高一數學教學工作計畫範文合集 篇1
教學目標
1通過對冪函式概念的學習以及對冪函式圖象和性質的歸納與概括,讓學生體驗數學概念的形成過程,培養學生的抽象概括能力。
2使學生理解並掌握冪函式的圖象與性質,並能初步運用所學知識解決有關問題,培養學生的靈活思維能力。
3培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學重點、難點
重點:冪函式的性質及運用
難點:冪函式圖象和性質的發現過程
教學方法:問題探究法 教具:多媒體
教學過程
一、創設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關係?
(總結:根據函式的定義可知,這裡p是w的函式)
問題2:如果正方形的邊長為a,那么正方形的面積 ,這裡S是a的函式。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這裡V是a的函式。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這裡a是S的函式 問題5:如果某人 s內騎車行進了 km,那么他騎車的速度 ,這裡v是t的函式。
以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函式解析式有什麼共同點嗎?(右邊指數式,且底數都是變數) 這只是我們生活中常用到的一類函式的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什麼名字呢?(變數在底數位置,解析式右邊都是冪的形式)(適當引導:從自變數所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s , v=t-1都是自變數的若干次冪的形式。
教師指出:我們把這樣的都是自變數的若干次冪的形式的函式稱為冪函式。
冪函式的定義:一般地,我們把形如 的函式稱為冪函式(power function),其中 是自變數, 是常數。 1冪函式與指數函式有什麼區別?(組織學生回顧指數函式的概念) 結論:冪函式和指數函式都是我們高中數學中研究的兩類重要的基本初等函式,從它們的解析式看有如下區別: 對冪函式來說,底數是自變數,指數是常數 對指數函式來說,指數是自變數,底數是常數 例1判別下列函式中有幾個冪函式?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)
2冪函式具有哪些性質?研究函式應該是哪些方面的內容。前面指數函式、對數函式研究了哪些內容?
(學生討論,教師引導。學生回答。)
3冪函式的定義域是否與對數函式、指數函式一樣,具有相同的定義域?
(學生小組討論,得到結論。引導學生舉例研究。結論:冪指數 不同,定義域並不完全相同,應區別對待。)教師指出:冪函式y=xn中,當n=0時,其表達式y=x0=1;定義域為(-∞,0)U(0,+∞),特彆強調,當x為任何非零實數時,函式的值均為1,圖象是從點(0,1)出發,平行於x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函式的定義域,並指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學生解答,並歸納解決辦法。引導學生與指數函式、對數函式對照比較。引導學生具體問題具體分析,並作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函式的奇偶性也應具體分析。)
4上述函式①y=x ②y= ③y=x ④y=x 的單調性如何?如何判斷?
(學生思考,引導作圖可得。並加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示。見後附圖1
讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)
教師總評:冪函式的性質
(1)所有的冪函式在(0,+∞)上都有定義,並且圖象都過點(1,1),
(2)如果a>0,則冪函式的圖象通過原點,並在區間[0,+∞)上是增函式,
(3)如果a3等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如5<7,2≤2,試想集合間是否有類似的“大小”關係呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
②設A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
③設C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能發現兩個集合間有什麼關係嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什麼區別?
(3)結合例子④,類比實數中的結論:“若a≤b,且b≤a,則a=b”,在集合中,你發現了什麼結論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區域內,從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據從樓頂向下看的,要想直觀表示集合,聯想集合還能用什麼表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關係.
(7)任何方程的解都能組成集合,那么x2+1=0的實數根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應該如何命名呢?
(9)與實數中的結論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什麼結論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關係來考慮.規定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內.教師指出:為了直觀地表示集合間的關係,我們常用平面上封閉曲線的內部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數解.
(8)空集記為 ,並規定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發現:對於任意兩個集合A,B有下列關係:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數解.
(8)空集.
高一數學教學工作計畫範文合集 篇2
一、 指導思想
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展和社會進步的需要。具體目標如下:
1.突出數學基礎知識、基本技能、基本思想方法的培養
對數學基礎知識和基本技能的培養,要貼近教學實際,既注意全面,又突出重點,注重知識內在聯繫以及中學數學中所蘊涵的數學思想方法的培養。
2.重視數學基本能力的培養
數學基本能力主要包括空間想像、抽象概括、推理論證、運算求解、數據處理這幾方面的能力。根據高一上學期的內容,側重以下幾個方面:
(1)運算求解能力是思維能力和運算技能的結合,主要包括數的計算、估算和近似計算,式子的組合變形與分解變形,以及能夠針對問題探究運算方向、選擇運算公式、確定運算程式等。
(2)抽象概括能力的培養要求是:能夠通過對實例的探究發現研究對象的本質;能夠從給定的信息材料中概括出一些結論,並用於解決問題或做出新的判斷。
(3)推理論證能力的培養要求是:能夠根據已知的事實和已經獲得的正確的數學命題,運用演繹推理,論證某一數學命題的真假性。
(4)數據處理能力是指會收集、整理、分析數據,能夠從大量數據中提取對研究問題有用的信息並做出判斷,以解決給定的實際問題。
3.注重數學的套用意識和創新意識的培養
培養數學的套用意識,要求能夠運用所學的數學知識、思想和方法,構造數學模型,將一些簡單的實際問題轉化為數學問題,並加以解決。培養學生的創新意識,鼓勵學生創造性地解決問題。
4.提高學生學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。逐步認識數學的科學價值、套用價值和文化價值,崇尚數學的理性精神,體會數學的美學意義,形成批判性的思維習慣,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、 教材特點
高一上使用的是人教版《必修1》和《必修4》,這套教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑑、發展、創新的關係,體現了基礎性、時代性、典型性和可接受性等,具有如下特點:
1. 親和力:以生動活潑的呈現方式,激發學習興趣和美感,每章配有優美的章頭圖和詩一般的引言和富有哲理的數學家名言佳句。
2. 問題性:每節圍繞問題展開,設定問題情景,培養問題意識,以問題為切入點,形成問題鏈,來組織課堂教學
3. 思想性和套用性:通過不同數學內容的聯繫和啟發,強調類比、推廣、化歸和特殊化等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培養理性精神;取材具有時代感、現實感,加強數學活動,發展套用意識。
4. 可操作性:教材編寫體例就是以一堂課的全過程展開,易於學生自學、教師編寫教案,大致一節內容占三頁。
三、 學情分析
基本狀況:本年級共14個行政班級,其中2個實驗班,12個普通班。學生數共840人,由於初高中分別進行了課改,高中教材與國中教材銜接度遠遠不夠,需在新授的同時適時補充一些內容,因此時間上略緊。同時,因其底子薄弱,教學時必須注重基礎,夯實每個知識點。
四、 教學措施
1.加強自我學習,特別是兩個綱領性檔案——《普通高中數學課程標準》,《普通高中數學考試大綱》,準確把握教學要求,提高教學效率,不做無用功;
2.加強集體備課,發動全組同志,確定階段主講人,集思廣益,討論最佳化教學方案;平行班級統一進度,統一要求,統一作業,統一考試;
3.認真貫徹教學六認真的要求,精心組織教學,保護學生學習數學的積極性,重視數學學習能力培養;
4.加強銜接教學,適量打破模組式教學,使學生得到和諧的發展。
五、 教學進度
高一數學教學工作計畫範文合集 篇3
教學分析
課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.
