高中數學備課教案模板

高中數學備課教案模板 篇1

一、教學目標:

知識與技能:了解直線參數方程的條件及參數的意義

過程與方法:能根據直線的幾何條件,寫出直線的參數方程及參數的意義

情感、態度與價值觀:通過觀察、探索、發現的創造性過程,培養創新意識。

二、重難點:教學重點:曲線參數方程的定義及方法

教學難點:選擇適當的參數寫出曲線的參數方程.

三、教學方法:啟發、誘導發現教學.

四、教學過程

(一)、複習引入:

1.寫出圓方程的標準式和對應的參數方程。

圓參數方程 (為參數)

(2)圓參數方程為: (為參數)

2.寫出橢圓參數方程.

3.複習方向向量的概念.提出問題:已知直線的一個點和傾斜角,如何表示直線的參數方程?

(二)、講解新課:

1、問題的提出:一條直線L的傾斜角是,並且經過點P(2,3),如何描述直線L上任意點的位置呢?

如果已知直線L經過兩個

定點Q(1,1),P(4,3),

那么又如何描述直線L上任意點的

位置呢?

2、教師引導學生推導直線的參數方程:

(1)過定點傾斜角為的直線的

參數方程

(為參數)

【辨析直線的參數方程】:設M(x,y)為直線上的任意一點,參數t的幾何意義是指從點P到點M的位移,可以用有向線段數量來表示。帶符號.

(2)、經過兩個定點Q,P(其中)的直線的參數方程為。其中點M(X,Y)為直線上的任意一點。這裡參數的幾何意義與參數方程(1)中的t顯然不同,它所反映的是動點M分有向線段的數量比。當時,M為內分點;當且時,M為外分點;當時,點M與Q重合。

(三)、直線的參數方程套用,強化理解。

1、例題:

學生練習,教師準對問題講評。反思歸納:

1)求直線參數方程的方法;

2)利用直線參數方程求交點。

2、鞏固導練:

補充:

1)直線與圓相切,那么直線的傾斜角為(A)

A.或 B.或 C.或 D.或

2)(坐標系與參數方程選做題)若直線與直線(為參數)垂直,則 .

解:直線化為普通方程是,

該直線的斜率為,

直線(為參數)化為普通方程是,

該直線的斜率為,

則由兩直線垂直的充要條件,得, 。

(四)、小結:

(1)直線參數方程求法;

(2)直線參數方程的特點;

(3)根據已知條件和圖形的幾何性質,注意參數的意義。

(五)、作業:

補充:設直線的參數方程為(t為參數),直線的方程為y=3x+4則與的距離為_______

【考點定位】本小題考查參數方程化為普通方程、兩條平行線間的距離,基礎題。

解析:由題直線的普通方程為,故它與與的距離為。

五、教學反思

高中數學備課教案模板 篇2

一、教學目標

1.知識與技能

(1)掌握畫三視圖的基本技能

(2)豐富學生的空間想像力

2.過程與方法

主要通過學生自己的親身實踐,動手作圖,體會三視圖的作用。

3.情感態度與價值觀

(1)提高學生空間想像力

(2)體會三視圖的作用

二、教學重點、難點

重點:畫出簡單組合體的三視圖

難點:識別三視圖所表示的空間幾何體

三、學法與教學用具

1.學法:觀察、動手實踐、討論、類比

2.教學用具:實物模型、三角板

四、教學思路

(一)創設情景,揭開課題

“橫看成嶺側看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學習空間幾何體的三視圖。

在國中,我們已經學習了正方體、長方體、圓柱、圓錐、球的三視圖(正視圖、側視圖、俯視圖),你能畫出空間幾何體的三視圖嗎?

(二)實踐動手作圖

1.講台上放球、長方體實物,要求學生畫出它們的三視圖,教師巡視,學生畫完後可交流結果並討論;

2.教師引導學生用類比方法畫出簡單組合體的三視圖

(1)畫出球放在長方體上的三視圖

(2)畫出寶特瓶(實物放在桌面上)的三視圖

學生畫完後,可把自己的作品展示並與同學交流,總結自己的作圖心得。

作三視圖之前應當細心觀察,認識了它的基本結構特徵後,再動手作圖。

3.三視圖與幾何體之間的相互轉化。

(1)投影出示圖片(課本P10,圖1.2-3)

請同學們思考圖中的三視圖表示的幾何體是什麼?

(2)你能畫出圓台的三視圖嗎?

(3)三視圖對於認識空間幾何體有何作用?你有何體會?

教師巡視指導,解答學生在學習中遇到的困難,然後讓學生髮表對上述問題的看法。

4.請同學們畫出1.2-4中其他物體表示的空間幾何體的三視圖,並與其他同學交流。

(三)鞏固練習

課本P12練習1、2P18習題1.2A組1

(四)歸納整理

請學生回顧發表如何作好空間幾何體的三視圖

(五)課外練習

1.自己動手製作一個底面是正方形,側面是全等的三角形的稜錐模型,並畫出它的三視圖。

2.自己製作一個上、下底面都是相似的正三角形,側面是全等的等腰梯形的稜台模型,並畫出它的三視圖。