小結
今天的學習內容和方法有哪些?你有哪些收穫和經驗?
1、冪函式的概念及其指數函式表達式的區別
2、常見冪函式的圖象和冪函式的性質。
布置作業:
課本p、73 2、3、4、思考5
相關範文
高一數學教學工作計畫合集 篇22
一、教材分析(結構系統、單元內容、重難點)
必修5第一章:解三角形;重點是正弦定理與餘弦定理;難點是正弦定理與餘弦定理的套用;第二章:數列;重點是等差數列與等比數列的前n項的和;難點是等差數列與等比數列前n項的和與套用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規劃問題及套用。
必修2第一章:空間幾何體;重點是空間幾何體的三視圖和直觀圖及表面積與體積;難點是空間幾何體的三視圖;第二章:點、直線、平面之間的位置關係;重點與難點都是直線與平面平行及垂直的判定及其性質;第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當的直線方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關係;難點是直線與圓的位置關係。
二、學生分析(雙基智慧型水平、學習態度、方法、紀律)
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較紮實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1、通過對任意三角形邊長和角度關係的探索,掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2、通過日常生活中的實例,了解數列的概念和幾種簡單的表示方法,了解數列是一種特殊的函式;理解等差數列、等比數列的概念,探索並掌握2種數列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3、理解不等式(組)對於刻畫不等關係的意義和價值;掌握求解一元二次不等式的基本方法,並能解決一些實際問題;能用一元二次不等式組表示平面區域,並嘗試解決簡單的二元線性規劃問題。
4、幾何學研究現實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關係,並利用數學語言表述有關平行、垂直的性質與判定,對某些結論進行論證。另外了解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角坐標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互關係,了解空間直角坐標系。體會數形結合的思想,初步形成用代數方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施
積極做好集體備課工作,達到內容統一、進度統一、目標統一、例題統一、習題統一、資料統一;上好每一節課,及時對學生的思想進行觀察與指導;課後進行有效的輔導;進行有效的課堂反思。
五、教學進度
略。
高一數學教學工作計畫合集 篇23
一、學生在數學學習上存在的主要問題
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:
1、進一步學習條件不具備.高中數學與國中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合套用題及實際套用問題等.客觀上這些觀點就是分化點,有的內容還是高國中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中後,還像國中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計畫,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯繫,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、對自己學習數學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。
4、不能計畫學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。
5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質” ,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼” 。
此外,還有許多學生數學學習興趣不濃厚,不具備套用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重製約著學生數學成績的提高。
二、教學策略思考與實踐
針對我校高一學生的具體情況,我在高一數學新教材教學實踐與探究中,貫徹“因人施教,因材施教”原則。以學法指導為突破口;著重在“讀、講、練、輔、作業”等方面下功夫,取得一定效果。
加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計畫、課前自學、專心上課、及時複習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
制定計畫使學習目的明確,時間安排合理,不慌不忙,穩紮穩打,它是推動學生主動學習和克服困難的內在動力。但計畫一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨鍊學習意志。
課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,儘可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。“學然後知不足”,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時複習是高效率學習的重要一環,通過反覆閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯繫起來,進行分析比較,一邊複習一邊將複習成果整理在筆記上,使對所學的新知識由“懂”到“會”。
獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”。
解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不捨的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反覆思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來複習強化,作適當的重複性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統複習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯繫.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由“活”到“悟”。
課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情。
1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內涵和外延及辨析概念。例如,集合是數學中的一個原始概念,是不加定義的。它從常見的“我校高一年級學生” 、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數”等事物中抽象出來,但集合的概念又不同於特殊具體的實物集合,集合的確定及性質特徵是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。