2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如5<7,2≤2,試想集合間是否有類似的“大小”關係呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
②設A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
③設C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能發現兩個集合間有什麼關係嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什麼區別?
(3)結合例子④,類比實數中的結論:“若a≤b,且b≤a,則a=b”,在集合中,你發現了什麼結論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區域內,從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據從樓頂向下看的,要想直觀表示集合,聯想集合還能用什麼表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關係.
(7)任何方程的解都能組成集合,那么x2+1=0的實數根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應該如何命名呢?
(9)與實數中的結論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什麼結論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關係來考慮.規定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內.教師指出:為了直觀地表示集合間的關係,我們常用平面上封閉曲線的內部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數解.
(8)空集記為 ,並規定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發現:對於任意兩個集合A,B有下列關係:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數解.
(8)空集.
高一數學教學工作計畫範文合集 篇4
一 設計思想:
函式與方程是中學數學的重要內容,是銜接初等數學與高等數學的紐帶,再加上函式與方程還是中學數學四大數學思想之一,是具體事例與抽象思想相結合的體現,在教學過程中,我採用了自主探究教學法。通過教學情境的設定,讓學生由特殊到一般,有熟悉到陌生,讓學生從現象中發現本質,以此激發學生的成就感,激發學生的學習興趣和學習熱情。在現實生活中函式與方程都有著十分重要的套用,因此函式與方程在整個高中數學教學中占有非常重要的地位。
二 教學內容分析:
本節課是《普通高中課程標準》的新增內容之一,選自《普通高中課程標準實驗教課書數學I必修本(A版)》第94-95頁的第三章第一課時3.1.1方程的根與函式的的零點。
本節通過對二次函式的圖象的研究判斷一元二次方程根的存在性以及根的個數的判斷建立一元二次方程的根與相應的二次函式的零點的聯繫,然後由特殊到一般,將其推廣到一般方程與相應的函式的情形.它既揭示了國中一元二次方程與相應的二次函式的內在聯繫,也引出對函式知識的總結拓展。之後將函式零點與方程的根的關係在利用二分法解方程中(3.1.2)加以套用,通過建立函式模型以及模型的求解(3.2)更全面地體現函式與方程的關係,逐步建立起函式與方程的聯繫.滲透“方程與函式”思想。
總之,本節課滲透著重要的數學思想“特殊到一般的歸納思想”“方程與函式”和“數形結合”的思想,教好本節課可以為學好中學數學打下一個良好基礎,因此教好本節是至關重要的。
三 教學目標分析:
知識與技能:
1.結合方程根的幾何意義,理解函式零點的定義;
2.結合零點定義的探究,掌握方程的實根與其相應函式零點之間的等價關係;
3.結合幾類基本初等函式的圖象特徵,掌握判斷函式的零點個數和所在區間 的方法
情感、態度與價值觀:
1.讓學生體驗化歸與轉化、數形結合、函式與方程這三大數學思想在解決數學問題時的意義與價值;
2.培養學生鍥而不捨的探索精神和嚴密思考的良好學習習慣;
3.使學生感受學習、探索發現的樂趣與成功感
教學重點:函式零點與方程根之間的關係;連續函式在某區間上存在零點的判定方法。
教學難點:發現與理解方程的根與函式零點的關係;探究發現函式存在零點的方法。
四 教學準備
導學案,自主探究,合作學習,電子互動白板。
五 教學過程設計:
(一)、問題引人:
請同學們思考這個問題。用螢幕顯示判斷下列方程是否有實根,有幾個實根?
(1)
;(2)
?
學生活動:回答,思考解法。
教師活動:第二個方程我們不會解怎么辦?你是如何思考的?有什麼想法?我們可以考慮將複雜問題簡單化,將未知問題已知化,通過對第一個問題的研究,進而來解決第二個問題。對於第一個問題大家都習慣性地用代數的方法去解決,我們應該打破思維定勢,走出自己給自己畫定的牢籠!這樣我們先把所依賴的拐杖丟掉,假如第一個方程你不會解,也不會套用判別式,你要怎樣判斷其實根個數呢?
學生活動:思考作答。
設計意圖:通過設疑,讓學生對高次方程的根產生好奇。
(二)、概念形成:
預習展示1:
你能通過觀察二次方程的根及相應的二次函式圖象,找出方程的根,圖象與軸交點的坐標以及函式零點的關係嗎?
