八年級下冊數學教案

八年級下冊數學教案 篇1

分式的乘除(二)

一、教學目標:熟練地進行分式乘除法的混合運算.

二、重點、難點

1.重點:熟練地進行分式乘除法的混合運算.

2.難點:熟練地進行分式乘除法的混合運算.

3.認知難點與突破方法:

緊緊抓住分式乘除法的混合運算先統一成為乘法運算這一點,然後利用上節課分式乘法運算的基礎,達到熟練地進行分式乘除法的混合運算的目的.課堂練習以學生自己討論為主,教師可組織學生對所做的題目作自我評價,關鍵是點撥運算符號問題、變號法則.

三、例、習題的意圖分析

1. P17頁例4是分式乘除法的混合運算. 分式乘除法的混合運算先把除法統一成乘法運算,再把分子、分母中能因式分解的多項式分解因式,最後進行約分,注意最後的結果要是最簡分式或整式.

教材P17例4隻把運算統一乘法,而沒有把25x2-9分解因式,就得出了最後的結果,教師在見解是不要跳步太快,以免學習有困難的學生理解不了,造成新的疑點.

2, P17頁例4中沒有涉及到符號問題,可運算符號問題、變號法則是學生學習中重點,也是難點,故補充例題,突破符號問題.

四、課堂引入

計算

(1) (2)

五、例題講解

(P17)例4.計算

[分析] 是分式乘除法的混合運算. 分式乘除法的混合運算先統一成為乘法運算,再把分子、分母中能因式分解的多項式分解因式,最後進行約分,注意最後的計算結果要是最簡的.

(補充)例.計算

(1)

= (先把除法統一成乘法運算)

= (判斷運算的符號)

= (約分到最簡分式)

(2)

= (先把除法統一成乘法運算)

= (分子、分母中的多項式分解因式)

=

=

六、隨堂練習

計算

(1) (2)

(3) (4)

七、課後練習

計算

(1) (2)

(3) (4)

八、答案:

六.(1) (2) (3) (4)-y

七. (1) (2) (3) (4)

八年級下冊數學教案 篇2

分式的加減(一)

一、教學目標:(1)熟練地進行同分母的分式加減法的運算.

(2)會把異分母的分式通分,轉化成同分母的分式相加減.

二、重點、難點

1.重點:熟練地進行異分母的分式加減法的運算.

2.難點:熟練地進行異分母的分式加減法的運算.

3.認知難點與突破方法

進行異分母的分式加減法的運算是難點,異分母的分式加減法的運算,必須轉化為同分母的分式加減法,,然後按同分母的分式加減法的法則計算,轉化的關鍵是通分,通分的關鍵是正確確定幾個分式的最簡公分母,確定最簡公分母的一般步驟:(1)取各分母係數的最低公倍數;(2)所出現的字母(或含字母的式子)為底的冪的因式都要取;(3)相同字母(或含字母的式子)的冪的因式取指數的.在求出最簡公分母后,還要確定分子、分母應乘的因式,這個因式就是最簡公分母除以原分母所得的商.

異分母的分式加減法的一般步驟:(1)通分,將異分母的分式化成同分母的分式;(2)寫成“分母不便,分子相加減”的形式;(3)分子去括弧,合併同類項;(4)分子、分母約分,將結果化成最簡分式或整式.

三、例、習題的意圖分析

1. P18問題3是一個工程問題,題意比較簡單,只是用字母n天來表示甲工程隊完成一項工程的時間,乙工程隊完成這一項工程的時間可表示為n+3天,兩隊共同工作一天完成這項工程的 .這樣引出分式的加減法的實際背景,問題4的目的與問題3一樣,從上面兩個問題可知,在討論實際問題的數量關係時,需要進行分式的加減法運算.

2. P19[觀察]是為了讓學生回憶分數的加減法法則,類比分數的加減法,分式的加減法的實質與分數的加減法相同,讓學生自己說出分式的加減法法則.

3.P20例6計算套用分式的加減法法則.第(1)題是同分母的分式減法的運算,第二個分式的分子式個單項式,不涉及到分子變號的問題,比較簡單,所以要補充分子是多項式的例題,教師要強調分子相減時第二個多項式注意變號;

第(2)題是異分母的分式加法的運算,最簡公分母就是兩個分母的乘積,沒有涉及分母要因式分解的題型.例6的練習的題量明顯不足,題型也過於簡單,教師應適當補充一些題,以供學生練習,鞏固分式的加減法法則.