再如象限角的概念,要向學生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導學生從多層次,多角度去認識和掌握數學概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結論。如高一新教材(上)等比數列的前n項和Sn.有q≠1和q=1兩種情形;對數計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規範。如在解對數函式題時,要注意“真數大於0”的隱含條件;解有關二次函式題時要注意二次項係數不為零的隱含條件等。讀書要鼓勵學生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學生議論數列與數集的聯繫與區別。數列與數的集合都是具有某種共同屬性的全體。數列中的數是有順序的,而數集中的元素是沒有順序的;同一個數可以在數列中重複出現,而數集中的元素是沒有重複的(相同的數在數集中算作同一個元素)。在引導學生閱讀時,教師要經常幫助學生歸類、總結,儘可能把相關知識表格化。如一元二次不等式的解情況列表,三角函式的圖象與性質列表等,便於學生記憶掌握。
2、講。外國有一位教育家曾經說過:教師的作用在於將“冰冷”的知識加溫後傳授給學生。講是實踐這種傳授的最直接和最有效的教學手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天“衝刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功紮實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
每堂新授課中,在複習必要知識和展示教學目標的基礎上,老師著重揭示知識的產生、形成、發展過程,解決學生疑惑。比如在學習兩角和差公式之前,學生已經掌握五套誘導公式,可以將求任意角三角函式值問題轉化為求某一個銳角三角函式值的問題。此時教師應進一步引導學生:對於一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函式就呼之欲出了,極大激發了學生的學習興趣。講課要注意從簡單到複雜的過程,要讓學生從感性認識上升到理性認識。鼓勵學生應積極、主動參與課堂活動的全過程,教、學同步。讓學生自己真正做學習的主人。
例如,講解函式的圖象應從振幅、周期、相位依次各自進行變化,然後再綜合,並儘可能利用多媒體輔助教學,使學生容易接受。其次講要注重突出數學思想方法的教學,注重學生數學能力的培養。例如講到等比數列的概念、通項公式、等比中項、等比數列的性質、等比數列的前n項和。可以引導學生對照等差數列的相應的內容,比較聯繫。讓學生更清楚等差數列和等比數列是兩個對偶概念。
高一數學教學工作計畫合集 篇24
本學期的數學教學內容是高一數學下冊,包括第四章《三角函式》和第五章《平面向量》。按照數學教學大綱的要求,第四章教學需要36個課時(不包含考試與測驗的時間);第五章的教學需要22個課時,總計需要58個課時。本學期有兩次月考和五一長假,實際授課時間為18周,按每周6課時計算,數學課時達到110課時左右,時間相當充足。這為我們數學組全面貫徹“低切入、慢節奏”的教學方針提供了保障,也是我們提高學生數學水平的又一次極好的機會。
教學計畫:
依據南昌市的高一數學教學進度安排,本學期的期中考試(預計在4月14號至4月17號進行)涵蓋的內容為第四章的前9節,由於課時量充足,第10節“正切函式的圖像和性質”以及第11節“已知三角函式值求角”將在上半學期講授,這樣下半個學期的教學任務為30個課時。
我們備課組經過認真的思索、充分的討論,將期中考試前的教學進度安排如下:
(一單元)任意角的三角函式
§4.1角的概念的推廣 3課時
§4.2弧度制 3課時
§4.3任意角的三角函式 3~4課時
§4.4同角三角函式的基本關係 4課時
§4.5正弦、餘弦的誘導公式 4課時
複習課(習題課) 4課時
單元測試及講評(隨堂) 2課時
(二單元)兩角和與差的三角函式
§4.6兩角和與差的正弦、餘弦、正切 7課時
習題課 3課時
§4.7兩倍角的正弦、餘弦、正切 4課時
習題課 2課時
單元測試及講評(隨堂) 2課時
(三單元)三角函式的圖象及性質
§4.8正弦、餘弦函式的圖象和性質 5課時
習題課 2課時
§4.9函式 的圖象 4課時
總計授課53課時,餘下課時可安排期中複習。
期中考試後的授課計畫:
§4.10正切函式的圖象和性質 3課時
§4.11已知三角函式值求角 4課時
習題課 2課時
第四章複習 4課時
第五章
(一單元)向量及其運算
§5.1向量 1課時
§5.2向量的加減法 2課時
§5.3實數與向量的積 3課時
§5.4平面向量的坐標計算 3課時
§5.5線段的定比分點 2課時
§5.6平面向量的數量積及運算律 3課時
§5.7平面向量數量積的坐標表示 2課時
§5.8平移 2課時
習題課 3課時
單元測試與講評(隨堂) 2課時
§5.9正弦、餘弦定理 5課時
§5.10解斜三角形套用舉例 2課時
實習與研究性課題 4課時
習題課 3課時
單元測試與講評(隨堂) 2課時
競賽輔導:
為發展我校的素質教育,貫徹個性化發展的原則,數學組擬對在校生中有數學思維特長的學生進行競賽類的輔導。由6個班的學生共同組建一個30人左右的數學小組,每周由數學組的成員進行具有針對性的競賽輔導,目標是今年4月舉行的全國數學競賽。大體的時間安排如下:每周舉行1到2次,時間為第8節課。
教學課題:案頭工作的嘗試
案頭工作不僅僅是一個總結的過程,他同時也是創造性思維的一個反映,對於各門學科,特別是數理化三門理科具有特殊的意義。數學組經過研究,決定在這方面作出嘗試,擬從班上選出個別學生,對其進行案頭工作的指導,要求有專門的案頭本,每次對作業的錯誤進行總結,觀察這部分學生的學習狀況,並對其學習上的表現作出記錄。以便今後與其他學生作比較。
高一數學教學工作計畫合集 篇25
(1)隨著素質教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現代化和教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。其內容包括代數、幾何、三角的基本概念、規律和它們反映出來的思想方法,機率、統計的初步知識,計算機的使用等。
(2)培養學生的邏輯思維能力、運算能力、空間想像能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的能力。
(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯繫和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數據、製作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
學情分析及相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從國中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:(1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點.所列基礎知識依據課程標準設計,著眼於基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。.