學生活動:觀察圖像,思考作答。
教師活動:我們來認真地對比一下。用投影展示學生填寫表格
問題1:你能通過觀察二次方程的根及相應的二次函式圖象,找出方程的根,圖象與
軸交點的坐標以及函式零點的關係嗎?
學生活動:得到方程的實數根應該是函式圖象與x軸交點的橫坐標的結論。
教師活動:我們就把使方程 成立的實數x稱做函式的零點.(引出零點的概念)
根據零點概念,提出問題,零點是點嗎?零點與函式方程的根有何關係?
學生活動:經過觀察表格,得出(請學生總結)
1)概念:函式的零點並不是“點”,它不是以坐標的形式出現,而是實數。例如函式的零點為x=-1,3
2)函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標.
3)方程有實數根函式的圖象與軸有交點函式有零點。
教師活動:引導學生仔細體會上述結論。
再提出問題:如何並根據函式零點的意義求零點?
學生活動:可以解方程而得到(代數法);
可以利用函式的圖象找出零點.(幾何法).
設計意圖:由學生最熟悉的二次方程和二次函式出發,發現一般規律,並嘗試的去總結零點,根與交點三者的關係。
(三)、探究性質:
(五)、探索研究(可根據時間和學生對知識的接受程度適當調整)
討論:請大家給方程的一個解的大約範圍,看誰找得範圍更小?
[師生互動]
師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區間大小情況。
生:分組討論,各抒己見。在探究學習中得到數學能力的提高
第五階段設計意圖:
一是為用二分法求方程的近似解做準備
二是小組探究合作學習培養學生的創新能力和探究意識,本組探究題目就是為了培養學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。
(六)、課堂小結:
零點概念
零點存在性的判斷
零點存在性定理的套用注意點:零點個數判斷以及方程根所在區間
(七)、鞏固練習(略)
高一數學教學工作計畫範文合集 篇5
教學分析
課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.
2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如57
②不等式組
③ax>b
二、創設二次不等式的生活背景實例,引入課題
採用課本上的實例,有關網路收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。
由於這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最後以課外思考題的形式設計相應習題。
(2)
採取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織並完成,並撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,儘管這些知識不完整,語言或許不規範,思維或許不嚴密。
之後,從特殊到一般,研究一般的二元一次不等式的解法。由於經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。
反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。於是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。
四、練習環節
可以說,即使到了高三,仍然有不少同學對於一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬於技能課,對於技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習題。對於練習,我採取多種方式,或叫學生上黑板板書,藉助學生練習規範解題格式;或者口答,說解題思路及答案;或者下面獨立練習。
五、課堂小結
知識,思想、方法及感悟等
六、課後作業
①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源於課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值範圍
變式一:戓將R改為空集,此時結論如何
變式二:仿上,自己改編條件,並解之。
反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。
高一數學教學工作計畫範文合集 篇6
指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
教學建議
1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學套用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的.視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。
5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特徵,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。
6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
教研課題
高中數學新課程新教法
教學進度
第一周 集 合
第二周 函式及其表示
第三周 函式的基本性質
第四周 指數函式
第五周 對數函式
第六周 冪函式
第七周 函式與方程
第八周 函式的套用
第九周 期中考試
第十十一周 空間幾何體
第十二周 點,直線,面之間的位置關係
第十三十四周 直線與平面平行與垂直的判定與性質
第十五十六周 直線與方程
第十八十九周 圓與方程
第二十周 期末考試
高一數學教學工作計畫範文合集 篇7
教學分析
課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.
2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如50。a≠1並不是必須的,常函式在高等數學裡是基本函式,也有重要的意義。為了使指數函式與對數函式能構成反函式,規定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”。
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變數在指數位置,從而初步建立函式模型y=ax。
[教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現y=(-2)x最好,更便於引發對a的討論,但一般不會出現。進而提出這類函式一般形式y=ax。
Ⅵ.教後反思回顧
一、對於指數函式概念的認識
指數函式是一種函式模型,其基本特徵是自變數在指數位置。底數取值範圍有規定,使得這一模型形式簡單又不失本質。不必糾結於“y=22x是否為指數函式”,把重點放在概念的合理性的理解以及體會模型思想。
二、對於培養學生思維習慣的考慮
在學生自主探索的過程中,教師應注意培養學生良好的思維習慣。實際上,選擇底數a的數據的大小和數量,需要對指數函式的性質有預判;從列表到作圖的過程中,都可以感受到指數函式單調性等性質;觀察並歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數函式的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數學知識,也初步體驗了研究問題的基本方法。