(4)P21例7是一道物理的電路題,學生首先要有並聯電路總電阻R與各支路電阻R1, R2, …, Rn的關係為 .若知道這個公式,就比較容易地用含有R1的式子表示R2,列出 ,下面的計算就是異分母的分式加法的運算了,得到 ,再利用倒數的概念得到R的結果.這道題的數學計算並不難,但是物理的知識若不熟悉,就為數學計算設定了難點.鑒於以上分析,教師在講這道題時要根據學生的物理知識掌握的情況,以及學生的具體掌握異分母的分式加法的運算的情況,可以考慮是否放在例8之後講.

四、課堂堂引入

1.出示P18問題3、問題4,教師引導學生列出答案.

引語:從上面兩個問題可知,在討論實際問題的數量關係時,需要進行分式的加減法運算.

2.下面我們先觀察分數的加減法運算,請你說出分數的加減法運算的法則嗎?

3. 分式的加減法的實質與分數的加減法相同,你能說出分式的加減法法則?

4.請同學們說出 的最簡公分母是什麼?你能說出最簡公分母的確定方法嗎?

五、例題講解

(P20)例6.計算

[分析] 第(1)題是同分母的分式減法的運算,分母不變,只把分子相減,第二個分式的分子式個單項式,不涉及到分子是多項式時,第二個多項式要變號的問題,比較簡單;第(2)題是異分母的分式加法的運算,最簡公分母就是兩個分母的乘積.

(補充)例.計算

(1)

[分析] 第(1)題是同分母的分式加減法的運算,強調分子為多項式時,應把多項事看作一個整體加上括弧參加運算,結果也要約分化成最簡分式.

解:

=

=

=

=

(2)

[分析] 第(2)題是異分母的分式加減法的運算,先把分母進行因式分解,再確定最簡公分母,進行通分,結果要化為最簡分式.

解:

=

=

=

=

=

六、隨堂練習

計算

(1) (2)

(3) (4)

七、課後練習

計算

(1) (2)

(3) (4)

八、答案:

四.(1) (2) (3) (4)1

五.(1) (2) (3)1 (4)

八年級下冊數學教案 篇3

分式的基本性質

一、教學目標

1.理解分式的基本性質.

2.會用分式的基本性質將分式變形.

二、重點、難點

1.重點: 理解分式的基本性質.

2.難點: 靈活套用分式的基本性質將分式變形.

3.認知難點與突破方法

教學難點是靈活套用分式的基本性質將分式變形. 突破的方法是通過複習分數的通分、約分總結出分數的基本性質,再用類比的方法得出分式的基本性質.套用分式的基本性質導出通分、約分的概念,使學生在理解的基礎上靈活地將分式變形.

三、例、習題的意圖分析

1.P7的例2是使學生觀察等式左右的已知的分母(或分子),乘以或除以了什麼整式,然後套用分式的基本性質,相應地把分子(或分母)乘以或除以了這個整式,填到括弧里作為答案,使分式的值不變.

2.P9的例3、例4地目的是進一步運用分式的基本性質進行約分、通分.值得注意的是:約分是要找準分子和分母的公因式,最後的結果要是最簡分式;通分是要正確地確定各個分母的最簡公分母,一般的取係數的最低公倍數,以及所有因式的次冪的積,作為最簡公分母.

教師要講清方法,還要及時地糾正學生做題時出現的錯誤,使學生在做提示加深對相應概念及方法的理解.

3.P11習題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號.這一類題教材里沒有例題,但它也是由分式的基本性質得出分子、分母和分式本身的符號,改變其中任何兩個,分式的值不變.

“不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質的套用之一,所以補充例5.

四、課堂引入

1.請同學們考慮: 與 相等嗎? 與 相等嗎?為什麼?

2.說出 與 之間變形的過程, 與 之間變形的過程,並說出變形依據?

3.提問分數的基本性質,讓學生類比猜想出分式的基本性質.

五、例題講解

P7例2.填空:

[分析]套用分式的基本性質把已知的分子、分母同乘以或除以同一個整式,使分式的值不變.

P11例3.約分:

[分析] 約分是套用分式的基本性質把分式的分子、分母同除以同一個整式,使分式的值不變.所以要找準分子和分母的公因式,約分的結果要是最簡分式.

P11例4.通分:

[分析] 通分要想確定各分式的公分母,一般的取係數的最低公倍數,以及所有因式的次冪的積,作為最簡公分母.

(補充)例5.不改變分式的值,使下列分式的分子和分母都不含“-”號.

, , , , 。

[分析]每個分式的分子、分母和分式本身都有自己的符號,其中兩個符號同時改變,分式的值不變.

解: = , = , = , = , = 。

六、隨堂練習

1.填空:

(1) = (2) =

(3) = (4) =

2.約分:

(1) (2) (3) (4)

3.通分:

(1) 和 (2) 和

(3) 和 (4) 和

4.不改變分式的值,使下列分式的分子和分母都不含“-”號.