(3)培養學生解答考題的能力,通過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。
(4)讓學生通過單元考試,檢測自己的實際套用能力,從而及時總結經驗,找出不足,做好充分的準備
(5)抓好尖子生與後進生的輔導工作,提前展開數學奧競選拔和數學基礎輔導。
(6)注意運用現代化教學手段輔助數學教學;注意運用投影儀、電腦軟體等現代化教學手段輔助教學,提高課堂效率,激發學生學習興趣。
教學進度安排:
周 次 時 內 容 重 點、難 點
第1周
9.2~9.6 5 集合的含義與表示、
集合間的基本關係、
會求兩個簡單集合的並集與交集;會求給定子集的補集;。難點:理解概念
第2周
9.7~9.13 5 集合的基本運算
函式的概念、
函式的表示法 能使用Venn圖表達集合的關係及運算,會求一些簡單函式的定義域和值域;能簡單套用
第3周
9.14~9.20 5 單調性與最值、
奇偶性、實習、小結 學會運用函式圖象理解和研究函式的性質,理解函式單調性、最大(小)值及幾何意義
第4周
9.21~9.27 5 指數與指數冪的運算、
指數函式及其性質 掌握冪的運算;探索並理解指數函式的單調性與特殊點。難點:理解概念
第5周
9.28~10.4 5 (9月月考?、國慶放假)
第6周
10.5~10.11 5 對數與對數運算、
對數函式及其性質 理解對數的概念及其運算性質,知道用換底公式;探索並了解對數函式單調性與特殊點;知道指數函式與對數函式互為反函式
第7周
10.12~10.18 5 冪函式 從五個具體的冪函式(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認識冪函式的一些性質
第8周
10.19~10.25 5 方程的根與函式零點,
二分法求方程近似解, 能夠藉助計算器用二分法求相應方程的近似解;
第9周
10.26~11.1 5 幾類不同增長的模型、函式模型套用舉例 對比指數函式、對數函式以及冪函式增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函式類型增長的含義
第10周
11.2~11.8 期中複習及考試 分章歸納複習+1套模擬測試
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函式 了解任意角的概念和弧度制,能進行弧度和度的互化;藉助單位圓理解任意角三角函式的定義
第12周
11.16~11.22 5 三角函式的誘導公式
三角函式的圖像和性質 藉助三角函式線推導出誘導公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函式的周期性
第13周
11.23~11.29 5 函式y=Asin(wx+q)的圖像 藉助圖像理解正弦函式餘弦函式正切函式的性質,藉助計算機畫出圖像觀察A w q對函式圖像變化的影響
第14周
11.30~12.6 5 三角函式模型的簡單套用 單元考試 會用三角函式解決一些簡單實際問題,體會三角函式是描述周期變化的重要函式模型
第15周
12.7~12.13 5 平面向量的實際背景及基本概念,平面向量的線性運算 掌握向量加、減法的運算,理解其幾何意義掌握數乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標表示、會用坐標表示平面向量的加減及數乘運算
第16周
12.14~12.20 5 平面向量的基本定理及坐標表示,平面向量的數量積, 理解用坐標表示的平面向量共線的條件,理解平面向量數量積德含義及其物理意義,體會平面向量數量積與向量投影的關係,掌握數量積的坐標表達式,會進行平面,向量數量積的運算、求夾角、及垂直關係
第17周
12.21~12.27 5 平面向量套用舉例,
小結 用向量方法解決莫些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種幾何問題,物理問題的工具,發展運算能力和解決實際問題的能力
第18周
12.28~1.3 5 兩角和與差點正弦、餘弦和正切公式 能以兩角差點餘弦公式導出兩角和與差點正弦、餘弦和正切公式,二倍角的正弦、餘弦和正切公式,了解它們的內在聯繫
第19周
1.4~1.10 5 簡單的三角恆等變換
高一數學教學工作計畫合集 篇26
教材分析:
解不等式是不等式學習的主要內容,是中學數學的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎,國中已經學習,二次不等式是重點,也是學習的難點。作為數學重要的工具及方法,經常運用於其它數學知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數形結合”方法,這種方法將二次函式,二次方程結合為一體,並且藉助“圖形”直觀地得出答案,充分展現了數學知識之間的內在聯繫,另外也展現了“數形結合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉化為一次不等式組的方法,這種方法思路自然,同時也體現了“轉化”思想,難度也不大,應該更加符合學生的實際思維及思路。
學情分析:
國中已經學習了一元一次不等式(或組)的解法,積累了一定的解題經驗。同時,對於二次方程,二次函式等相關知識學生均較為熟悉。然而,根據自己的調查,一少部分學生對於一元一次不等式及不等式組的解法都表現出一定程度的陌生。進而,可以先從複習簡單的一次不等式及不等式組入手加以展開教學。
學生心理方面,學習積極性較高,對數學的學習興趣、信心也比較理想,有較強的學習動機——考上大學,儘管是外在的誘因。
教學目標:
①知識與技能
熟練掌握一元一次不等式及不等式組的解法,初步學會兩種方法求出一元二次不等式的解集
②過程與方法
經歷不等式求解的探索及發現過程,體驗“數形結合及轉化”思想的魅力,掌握方法,學會學習
③情感、態度及價值觀
在上述過程中,體驗成功,激發了對數學學習的興趣及信心,發展了對數學學習的積極情感,增強了學習的內在動機
教學重點:
一元二次不等式的解法
教學難點:
解法的探索及發現,關鍵在於“識圖能力”
反思:
今天的課堂,這個難點突破欠缺力量,主要緣於自己備課時對難點考慮不到位,進而缺乏必要的設計。在課堂上,就難點特別與個別差生進行了交流,並且給予了幫助及指導。在指導過程中,我找出了他們困難的二個環節:
首先,對平面曲線上點的橫坐標與縱座標之間的對應關係表現陌生,進而對它們的取值變化情況感到費解。
其次,是差生的思維能力尚處於“經驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標取值範圍只能是“一籌莫展”。