三、關於設計定位的反思
本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應採用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什麼”等問話形式,促使學生暴露思維過程。
高一數學教學工作計畫範文合集 篇8
一、學生狀況分析
學生整體水平一般,成績以中等為主,中上不多,後進生也有一些。幾個班中,從上課一周來看,學生的學習進取性還是比較高,愛問問題的同學比較多,但由於基礎知識不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標準實驗教科書·數學》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑑、發展、創新之間的關係,體現基礎性、時代性、典型性和可理解性等,具有親和力、問題性、科學性、思想性、套用性、聯繫性等特點。必修1有三章(集合與函式概念;基本初等函式;函式的套用);必修2有四章(空間幾何體;點線平面間的位置關係;直線與方程;圓與方程)。
三、教學任務
本期授課資料為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學質量目標
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高學生提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作
認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要資料,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學本事都得到提高和發展。
教學方法及推進措施
六、相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際本事出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫忙學生解決好從國中到高中學習方法的過渡。從高一齊就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:
(1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點。所列基礎知識依據課程標準設計,著眼於基礎知識與重點資料,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。
(3)培養學生解答考題的本事,經過例題,從形式和資料兩方應對所學知識進行本事方面的分析,引導學生了解數學需要哪些本事要求。
(4)讓學生經過單元考試,檢測自我的實際套用本事,從而及時總結經驗,找出不足,做好充分的準備
(5)抓好尖子生與後進生的輔導工作,提前展開數學奧競選拔和數學基礎輔導。
(6)重視數學套用意識及套用本事的培養。
(7)重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇於克服困難與戰勝困難的信心。
(8)合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用比較的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
(9)加強培養學生的邏輯思維本事和解決實際問題的本事,以及培養提高學生的自學本事,養成善於分析問題的習慣,進行辨證唯物主義教育。
(10)抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
(11)自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創新教學方法,把學生被動理解知識轉化主動學習知識。
七、教學進度安排:
(略)
高一數學教學工作計畫範文合集 篇9
一、具體目標:
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學……
二、本學期要到達的教學目標
1、雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其資料反映出來的數學思想和方法。在基本技能方面能按照必須的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2、本事培養:
能運用數學概念、思想方法,辨明數學關係,構成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,構成數學的意思;從而經過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3、思想教育:
培養高一學生,學習數學的興趣、信心和毅力及實事求是的科學態度,勇於探索創新的精神,及欣賞數學的美學價值,並懂的數學來源於實踐又反作用於實踐的觀點;數學中普遍存在的對立統一、運動變化、相互聯繫、相互轉化等觀點。
高一數學教學計畫上學期 篇6
一、具體目標:
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學
二、本學期要達到的教學目標
1.雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2.能力培養:
能運用數學概念、思想方法,辨明數學關係,形成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,形成數學的意思;從而通過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3. 思想教育:
高一數學教學工作計畫範文合集 篇10
一、指導思想
本學期高一備課組以學校工作計畫為指導,以提高教學質量為目標,以最佳化課堂教學為中心,團結合作,努力提高思想素質和業務素質,團結合作,互相學習,認真備好課,上好每一節課,並結合新教材的特點,開展研究性學習的活動,在教學中,抓好基礎知識教學,著重學生能力的培養,打好基礎,全面提高,為來年高考作好充分的準備,爭取優異的`成績。
二、教學目標、
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究三角函式的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識。
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗發現挫折矛盾頓悟新的發現這一科學發現歷程法。
(二)能力要求
1、培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示三角函式有關概念、公式和圖形的對應關係,培養記憶能力。
2、培養學生的運算能力。
(1)通過機率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過算法初步,算法步驟;程式框圖(起始框,判斷框,附值框);語言(順序,條件語句,循環語句)。第二部分,統計,第三步分,機率,古典概型,幾何概型。的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
三、具體措施
1、期中考前上好第一冊(必修3),期中考後完成好必修4。
2、抓好數學補差,培優活動各班在星期1或星期4的下午。