(1) (2) (3) (4)

七、課後練習

1.判斷下列約分是否正確:

(1) = (2) =

(3) =0

2.通分:

(1) 和 (2) 和

3.不改變分式的值,使分子第一項係數為正,分式本身不帶“-”號.

(1) (2)

八、答案:

六、1.(1)2x (2) 4b (3) bn+n (4)x+y

2.(1) (2) (3) (4)-2(x-y)2

3.通分:

(1) = , =

(2) = , =

(3) = =

(4) = =

4.(1) (2) (3) (4)

八年級下冊數學教案 篇4

分式的乘除(一)

一、教學目標:理解分式乘除法的法則,會進行分式乘除運算.

二、重點、難點

1.重點:會用分式乘除的法則進行運算.

2.難點:靈活運用分式乘除的法則進行運算 .

3. 難點與突破方法

分式的運算以有理數和整式的運算為基礎,以因式分解為手段,經過轉化後往經過轉化後往往可視為整式的運算.分式的乘除的法則和運算順序可類比分數的有關內容得到.所以,教給學生類比的數學思想方法能較好地實現新知識的轉化.只要做到這一點就可充分發揮學生的主體性,使學生主動獲取知識.教師要重點處理分式中有別於分數運算的有關內容,使學生規範掌握,特別是運算符號的問題,要抓住出現的問題認真落實.

三、例、習題的意圖分析

1.P13本節的引入還是用問題1求容積的高,問題2求大拖拉機的工作效率是小拖拉機的工作效率的多少倍,這兩個引例所得到的容積的高是 ,大拖拉機的工作效率是小拖拉機的工作效率的 倍.引出了分式的乘除法的實際存在的意義,進一步引出P14[觀察]從分數的乘除法引導學生類比出分式的乘除法的法則.但分析題意、列式子時,不易耽誤太多時間.

2.P14例1套用分式的乘除法法則進行計算,注意計算的結果如能約分,應化簡到最簡.

3.P14例2是較複雜的分式乘除,分式的分子、分母是多項式,應先把多項式分解因式,再進行約分.

4.P14例3是套用題,題意也比較容易理解,式子也比較容易列出來,但要注意根據問題的實際意義可知a>1,因此(a-1)2=a2-2a+11,因此(a-1)2=a2-2a+1

六、隨堂練習

計算

(1) (2) (3)

(4)-8xy (5) (6)

七、課後練習

計算

(1) (2) (3)

(4) (5) (6)

八、答案:

六、(1)ab (2) (3) (4)-20x2 (5)

(6)

七、(1) (2) (3) (4)

(5) (6)

八年級下冊數學教案 篇5

從分數到分式

一、 教學目標

1. 了解分式、有理式的概念.

2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

二、重點、難點

1.重點:理解分式有意義的條件,分式的值為零的條件.

2.難點:能熟練地求出分式有意義的條件,分式的值為零的條件.

3.認知難點與突破方法

難點是能熟練地求出分式有意義的條件,分式的值為零的條件.突破難點的方法是利用分式與分數有許多類似之處,從分數入手,研究出分式的有關概念,同時還要講清分式與分數的聯繫與區別.

三、例、習題的意圖分析

本章從實際問題引出分式方程 = ,給出分式的描述性的定義:像這樣分母中含有字母的式子屬於分式. 不要在列方程時耽誤時間,列方程在這節課里不是重點,也不要求解這個方程.

1.本節進一步提出P4[思考]讓學生自己依次填出: , , , .為下面的[觀察]提供具體的式子,就以上的式子 , , , ,有什麼共同點?它們與分數有什麼相同點和不同點?

可以發現,這些式子都像分數一樣都是 (即A÷B)的形式.分數的分子A與分母B都是整數,而這些式子中的A、B都是整式,並且B中都含有字母.

P5[歸納]順理成章地給出了分式的定義.分式與分數有許多類似之處,研究分式往往要類比分數的有關概念,所以要引導學生了解分式與分數的聯繫與區別.

希望老師注意:分式比分數更具有一般性,例如分式 可以表示為兩個整式相除的商(除式不能為零),其中包括所有的分數 .

2. P5[思考]引發學生思考分式的分母應滿足什麼條件,分式才有意義?由分數的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個條件,分式才有意義.即當B≠0時,分式 才有意義.

3. P5例1填空是套用分式有意義的條件—分母不為零,解出字母x的值.還可以利用這道題,不改變分式,只把題目改成“分式無意義”,使學生比較全面地理解分式及有關的概念,也為今後求函式的自變數的取值範圍,打下良好的基礎.

4. P12[拓廣探索]中第13題提到了“在什麼條件下,分式的值為0?”,下面補充的例2為了學生更全面地體驗分式的值為0時,必須同時滿足兩個條件:○1分母不能為零;○2分子為零.這兩個條件得到的解集的公共部分才是這一類題目的解.

四、課堂引入

1.讓學生填寫P4[思考],學生自己依次填出: , , , .