在了解情況後,遵循“最近發展區”原理,以問題串的形式給差生提供必要的幫助後,差生也順利度過了難關。由此足以說明,從知識的角度而言,“沒有教不好的學生,只有不會教的教師:這句話還是相當有道理的。當然,這一切的前提就是對學生“學情”的掌握。美國著名心理學家、結構主義學派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學科任何年齡段的任何知識。
教學程式:
一、複習一元一次不等式及不等式組的解法
以題組形式設計習題
①2x+3>7
②不等式組
③ax>b
二、創設二次不等式的生活背景實例,引入課題
採用課本上的實例,有關網路收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。
由於這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最後以課外思考題的形式設計相應習題。
(2)
採取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織並完成,並撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,儘管這些知識不完整,語言或許不規範,思維或許不嚴密。
之後,從特殊到一般,研究一般的二元一次不等式的解法。由於經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。
反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。於是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。
四、練習環節
可以說,即使到了高三,仍然有不少同學對於一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬於技能課,對於技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習題。對於練習,我採取多種方式,或叫學生上黑板板書,藉助學生練習規範解題格式;或者口答,說解題思路及答案;或者下面獨立練習。
五、課堂小結
知識,思想、方法及感悟等
六、課後作業
①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源於課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值範圍
變式一:戓將R改為空集,此時結論如何
變式二:仿上,自己改編條件,並解之。
反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。
高一數學教學工作計畫合集 篇27
一、教學內容
本學期將完成數學必修1和數學必修4 (人教A版)兩本教材的的學習,教學輔助材料有《同步金太陽導學》。
二、教學目標與要求
認真深入地學習《新課程標準》,研讀教材。明確教學目的,把握教學目標,把準教學標高。注意到新教材的特點親和力問題性思想性聯繫性,注意對基本概念的理解、基本規律的掌握、基本方法的套用上多下功夫,轉變教學觀念,螺旋上升地安排核心數學概念和重要數學思想,加強數學思想方法的滲透與概括。在課堂教學中要以學生為主,注重師生互動,對基本的知識點要落實到位,新教材對教學中有疑問的地方要在備課組中多加討論和研究,特別是有關概念課的教學,一定要講清概念的發生、發展、內涵、外延,不要模稜兩可。
1. 處理好初高中銜接問題。國中內容的不適當刪減、降低要求,導致學生雙基無法達到高中教學要求;高中不顧學生的基礎,任意拔高教學要求,繁瑣的`、高難度的運算充斥課堂。對國中沒學而高中又要求掌握的內容(具體內容見附錄)。
2. 準確把握教學要求,循序漸進地教學。不搞一步到位刪減的內容不要隨意補充;不要擅自調整內容順序;教輔材料不能作為教學的依據;把更多的注意力放在核心概念、基本數學思想方法上;追求通性通法,不追求特技。
3. 適當使用信息技術。新課程主張多媒體教學。在教材中很容易發現新課改對信息技術在數學教學上的套用,並在配備的光碟中提供了相當數量的課件,有利於學生更全面的吸收知識,提高課堂注意力和學習的興趣。但我還是認為,多媒體知識教學的輔助手段,選不選用多媒體要看教學內容。尤其是數學這門學科,有些直觀的內容用多媒體還是不錯的,但有的內容諸如讓學生思考體會的問題不是很適合多媒體教學的。根據學習內容需要選擇恰當的信息技術工具和使用科學型計算器;提倡適當使用各種數學軟體。
4. 充分發揮集體備課的作用。利用每周一次的集體備課,認真討論本周的教學得失,研究下周所教內容的重難點,安排周練的內容。要根據實際情況,有針對性地組編訓練題,做到每周一次綜合訓練(同步或滾雪球式的保溫訓練),一次微型補差訓練,要搞好單元過關訓練。選題要注意基礎,強化通法,針對性強,避免對資料上的訓練題全套照搬使用。要重視對數學尖子生的培養,力爭在數學競賽中取得好成績。
5. 在重視智力因素的同時必須關注非智力因素。應認識到非智力因素在學生全面發展和數學學習過程中所起的重要作用,並內化為自覺的行為,切實培養學生學習數學的興趣和良好的個性品質。
高一數學教學工作計畫合集 篇28
(一)教學目標
1.知識與技能
(1)理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集和交集.
(2)能使用Venn圖表示集合的並集和交集運算結果,體會直觀圖對理解抽象概念的作用。
(3)掌握的關的術語和符號,並會用它們正確進行集合的並集與交集運算。
2.過程與方法
通過對實例的分析、思考,獲得並集與交集運算的法則,感知並集和交集運算的實質與內涵,增強學生髮現問題,研究問題的創新意識和能力.
3.情感、態度與價值觀
通過集合的並集與交集運算法則的發現、完善,增強學生運用數學知識和數學思想認識客觀事物,發現客觀規律的興趣與能力,從而體會數學的套用價值.
(二)教學重點與難點
重點:交集、並集運算的含義,識記與運用.
難點:弄清交集、並集的含義,認識符號之間的區別與聯繫
(三)教學方法
在思考中感知知識,在合作交流中形成知識,在獨立鑽研和探究中提升思維能力,嘗試實踐與交流相結合.
(四)教學過程
教學環節 教學內容 師生互動 設計意圖
提出問題引入新知 思考:觀察下列各組集合,聯想實數加法運算,探究集合能否進行類似“加法”運算.
(1)A = {1,3,5},B = {2,4,6},C = {1,2,3,4,5,6}
(2)A = {x | x是有理數},
B = {x | x是無理數},
C = {x | x是實數}.
師:兩數存在大小關係,兩集合存在包含、相等關係;實數能進行加減運算,探究集合是否有相應運算.
生:集合A與B的元素合併構成C.
師:由集合A、B元素組合為C,這種形式的組合就是為集合的並集運算. 生疑析疑,
導入新知
形成
概念
思考:並集運算.
集合C是由所有屬於集合A或屬於集合B的元素組成的,稱C為A和B的並集.