3、立足於教材。
4、要求學生完成課後練習及每一章課後習題。
5、我們組還繼續學習了《課堂教學論》,《現代教育技術》,努力學習多媒體課件的製作。
6、繼續認真開展師徒結對活動,以老帶新。師徒間經常聽課交流,認真評課。集中備課,共同商討教材等。
7、抓好競賽輔導,時間定於周三、周四的提前時間,周六的下午1點到3點。
8、段統一考試在周日或者周三的晚自修時間,每隔2周考一次。
9、上學期必修4的學分認定考試補考及落實工作。
10、回響學校教務處的備課計畫安排,督促組員落實工作。
11、抓好集體備課。
高一數學教學工作計畫範文合集 篇11
一、指點思想:
在九年義務教育數學課程的根底上,進一步領會數學對開展本身思想才能的作用,領會數學對推進社會提高和迷信開展的意義以及數學的文明價值,進步做為將來公民所必要的數學素養,以滿足本人開展與社會提高的需求。
二、教學詳細目的
1、取得必要的數學根底知識和根本技藝,了解根本的數學概念、數學結論的實質,理解概念、結論等發生的背景、使用,領會其中所蘊涵的數學思想和辦法,以及它們在後續學習中的作用。經過不同方式的自主學習、探求活動,體會數學發現和締造的歷程。
2、進步空間想像、籠統概括、推實際證、運算求解、數據處置等根本才能。
3、進步數學地提出、剖析和處理Issue(問題)(包括容易的實踐Issue(問題))的才能,數學表達和交流的才能,開展獨立獲得數學知識的才能。
4、開展數學使用認識和創新認識,力爭對理想世界中蘊涵的少許數學形式實行思考和作出判別。
5、進步學習數學的興致,樹立學好數學的決心,構成鍥而不捨的研究肉體和迷信態度。
6、具有一定的數學視野,逐漸認得數學的迷信價值、使用價值和文明價值,構成批判性的思想習氣,崇尚數學的感性肉體,領會數學的美學意義,從而進一步樹立辯證唯心主義和歷史唯心主義世界觀。
三、教材特點:
我們所運用的教材是北師大版《普通高中課程規範實驗教科書·數學1(?)》,它在堅持我國數學教育優秀保守的前提下,仔細處置承繼,借簽,開展,創新之間的關係,強調了Issue(問題)提出,籠統概括,剖析了解,思考交流等探討性學習進程。詳細特點如下:
1、“親和力”:以生動生動的展現方式,激起興致和美感,引發學習熱情。
2、“Issue(問題)性”:專門布置了“課題學習”和“探求活動”,培育Issue(問題)認識,孕育創新肉體。
3、“迷信性”與“思想性”:經過不同數學內容的聯絡與啟示,強調類比,推行,特別化,化歸等思想辦法的運用,學習數學地思考Issue(問題)的方式,進步數學思想才能,培育感性肉體。
4、“時代性”與“使用性”:教材中有“信息技巧提議”和“信息技巧使用”,以具有時代性和理想感的素材創設情境,增強數學活動,開展使用認識。
5、“人文使用價值性”:編寫了少許閱讀資料,開闢先生視野,從數學史的開展腳印中獲得養分和動力,片面感受數學的迷信價值、使用價值和文明價值。
四、教法剖析:
1、選取與內容親密相干的,典型的,豐厚的和先生熟習的素材,用生動生動的言語,創設可以表現數學的概念和結論,數學的思想和辦法,以及數學使用的學習情境,使先生發生對數學的親切感,引發先生“看個終究”的激動,以到達培育其興致的目的。
2、經過“察看”,“思考”,“探求”等欄目,引發先生的思考和探究活動,實在改良先生的學習方式。
3、在教學中強調類比,推行,特別化,化歸等數學思想辦法,盡能夠養成其邏輯思想的習氣。
五、教學措施:
1、激起先生的學習興致。由數學活動、故事、吸引人的課、合理的請求、師生說話等途徑樹立先生的學習決心,進步學習興致,在客觀作用下上升和提高。
2、留意從實例動身,從理性進步到感性;留意運用比照的辦法,重複比擬相近的概念;留意聯合直觀圖形,解釋籠統的知識;留意從已有的知識動身,啟示先生思考。
3、增強培育先生的邏輯思想才能就處理實踐Issue(問題)的才能,以及培育進步先生的自學才能,養成擅長剖析Issue(問題)的習氣,實行辨證唯心主義教育。
4、抓住公式的推導和內在聯絡;增強溫習檢驗任務;抓住典型例題的剖析,講清解題的關鍵和根本辦法,注重進步先生剖析Issue(問題)的才能。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法
6、注重數學使用認識及使用才能的培育。
六、教學進度布置
依據縣局一致布置。
高一數學教學工作計畫範文合集 篇12
一、基本情況
高一計算機1323班共有學生55人,其中男生42人,女生13人。高一新生剛進入高中,學習環境新,好奇心強.但是普遍學習習慣不好,數學基礎較差,學習興趣不濃.所以工作的重心在於提高學生對數學科的興趣,以及在補足國中知識漏洞的前提下,進一步的夯實學生基礎.
二、指導思想
全面提高學生的科學文化素養,圍著課堂教學這箇中心,更新教育觀念,進一步提高教學水平,培養學生分析問題解決問題的能力,同時扎紮實實抓好基礎知識,注意學生習慣的培養,為三年後高考打下堅實的基礎。
三、工作任務和措施
任務:基礎模組第一章至第四章
第一章集合(9月份
第二章不等式(10月份
第三章函式(11月份
第四章指數函式與對數函式(12月份-1月份
措施:
1.夯實三基
知識、技能和能力三者關係是互相依存、互相促進的整體,能力是在知識的教學和技能的培訓中形成的,通過數學思想的形成和數學方法的掌握,能力才得到培養和發展,同時,能力的提高又會對知識的理解和掌握起促進作用。因此,在教學中應注意:
A.教學面向全體學生。
B.重視概念的歸納、規律的總結、技能的訓練。
C.重視知識的產生、發展過程。
D.加強知識過關檢測,做好查漏補缺工作。
2.最佳化課堂教學結構
A.精心設計課堂教學:
B.課堂練習典型化;
C.教學語言精練化
D.板書規範化。
3.加強學習方法指導:
A.指導學生看書,培養學生主動學習的習慣。
B.指導學生整理知識,總結解題規律,歸納典型例題解法及一題多解與多題一解。
4.加強學風建設與學習習慣的培養。
適當安排作業,認真檢查督促,加強優生和後進生的輔導,對學生的作業儘量做到面批。
四、各章節授課具體時間安排:
(基礎模組第一章集合(約12課時
(1理解集合、元素及其關係,掌握集合的表示法。
(2掌握集合之間的關係(子集、真子集、相等。
(3理解集合的運算(交、並、補。
(4了解充要條件。
(基礎模組第二章不等式(約12課時
(1理解不等式的基本性質。
(2掌握區間的概念。高一上數學教學計畫高一上數學教學計畫。
(3掌握一元二次不等式的解法。
基礎模組)第三章函式(約20課時
(1理解函式的概念和函式的三種表示法。
(2理解函式的單調性與奇偶性。
(3能運用函式的知識解決有關實際問題。
(基礎模組第四章指數函式與對數函式(約20課時
(1理解有理指數冪,掌握實數指數冪及其運算法則,掌握利用計算器進行冪的計算方法。
(2了解冪函式的概念及其簡單性質。
(3理解指數函式的概念、圖像及性質。
(4理解對數的概念(含常用對數、自然對數及積、商、冪的對數,掌握利用計算器求對數值的方法。
(5理解對數函式的概念、圖像及性質。
(6能運用指數函式與對數函式的知識解決有關實際問題。
高一數學教學工作計畫範文合集 篇13
一、指導思想:
使學生進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會提高的需要。具體目標如下。
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關係,體現基礎性,時代性,典型性和可理解性等到,具有如下特點:
1、“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習活力。