2.學生看P3的問題:一艘輪船在靜水中的航速為20千米/時,它沿江以航速順流航行100千米所用實踐,與以航速逆流航行60千米所用時間相等,江水的流速為多少?

請同學們跟著教師一起設未知數,列方程.

設江水的流速為x千米/時.

輪船順流航行100千米所用的時間為 小時,逆流航行60千米所用時間 小時,所以 = .

3. 以上的式子 , , , ,有什麼共同點?它們與分數有什麼相同點和不同點?

五、例題講解

P5例1. 當x為何值時,分式有意義.

[分析]已知分式有意義,就可以知道分式的分母不為零,進一步解

出字母x的取值範圍.

[提問]如果題目為:當x為何值時,分式無意義.你知道怎么解題嗎?這樣可以使學生一題二用,也可以讓學生更全面地感受到分式及有關概念.

(補充)例2. 當m為何值時,分式的值為0?

(1) (2) (3)

[分析] 分式的值為0時,必須同時滿足兩個條件:○1分母不能為零;○2分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

[答案] (1)m=0 (2)m=2 (3)m=1

六、隨堂練習

1.判斷下列各式哪些是整式,哪些是分式?

9x+4, , , , ,

2. 當x取何值時,下列分式有意義?

(1) (2) (3)

3. 當x為何值時,分式的值為0?

(1) (2) (3)

七、課後練習

1.列代數式表示下列數量關係,並指出哪些是正是?哪些是分式?

(1)甲每小時做x個零件,則他8小時做零件 個,做80個零件需 小時.

(2)輪船在靜水中每小時走a千米,水流的速度是b千米/時,輪船的順流速度是 千米/時,輪船的逆流速度是 千米/時.

(3)x與y的差於4的商是 .

2.當x取何值時,分式 無意義?

3. 當x為何值時,分式 的值為0?

八、答案:

六、1.整式:9x+4, , 分式: , ,

2.(1)x≠-2 (2)x≠ (3)x≠±2

3.(1)x=-7 (2)x=0 (3)x=-1

七、1.18x, ,a+b, , ; 整式:8x, a+b, ;

分式: ,

2. X = 3. x=-1

八年級下冊數學教案 篇6

分式的乘除(三)

一、教學目標:理解分式乘方的運算法則,熟練地進行分式乘方的運算.

二、重點、難點

1.重點:熟練地進行分式乘方的運算.

2.難點:熟練地進行分式乘、除、乘方的混合運算.

3.認知難點與突破方法

講解分式乘方的運算法則之前,根據乘方的意義和分式乘法的法則,計算 = = = , = = = ,……

順其自然地推導可得:

= = = ,即 = . (n為正整數)

歸納出分式乘方的法則:分式乘方要把分子、分母分別乘方.

三、例、習題的意圖分析

1. P17例5第(1)題是分式的乘方運算,它與整式的乘方一樣應先判

斷乘方的結果的符號,在分別把分子、分母乘方.第(2)題是分式的乘除與乘方的混合運算,應對學生強調運算順序:先做乘方,再做乘除..

2.教材P17例5中象第(1)題這樣的分式的乘方運算只有一題,對於初學者來說,練習的量顯然少了些,故教師應作適當的補充練習.同樣象第(2)題這樣的分式的乘除與乘方的混合運算,也應相應的增加幾題為好.

分式的乘除與乘方的混合運算是學生學習中重點,也是難點,故補充例題,強調運算順序,不要盲目地跳步計算,提高正確率,突破這個難點.

四、課堂引入

計算下列各題:

(1) = =( ) (2) = =( )

(3) = =( )

[提問]由以上計算的結果你能推出 (n為正整數)的結果嗎?

五、例題講解

(P17)例5.計算

[分析]第(1)題是分式的乘方運算,它與整式的乘方一樣應先判斷乘方的結果的符號,再分別把分子、分母乘方.第(2)題是分式的乘除與乘方的混合運算,應對學生強調運算順序:先做乘方,再做乘除.

六、隨堂練習

1.判斷下列各式是否成立,並改正.

(1) = (2) =

(3) = (4) =

2.計算

(1) (2) (3)

(4) 5)

(6)

七、課後練習

計算

(1) (2)

(3) (4)

八、答案:

六、1. (1)不成立, = (2)不成立, =

(3)不成立, = (4)不成立, =

2. (1) (2) (3) (4)

(5) (6)

七、(1) (2) (3) (4)