定義:由所有屬於集合A或集合B的元素組成的集合. 稱為集合A與B的並集;記作:A∪B;讀作A並B,即A∪B = {x | x∈A,或x∈B},Venn圖表示為:
師:請同學們將上述兩組實例的共同規律用數學語言表達出來.
學生合作交流:歸納→回答→補充或修正→完善→得出並集的定義. 在老師指導下,學生通過合作交流,探究問題共性,感知並集概念,從而初步理解並集的含義.
套用舉例 例1 設A = {4,5,6,8},B = {3,5,7,8},求A∪B.
例2 設集合A = {x | –1
例1解:A∪B = {4, 5, 6, 8}∪{3, 5, 7, 8} = {3, 4, 5, 6, 7, 8}.
例2解:A∪B = {x |–1
師:求並集時,兩集合的相同元素如何在並集中表示.
生:遵循集合元素的互異性.
師:涉及不等式型集合問題.
注意利用數軸,運用數形結合思想求解.
生:在數軸上畫出兩集合,然後合併所有區間. 同時注意集合元素的互異性. 學生嘗試求解,老師適時適當指導,評析.
固化概念
提升能力
探究性質 ①A∪A = A, ②A∪ = A,
③A∪B = B∪A,
④ ∪B, ∪B.
老師要求學生對性質進行合理解釋. 培養學生數學思維能力.
形成概念 自學提要:
①由兩集合的所有元素合併可得兩集合的並集,而由兩集合的公共元素組成的集合又會是兩集合的一種怎樣的運算?
②交集運算具有的運算性質呢?
交集的定義.
由屬於集合A且屬於集合B的所有元素組成的集合,稱為A與B的交集;記作A∩B,讀作A交B.
即A∩B = {x | x∈A且x∈B}
Venn圖表示
老師給出自學提要,學生在老師的引導下自我學習交集知識,自我體會交集運算的含義. 並總結交集的性質.
生:①A∩A = A;
②A∩ = ;
③A∩B = B∩A;
④A∩ ,A∩ .
師:適當闡述上述性質.
自學輔導,合作交流,探究交集運算. 培養學生的自學能力,為終身發展培養基本素質.
套用舉例 例1 (1)A = {2,4,6,8,10},
B = {3,5,8,12},C = {8}.
(2)新華中學開運動會,設
A = {x | x是新華中學高一年級參加百米賽跑的同學},
B = {x | x是新華中學高一年級參加跳高比賽的同學},求A∩B.
例2 設平面內直線l1上點的集合為L1,直線l2上點的集合為L2,試用集合的運算表示l1,l2的位置關係. 學生上台板演,老師點評、總結.
例1 解:(1)∵A∩B = {8},
∴A∩B = C.
(2)A∩B就是新華中學高一年級中那些既參加百米賽跑又參加跳高比賽的同學組成的集合. 所以,A∩B = {x | x是新華中學高一年級既參加百米賽跑又參加跳高比賽的同學}.
例2 解:平面內直線l1,l2可能有三種位置關係,即相交於一點,平行或重合.
(1)直線l1,l2相交於一點P可表示為 L1∩L2 = {點P};
(2)直線l1,l2平行可表示為
L1∩L2 = ;
(3)直線l1,l2重合可表示為
L1∩L2 = L1 = L2. 提升學生的動手實踐能力.
歸納總結 並集:A∪B = {x | x∈A或x∈B}
交集:A∩B = {x | x∈A且x∈B}
性質:①A∩A = A,A∪A = A,
②A∩ = ,A∪ = A,
③A∩B = B∩A,A∪B = B∪A. 學生合作交流:回顧→反思→總理→小結
老師點評、闡述 歸納知識、構建知識網路
課後作業 1.1第三課時 習案 學生獨立完成 鞏固知識,提升能力,反思升華
備選例題
例1 已知集合A = {–1,a2 + 1,a2 – 3},B = {– 4,a – 1,a + 1},且A∩B = {–2},求a的值.
【解析】法一:∵A∩B = {–2},∴–2∈B,
∴a – 1 = –2或a + 1 = –2,
解得a = –1或a = –3,
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B = {–2}.
當a = –3時,A = {–1,10,6},A不合要求,a = –3捨去
∴a = –1.
法二:∵A∩B = {–2},∴–2∈A,
又∵a2 + 1≥1,∴a2 – 3 = –2,
解得a =±1,
當a = 1時,A = {–1,2,–2},B = {– 4,0,2},A∩B≠{–2}.
當a = –1時,A = {–1,2,–2},B = {– 4,–2,0},A∩B ={–2},∴a = –1.
例2 集合A = {x | –1
(1)若A∩B = ,求a的取值範圍;
(2)若A∪B = {x | x7
②不等式組
③ax>b
二、創設二次不等式的生活背景實例,引入課題
採用課本上的實例,有關網路收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。
由於這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最後以課外思考題的形式設計相應習題。
(2)
採取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織並完成,並撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,儘管這些知識不完整,語言或許不規範,思維或許不嚴密。
之後,從特殊到一般,研究一般的二元一次不等式的解法。由於經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。
反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。於是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。
四、練習環節
可以說,即使到了高三,仍然有不少同學對於一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬於技能課,對於技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習題。對於練習,我採取多種方式,或叫學生上黑板板書,藉助學生練習規範解題格式;或者口答,說解題思路及答案;或者下面獨立練習。
五、課堂小結
知識,思想、方法及感悟等
六、課後作業
①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源於課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值範圍
變式一:戓將R改為空集,此時結論如何
變式二:仿上,自己改編條件,並解之。
反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。
高一數學教學工作計畫合集 篇29
、
Ⅰ.教學內容解析
本節課的教學內容,是指數函式的概念、性質及其簡單套用.教學重點是指數函式的圖像與性質.