2、“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、“科學性”與“思想性”:經過不一樣數學資料的聯繫與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維本事,培育理性精神。
4、“時代性”與“套用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展套用意識。
三、教法分析:
1、選取與資料密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以到達培養其興趣的目的。
2、經過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改善學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,儘可能養成其邏輯思維的習慣。
四、學情分析:
兩個班均屬普高班,學習情景良好,但學生自覺性差,自我控制本事弱,所以在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算本事太差,學生不喜歡去算題,嫌麻煩,只注重思路,所以在以後的教學中,重點在於培養學生的計算本事,同時要進一步提高其思維本事。
同時,由於國中課改的原因,高中教材與國中教材銜接力度不夠,需在新授時適機補充一些資料。所以時間上可能仍然吃緊。同時,其底子薄弱,所以在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和提高。
2、注意從實例出發,從感性提高到理性;注意運用比較的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維本事就解決實際問題的本事,以及培養提高學生的自學本事,養成善於分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
5、自始至終貫徹教學四環節,針對不一樣的教材資料選擇不一樣教法。
6、重視數學套用意識及套用本事的培養。
高一數學教學工作計畫範文合集 篇14
一、指導思想:
在新課程改革的教學理念下,以發展教育的觀念為指引,以學校和教導處的工作計畫為指南,改變教學觀念,改進教學方法,更新教學手段,提高教學效率,提高學生的閱讀能力、解題能力,促進學生學習態度、學習方式的轉變,培養學生自主學習、積極探究、樂於合作的精神,注重學生數學素養的提高,關注學生的思想情感和交流,培養學生的創新思維和創造能力,為學生的可持續發展奠定基礎。新課標理念下的政治教學活動應該不同於傳統的課堂教學,改變教師的教法和學生的學法是在教學活動中體現最新教學理念的關鍵。“導學案”應課堂教學改革與傳統教學模式的矛盾而生,它既可以將學生自主學習引入正軌,又將學生可以自主探究理解完成的知識點與題目在課下解決,這樣,課堂上教師就有足夠的時間與學生共同研究解決本節課的重點與難點,從而提高了課堂效率。我們應該認識到改革是教學的生命,課程改革與課堂教學改革是一個不斷發展、不斷探索的過程。在這個過程中,要求教師能夠正確、深刻地理解新課程理念,辯證地分析和處理各種在課程改革中產生的觀念和做法,樹立正確的育人理念,開拓進取,不斷尋求新的有效的方法促進學生的全面發展。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》必修1、必修2,根據必修1、2設計的導學案。它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關係,體現基礎性,時代性,典型性和可接受性,辯證地分析和處理各種在課程改革中產生的觀念和做法,樹立正確的育人理念,開拓進取,不斷尋求新的有效的方法促進學生的全面發展。
三、學情分析:
本學期任教高一(35、36)班的數學,(35、36)班是平衡班,部分學生學習數學的熱情較高漲,比較自覺,能認真完成作業,但數學層次並不相同,部分同學基礎薄弱,缺乏學習數學的方法。
四、教學策略、教研活動:
1、落實提高課堂效率,導學案的設計目的是為了將學生的導學案與教師的集體備課設計為一體,第一、課前預習。教師設計此部分內容之前必須針對本課題的三維目標與考綱認真備課,列出本節課的知識要點,對於重難點做特殊標記,並針對預習提綱給出的內容設計預習檢測題,預習檢測題難度不易過高,與本課題的重難點相關的知識點有選擇性的錄入此處,讓學生在做此部分時不能感覺太簡單了也不能感覺無從下手,要有一部分題目讓他能夠通過討論探究完成。第二,探究活動。第三、課堂檢測。此處設定的題目難度深度一定比預習檢測部分要更難更深。此部分不要求所有的學生都在課前做。從此處開始分“才”完成,有能力的同學可以提前嘗試著做,做題慢的同學可以先不必看,學生按照自己的情況自行決定。第四,拓展延伸。這裡出現的題目屬於拔高題,一般很少有學生在課前能夠做對,所以此處也不要求學生課前做,當然不排除有的同學想要挑戰一下,這是提倡並且大力表揚的。第五,反思總結。學生利用這部分一方面可以小結本節課的內容,另一方面可以對自己本課題從預習探究到課堂探究各個環節進行反思,便於日後改進。上課時要明確重點、難點,重點要突出,難點要分散,並且難點要解決好。課堂講新課的時間一定要控制在20分鐘之內,最好能在10分鐘之內解決問題,多給時間學生練習或進行與學習有關的活動。
2、做到課後教學反思
上完課之後需要思考三個問題:我這節課上得如何有沒有要糾正與改進的?有誰的課比我還優秀?怎樣上這節課更好、最好?並在學案、備課筆記上做好記錄,為以後的教育教學提供參考。
3、落實好備課電子化,為加快對試驗課的理解和掌握,積極探索教改進程,建立備課組資料庫,備課組成員要積極藉助網路信息收集和篩選資料存庫,發揮集體智慧,在備課組會議上整理,及時套用到具體教學中。注重學案導學,編好用好導學案。
4、積極聽有經驗的教師的課,認真改進課堂教學上的薄弱環節。注重研究教師如何講、注重研究學生如何學,積極推進新課改,提高課堂效率。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生交流等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善於分析問題的習慣。
3、抓住公式的'推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
4、紮實基礎的同時重視數學套用意識及套用能力的培養。
5、落實抓好平時的一周一限時訓練,一周一綜合,注重知識的滲透。
6、落實競賽輔導:主要利用下午第三節時間,一個星期進行一至兩次輔導。
高一數學教學工作計畫範文合集 篇15
一.指導思想:
以發展教育的理念為指引,以學校教務處、教研組、年級組工作計畫為指南,加強備課組教師的教育教學理論學習,更新教學觀念,落實教學常規,全面提高學生的數學能力,尤其是提高創新意識和實踐能力,為社會培養創造型人才。
二.工作目標
1、全組成員精誠團結,互相學習,取長補短,力爭使我們高一數學備課組組成為一個優秀集體。
2、規定集體備課的時間(單周二上午第三節),分工協作,加強研討,統一助學案,統一教學進度,每周一練,又要根據本班的學情進行復備。
3、積極參與備課組的教學資源的建設,豐富部落格內容,鼓勵每位教師就自己在教學中的經驗、體會或教訓,及時總結。
三.學情分析:
1-2班屬普高班, 3-8班屬綜合重點班,學習情況在整個年段較好,大部分學生基礎相比較較紮實,上個學期,學生自覺性較好,自我控制力強,但部分學生上進心仍然不太強,缺少緊迫感,自我約束和自我提高能力有待加強,並且課堂內容除了基礎,也要注重能力培養,適當增加難度,向高考看齊。11-17班屬綜合普通班,學習情況一般,課堂主體性差,自我控制能力較弱,因此在教學中需時時提醒學生,培養其自覺性,9班園藝班,10班計算機班,學習情況一般,學生學習自覺性差,會出現各種各樣的違紀行為。經過一個學期的鍛鍊,各班數學計算能力有一定的提高,基本能脫離計算器,但很多學生偏科嚴重,上課走神,說話,睡覺,作業不按時按質完成,學習數學的積極性,主動性較差。所以在以後的教學中,重點在於培養學生學習數學的興趣,增強課堂的趣味性,教師上課照顧到全部學生。同時普通班和3+2班,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
四.具體工作和措施:
1.認真學習教學大綱和鑽研教材教法,把握好教材的廣度、深度和難度。
2.積極進行集體備課,為了能夠將集體備課落實到實處,集體備課做到統一時間,統一地點。
3..抓好每次備課組活動。遵守會議制度,活動目標明確,重點突出,形式多樣,確定專題發言人,能提前準備好教案,活動能充分討論,取長補短,做好記錄。
4.本組教師年輕化程度高,因此要加大新課標的學習力度,通過備課組學習,集體討論,個人學習為主,要求每人在學期末能撰寫一篇論文或案例,使每位教師由教學型向研究型邁進。
5.落實新老教師的傳、幫、帶工作,師徒結對,促進全體教師共同成長。
6.抓好國中與高中數學基礎知識、基本技能和基本數學方法的銜接教學,使知識系統化、網路化,牢固打好數學基礎。
7.課堂教學要多些師生互動,活躍課堂氣氛,教學中要注重滲透數學思想方法和數學雙基的教學。
8.教學中要注重:
(1)強化思維過程,努力提高學生的理性思維能力;
(2)增強實踐意識、重視探究和套用;
(3)倡導主動學習,營造自主探索和套用:教師要善於從教材實際和社會生活中提出問題,開設研究性課題,讓學生自主學習討論交流,在解決問題中激發興趣、樹立信心,培養鑽研精神,提高數學表達能力和數學交流能力;
9.貫徹落實教學常規,作業全批全改,在作業上寫好激勵性的評語。
10.精講精練,落實單元過關測試,教師要全批全改,及時認真講評。並做好試卷補償練習,單元卷由備課組成員輪流負責,做到側重知識點的覆蓋,難度控制(不可太難);
11.加強尖子生的培養和後進生的轉化工作。做好尖子生的培養工作及所有學生的學習情況跟蹤工作,爭取不讓學生掉隊,認真做好因材施教,積極探討“分層教學”的教學方法;
12.指導學生儘快適應高、國中過渡階段的學習,教學時應注意 高、國中知識的銜接,並對學生進行學法指導。
13.儘快了解學生的數學的基本情況,進一步培養好學生學習數學的興趣。
14.做好教情學情的調查,及時調整教與學,制定好研究性課題,組織本備課組教師做好學生的指導工作。
以上幾點就是我們高一數學備課組,在本學期的工作計畫,我們全組老師將會團結合作,共同努力,落實好學校和各部門的任務,並能夠按照自身特點和所教班級的具體情況認真做好自己的教育教學工作。
高一數學教學工作計畫範文合集 篇16
一、指導思想:
遵循“教育要面向世界,面向未來,面向現代化”和“教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人”的指導思想,使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會提高的需要。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承、借簽、發展、創新之間的關係,體現基礎性、時代性、典型性和可理解性等,具有如下特點:
1、“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習活力。
2、“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、“科學性”與“思想性”:經過不一樣數學資料的聯繫與啟發,強調類比、化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維本事,培育理性精神。
4、“時代性”與“套用性”:以具有時代感和現實感的素材創設情境,加強數學活動,發展套用意識。
三、教法分析:
1、選取與資料密切相關的、典型的、豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以到達培養其興趣的目的。
2、經過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改善學生的學習方式。
3、在教學中強調類比、化歸等數學思想方法,儘可能養成其邏輯思維的習慣。
四、學情分析:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長。應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際本事出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫忙學生解決好從國中到高中學習方法的過渡。從高一齊就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和提高。
2、注意從實例出發,從感性提高到理性;注意運用比較的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維本事和解決實際問題的本事,提高學生的自學本事,養成善於分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
5、重視數學套用意識及套用本事的培養。
高一數學教學工作計畫範文合集 篇17
本學期擔任高一X1、X2兩班的數學教學工作,兩班學生共有X人,通過一期的高中學習,學習能力更加參差不齊,但兩個班的學生整體水平較高;部分學生學習習慣不好,不能正確評價自己,這給教學工作帶來了一定的難度,特別X1班部分同學學習方法問題嚴重:只做,不歸納總結,學習效率低。學校要求高,教學任務艱巨。為把本學期教學工作做好,制定如下教學工作計畫。
一、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。(3)在探究三角函式、平面向量,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)能力要求
1、培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示弧度、向量有關概念、三角公式和三角函式的圖象,培養記憶能力。
2、培養學生的運算能力。
(1)通過三角函式求值與化簡問題的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過三角函式、平面向量的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
3、培養學生的思維能力。
(1)通過對簡易邏輯的教學,培養學生思維的周密性及思維的邏輯性。
(2)通過不等式、函式的一題多解、多題一解,培養思維的靈活性和敏捷性,發展發散思維能力。
(3)通過三角函式、函式有關性質的引伸、推廣,培養學生的創造性思維。
(4)加強知識的橫向聯繫,培養學生的數形結合的能力。
(5)通過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。
(三)知識目標
二、教學要求
(一)三角函式
1理解任意角的概念、弧度的意義;能正確地進行弧度與角度的換算.
2掌握任意角的正弦、餘弦、正切的定義.並會利用與單位圓有關的三角函式線表示正弦、餘弦和正切;了解任意角的餘切、正割、餘割的定義;掌握同角三角函式的基本關係式,掌握正弦、餘弦的誘導公式.