這是指數函式在本章的位置.
指數函式是學生在學習了函式的概念、圖象與性質後,學習的第一個新的初等函式.它是一種新的函式模型,也是套用研究函式的一般方法研究函式的一次實踐.指數函式的學習,一方面可以進一步深化對函式概念的理解,另一方面也為研究對數函式、冪函式、三角函式等初等函式打下基礎.因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法套用的過程.
指數函式模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地套用,與我們的日常生活、生產和科學研究有著緊密的聯繫,因此,學習這部分知識還有著一定的現實意義.
Ⅱ.教學目標設定
1.學生能從具體實例中概括指數函式典型特徵,並用數學符號表示,建構指數函式的概念.
2.學生通過自主探究,掌握指數函式的圖象特徵與性質,能夠利用指數函式的性質比較兩個冪的大小.
3.學生運用數形結合的思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函式的一般方法.
4.在探究活動中,學生通過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力.
Ⅲ.學生學情分析
授課班級學生為南京師大附中實驗班學生.
1.學生已有認知基礎
學生已經學習了函式的概念、圖象與性質,對函式有了初步的認識.學生已經完成了指數取值範圍的擴充,具備了進行指數運算的能力.學生已有研究一次函式、二次函式等初等函式的直接經驗.學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣.
2.達成目標所需要的認知基礎
學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力.
3.難點及突破策略
難點:1. 對研究函式的一般方法的認識.
2. 自主選擇底數不當導致歸納所得結論片面.
突破策略:
1.教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段.
2.組織匯報交流活動,展現思維過程,相互評價,相互啟發,促進反思.
3.對猜想進行適當地證明或說明,合情推理與演繹推理相結合.
Ⅳ.教學策略設計
根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,採用自主學習方式.通過教師引領學生經歷研究函式及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段.
學生的自主學習,具體落實在三個環節:
(1)建構指數函式概念時,學生自主舉例,歸納特徵,並用符號表示,討論底數的取值範圍,完善概念.
(2)探究指數函式圖象特徵與性質時,學生自選底數,開展自主研究,並通過匯報交流相互提升.
(3)性質套用階段,學生自主舉例說明指數函式性質的套用.
研究函式的性質,可以從形和數兩個方面展開.從圖形直觀和數量關係兩個方面,經歷從特殊到一般、具體到抽象的過程。藉助具體的指數函式的圖象,觀察特徵,發現函式性質,進而猜想、歸納一般指數函式的圖象特徵與性質,並適時套用函式解析式輔以必要的說明和證明.
Ⅴ.教學過程設計
1.創設情境建構概念
師:我們已經學習了函式的概念、圖象與性質,大家都知道函式可以刻畫兩個變數之間的關係.你能用函式的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變數的關係?
[情境問題2]某种放射性物質不斷變化為其他物質,每經過一年,這種物質剩餘的質量是原來的84%.如果經過x年,該物質剩餘的質量為y,如何描述這兩個變數的關係?
[師生活動]引導學生分析,找到兩個變數之間的函式關係,並得到解析式y=2x和y=0.84x.
師:這樣的函式你見過嗎?是一次函式嗎?二次函式?這樣的函式有什麼特點?你能再舉幾個例子嗎?
〖問題1類似的函式,你能再舉出一些例子嗎?這些函式有什麼共同特點?能否寫成一般形式?
[設計意圖]通過列舉生活中指數函式的具體例子,感受指數函式與實際生活的聯繫.引導學生從具體實例中概括典型特徵,初步形成指數函式的概念,並用數學符號表示.初步得到y=ax這個形式後,引導學生關注底數的取值範圍,完成概念建構.指數範圍擴充到實數後,關注x∈R時,y=ax是否始終有意義,因此規定a>0.a≠1並不是必須的,常函式在高等數學裡是基本函式,也有重要的意義.為了使指數函式與對數函式能構成反函式,規定a≠1.此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”.
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變數在指數位置,從而初步建立函式模型y=ax.
[教學預設]學生能舉出具體的例子——y=3x,y=0.5x….如出現y=(-2)x最好,更便於引發對a的討論,但一般不會出現.進而提出這類函式一般形式y=ax.
方案1:
生:(舉例)函式y=3x,y=4x,…(函式y=ax(a>1))
師:板書學生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數非得大於1嗎?)
生:函式y=0.5x,y= x,y=(-2)x,y=1x…
師:板書學生舉例(停頓),好像有不同意見.
生:底數不能取負數.
師:為什麼?
生:如果底數取負數或0,x就不能取任意實數了.
師:我們已經將指數的取值範圍擴充到了R,我們希望這些函式的定義域就是R.
(若沒有學生注意到底數的取值範圍,可引導學生關注例舉函式的定義域.若有同學提出情境中函式的定義域應為N+,師:我們已經將指數的取值範圍擴充到了R,函式y=2x和y=0.84x中,能否將定義域擴充為R?你們所舉的例子中,定義域是否為R?)
師:這些函式有什麼共同特點?
生:都有指數運算.底數是常數,自變數在指數位置.
(若有學生舉出類似y=max的例子,引導學生觀察,它依然具有自變數在指數位置的特徵.而刻畫這一特點的最簡單形式就是y=ax,從而初步建立函式模型y=ax,初步體會基本初等函式的作用.)