3.掌握兩角和與兩角差的正弦、餘弦、正切公式;掌握二倍角的正弦、餘弦、正切公式;通過公式的推導,了解它們的內在聯繫,從而培養邏輯推理能力
4能正確運用三角公式,進行簡單三角函式式的化簡、求值及恆等式證明(包括引出半角、積化和差、和差化積公式,但不要求記憶).
5.會用與單位圓有關的三角函式線畫正弦函式、正切函式的圖象.並在此基礎上由誘導公式畫出餘弦函式的圖象;了解周期函式與最小正周期的意義;了解奇偶函式的意義;並通過它們的圖象理解正弦函式、餘弦函式、正切函式的性質以及簡化這些函式圖象的繪製過程;會用“五點法”畫正弦函式、餘弦函式和函式y=Asin(ωx+φ)的簡圖.理解A,ω、φ的物理意義.
6.會由已知三角函式值求角.並會用符號arcsinx、arccosx、arctanx表示角。
(二)平面向量
1理解向量的概念,掌握向量的幾何表示,了解共線問量的概念
2掌握向量的加法與減法
3掌握實數與向量的積,理解兩個向量共線的充要條件
4了解平面向量的基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算.
5掌握平面向量的數量積及其幾何意義,了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件
6掌握平面兩點間的距離公式,掌握線段的定比分點和中點坐標公式,並能熟練運用;掌握平移公式
7掌握正弦定理、餘弦定理,並能運用它們解斜三角形,能利用計算器解決解斜三角形的汁算問題通過解三角形的套用的教學,繼續提高運用所學知識解決實際問題的能力
8通過“實習作業解三角形在測量中的套用”,提高套用數學知識解決實際問題的能力和實際操作的能力
9通過“研究性學習課題:向量在物理中的套用”,學會提出問題,明確探究方向,體驗數學活動的過程·培養創新精神和套用能力,學會交流.
三、教學重點
1、掌握同角三角函式的基本關係式
2.掌握兩角和與兩角差的正弦、餘弦、正切公式;掌握二倍角的正弦、餘弦、正切公式;3.用“五點法”畫正弦函式、餘弦函式和函式y=Asin(ωx+φ)的簡圖。
4.掌握向量的加法與減法,掌握平面向量的坐標運算.掌握實數與向量的積,理解兩個向量共線的充要條件。掌握正弦定理、餘弦定理,並能運用它們解斜三角形
四、教學難點
1.函式y=Asin(ωx+φ)的簡圖
2.會用與單位圓有關的三角函式線畫正弦函式、正切函式的圖象
3.掌握正弦定理、餘弦定理,並能運用它們解斜三角形
五、工作措施.
1、抓好課堂教學,提高教學效益。
課堂教學是教學的主要環節,因此,抓好課堂教學是教學之根本,是大面積提高數學成績的主途徑。
(1)、紮實落實集體備課,通過集體討論,抓住教學內容的實質,形成較好的教學方案,擬好典型例題、練習題、周練題、章考題。
(2)、加大課堂教改力度,培養學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養學生自主探究的精神,通過“知識的產生,發展”,逐步形成知識體系;通過“知識質疑、展活”遷移知識、套用知識,提高能力。同時要養成學生良好的學習習慣,不斷提高學生的數學素養,從而提高數學素養,並大面積提高數學成績。
2、加強課外輔導,提高競爭能力。
課外輔導是課堂的有力補充,是提高數學成績的有力手段。
(1)加強數學數學競賽的指導,提高學習興趣。
(2)加強學習方法的指導,全方面提高他們的數學能力,特別是自主能力,並通過強化訓練,不斷提高解題能力,使他們的數學成績更上一城樓。
(2)、加強對邊緣生的輔導。邊緣生是一個班級教學成敗的關鍵,因此,我將下大力氣輔導邊緣生,通過個別加集體的方法,並定時單獨測試,面批面改,從而使他們的數學成績有質的飛躍。
3、搞好單元考試、階段性考試的分析。
學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,並指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。
六、進度安排.
第四章三角函式
§4.1角的概念的推廣………………………………………………………………………………2課時
§4.2弧度制…………………………………………………………………………………………2課時
§4.3任意角的三角函式……………………………………………………………………………2課時
§4.4同角三角函式的關係…………………………………………………………………………2課時
§4.5誘導公式………………………………………………………………………………………2課時
§4.6兩角和與差三角函式…………………………………………………………………………7課時
§4.7二倍角公式……………………………………………………………………………………3課時
§4.8三角函式的圖象與性質………………………………………………………………………4課時
§4.9函式y=sin(ωx+φ)的圖象…………………………………………………………………3課時
§4.10正切函式的圖象與性質………………………………………………………………………3課時
§4.11給值求角………………………………………………………………………………………4課時
第五章平面向量…………………
§5.1向量……………………………………………………………………………………………1課時
§5.2向量的加法及減法……………………………………………………………………………2課時
§5.3實數與向量的積………………………………………………………………………………2課時
§5.4平面向量的坐標運算…………………………………………………………………………2課時
§5.5線段的定比分點………………………………………………………………………………2課時
§5.6平面向量的坐標運算…………………………………………………………………………2課時
§5.7平面向量的數量積及運算律…………………………………………………………………2課時
§5.8平面向量數量積的坐標表示…………………………………………………………………2課時
§5.9正弦定理、餘弦定理…………………………………………………………………………2課時
§5.10解斜三角形套用舉例…………………………………………………………………………2課時
§5.11實習作業………………………………………………………………………………………2課時
第六章不等式…………………
§6.1不等式的性質…………………………………………………………………………………3課時
§6.2均值定理………………………………………………………………………………………2課時
§6.3不等式的證明…………………………………………………………………………………6課時
§6.4不等式的解法…………………………………………………………………………………3課時
期末複習20課時