師:具備上述特徵的函式能否寫成一般形式?
生:可以寫成y=ax(a>0).
師:當a=1時,函式就是常數函式y=1.對於這個函式,我們已經比較了解了.通常我們還規定a≠1.今天我們就來了解一下這個新函式.(出示指數函式定義)
方案2:
生:(舉例)函式y=3x,y=4x,…(函式y=ax(a>1))
師:板書學生舉例(稍停頓),能舉一個不太一樣的例子嗎?(提示:底數非得大於1嗎?)
生:函式y=0.5x,y= x,…
師:這些函式的自變數是什麼?它們有什麼共同特點?
生:(可用文字語言或符號語言概括)都有指數運算.底數是常數,自變數在指數位置.可以寫成y=ax.
師:y=ax中,自變數是x,底數a是常數.以上例子的不同之處,是底數不同.那你覺得底數的取值範圍是什麼呢?
生:底數不能取負數.
師:為什麼?
生:如果底數取負數或0,x就不能取任意實數了.
師:為了研究的方便,我們要求底數a>0.當a=1時,函式就是常數函式y=1.對於這個函式,我們已經比較了解了.通常我們還規定a≠1.今天我們就來了解一下這個新函式.(出示指數函式定義)
[階段小結]一般地,函式y=ax(a>0且a≠1)稱為指數函式.它的定義域是R.
[意圖分析]概念教學應當讓學生感受形成過程,了解知識的來龍去脈,那種直接拋出定義後輔以“三項注意”的做法剝奪了學生參與概念形成的過程.此處不宜糾纏於y=22x是否為指數函式等細枝末節.指數函式的基本特徵是自變數出現在指數上,應促使學生對概念本質的理解.指數函式概念的形成,經歷了一個由粗到細,由特殊到一般,由具體到抽象的漸進過程,這樣更加符合人們的認知心理.
2.實驗探索匯報交流
(1)構建研究方法
師:我們定義了一個新的函式,接下來,我們研究什麼呢?
生:研究函式的性質.
〖問題2你打算如何研究指數函式的性質?
[設計意圖]學生已經學習了函式的概念、函式的表示方法與函式的一般性質,對函式有了初步的認識.在此認知基礎上,引導學生自己提出所要研究的問題,尋找研究問題的方法.開始的問題較寬泛,教師要縮小問題範圍,用提示語口頭提問啟發.教師應充分尊重學生的思維個性,提供自主探究的平台,通過匯報交流活動達成共識實現殊途同歸.中學階段,特別是高一新授課階段,提倡學生以形象思維作為抽象思維的支撐.
[師生活動]師生經過討論,解決啟發性提示問題,確定研究的內容與方法.
[教學預設]學生能夠根據已有知識和經驗,在教師的啟發引導下,明確研究的內容以及研究的方法.部分學生會提出先作出具體函式圖象,觀察圖象,概括性質,並進而歸納出一般函式的圖象的分布特徵等性質.另一部分學生可能從具體函式的解析式出發,研究函式性質,猜想一般函式的性質,然後再作出圖象加以驗證.
師:(稍等片刻)我們一般要研究哪些性質呢?
生:變數取值範圍(定義域、值域)、單調性、奇偶性.
師:(板書學生回答)怎樣研究這些性質呢?
生:先畫出函式圖象,觀察圖象,分析函式性質.
生:先研究幾個具體的指數函式,再研究一般情況.
師:板書“畫圖觀察”,“取特殊值”
(若沒有學生提出從特殊到一般的思路.師:底數a的取值不同,函式的性質可能也會有不同.一次函式y=kx(k≠0)中,一次項係數k不同,函式性質就不同.底數a可以取無數多個值,那我們怎么辦呢?)
(若有學生通過對y=2x解析式的分析,得到了性質,並提出從具體函式的解析式出發,研究函式性質,猜想一般函式的性質,然後再作出圖象加以驗證.師:你的想法也很有道理,不妨試一試.(仍引導學生從具體指數函式圖象入手.))
[意圖分析]學習的過程就是一個不斷地提出問題、解決問題的過程.提出問題比解決問題更重要,給學生提供由自己提出問題、確定研究方法的機會,逐漸學會研究問題,促進能力發展.
(2)自主探究匯報交流
師:我們確定了要研究的對象和具體做法,下面可以開始研究指數函式的性質了.
〖問題3選取數據,畫出圖象,觀察特點,歸納性質.
[設計意圖]若直接規定底數取值,對於為什麼要以y=2x,y=3x,y=0.5x為例,為什麼要根據底數的大小分類討論,缺乏合理的解釋,學生對於圖象的認識是被動的.若在探究前經討論確定底數取值,由於學生認知水平的差異,仍可能會造成部分學生被動接受.學生自主選擇底數,雖有得到片面認識的可能,但通過討論交流,學生能相互驗證結論,仍能得到正確認識.並且學生能在過程中體會數據如何選擇,了解研究方法.
由於描點作圖時列舉點的個數的限制,學生對x→∞時函式圖象特徵缺乏直觀感受.而且由於所舉例子個數的限制,學生對於歸納的結論缺乏一般性的認識.教師應利用繪圖軟體作出底數連續變化的圖象 ,驗證猜想.
數形結合、從特殊到一般的思維方法是概括歸納抽象對象的一般思維方法,本節課的重點是通過對指數函式圖象性質的研究,總結研究函式的一般方法,應充分發動學生參與研究的每個過程,得到直接體驗.
[師生活動]學生選取不同的a的值,作出圖象,觀察它們之間的異同,總結指數函式的圖象特徵與函式性質.
[教學預設]學生通過觀察圖象,發現指數函式y=ax(a>0且a≠1)的性質.教師用實物投影儀展示學生所畫圖象,學生根據具體函式圖象說明具體函式性質.在學生說明過程中,教師引導學生對結論進行適當的說明,進而引導學生歸納一般指數函式的性質.教師引導學生關注列表描點作圖的過程,引導學生通過反思過程,並通過動態圖象驗證猜想,促進學生體會數形結合的分析方法.教師尊重生成,但需引導學生區別指數函式本身的性質與指數函式之間的性質.其中⑥⑦不強加於學生.對於⑥,要引導學生在同一坐標系中畫出圖象,啟發學生觀察底數互為倒數的指數函式的圖象,先得到具體的例子.對於⑦,在例1第3小題中,會有學生提出利用不同底數指數函式圖象解決,可順勢利導,也可布置為課後作業,繼續研究.
生:自主選擇數據,在坐標紙上列表作圖,列出函式性質.
師:(巡視,必要時參與討論,及時提示任務,待大部分學生有結論後,鼓勵學生交流,請學生匯報.)有條理地整理一下結論,討論交流所得.(同時用實物投影儀展示學生所畫圖象.若沒有投影儀,用幾何畫板作出圖象.)
生:(可能出現的情況)(1)在兩個坐標系中畫圖;(2)所取底數均大於1;(3)兩個底數大於1,一個底數小於1;(4)關於y軸對稱的兩個指數函式.
師:(過程性引導)底數你是怎么取的?你是怎樣觀察出結論的?在列表過程中,你有什麼發現嗎?為什麼要在兩個坐標系中畫圖?為什麼不也取兩個底數小於1?
師:(用彩筆描粗圖象,故意出錯)錯在哪裡?為什麼?
生:指數函式是單調遞增的,過定點(0, 1).
師:(引導學生規範表述,並板書)指數函式在(-∞, +∞)上單調遞增,圖象過定點(0, 1).
師:指數函式還有其它性質嗎?
師:也就是說值域為(0, +∞).
生:指數函式是非奇非偶函式.
師:有不同意見嗎?
生:當0
(其它預設:
(1)當a>1時,若x>0,則y>1;若x1.
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如5<7,2≤2,試想集合間是否有類似的“大小”關係呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
②設A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
③設C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能發現兩個集合間有什麼關係嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什麼區別?
(3)結合例子④,類比實數中的結論:“若a≤b,且b≤a,則a=b”,在集合中,你發現了什麼結論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區域內,從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據從樓頂向下看的,要想直觀表示集合,聯想集合還能用什麼表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關係.
(7)任何方程的解都能組成集合,那么x2+1=0的實數根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應該如何命名呢?
(9)與實數中的結論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什麼結論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關係來考慮.規定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內.教師指出:為了直觀地表示集合間的關係,我們常用平面上封閉曲線的內部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數解.
(8)空集記為 ,並規定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發現:對於任意兩個集合A,B有下列關係:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數解.
(8)空集.
高一數學教學工作計畫合集 篇30
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法.針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎.
二、高一上冊數學教學教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承、借簽、發展、創新之間的關係,體現基礎性、時代性、典型性和可接受性等,具有如下特點:
1.“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習激情.
2.“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神.
3.“科學性”與“思想性”:通過不同數學內容的聯繫與啟發,強調類比、化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神.
4.“時代性”與“套用性”:以具有時代感和現實感的素材創設情境,加強數學活動,發展套用意識.
三、高一上冊數學教學教法分析:
1.選取與內容密切相關的、典型的、豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以達到培養其興趣的目的.
2.通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式.
3.在教學中強調類比、化歸等數學思想方法,儘可能養成其邏輯思維的習慣.
四、學情分析
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著.他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望.我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從國中到高中學習方法的過渡.從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法.
五、高一上冊數學教學教學措施:
1、激發學生的學習興趣.由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步.
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考.
高一數學教學工作計畫合集 篇31
一、指導思想:
使學生進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會提高的需要。具體目標如下。
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關係,體現基礎性,時代性,典型性和可理解性等到,具有如下特點:
1、“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習活力。
2、“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、“科學性”與“思想性”:經過不一樣數學資料的聯繫與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維本事,培育理性精神。
4、“時代性”與“套用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展套用意識。
三、教法分析:
1、選取與資料密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以到達培養其興趣的目的。
2、經過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改善學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,儘可能養成其邏輯思維的習慣。
四、學情分析:
兩個班均屬普高班,學習情景良好,但學生自覺性差,自我控制本事弱,所以在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算本事太差,學生不喜歡去算題,嫌麻煩,只注重思路,所以在以後的教學中,重點在於培養學生的計算本事,同時要進一步提高其思維本事。
同時,由於國中課改的原因,高中教材與國中教材銜接力度不夠,需在新授時適機補充一些資料。所以時間上可能仍然吃緊。同時,其底子薄弱,所以在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和提高。
2、注意從實例出發,從感性提高到理性;注意運用比較的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維本事就解決實際問題的本事,以及培養提高學生的自學本事,養成善於分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
5、自始至終貫徹教學四環節,針對不一樣的教材資料選擇不一樣教法。
6、重視數學套用意識及套用本事的培養。