《反比例》數學教案

《反比例》數學教案 篇1

教學內容

教材第56頁複習第4~l0題。

教學要求:

1、使學生加深認識正比例關係和反比例關係的意義,進一步掌握判斷兩種相關聯的量是否成正比例或反比例的方法,提高分析、判斷的能力。

2、使學生進一步掌握正、反比例套用題的解題思路和解題方法,提高解答正、反比例套用題的能力。

教學重點

加深認識正比例關係和反比例關係的意義。

教學難點

提高解答正、反比例套用題的能力。

教學過程:

一、揭示課題

在“比例”這一單元里,除了認識了比例的意義和性質外,還學習了成正、反比例量的有關知識。這節課,我們複習正、反比例。(板書課題)通過複習,一要加深對成正比例關係和成反比例關係量的認識,提高兩種相關聯量成正比例還是反比例關係的判斷能力;二要進一步認識正、反比例的套用題,加深理解正、反比例套用題的解題思路和方法,提高用比例知識解答套用題的能力。

二、複習正、反比例的意義

1、做複習第4題。

讓學生看第4題,思考各成什麼比例。指名學生口答,說明理由。

2、整理正、反比例的意義。

提問:剛才是根據正、反比例的意義判斷的。現在,誰來說一說正、反比例的意義各是什麼?

根據正比例和反比例的意義,正比例和反比例有什麼相同和不同的地方?(板書正比例和反比例的相同點和不同點)判斷正、反比例的關鍵是什麼?

3、做複習第5題。

小黑板出示,指名學生口答,並說明理由。說明:根據實際問題里相關聯量所成的正比例或反比例關係,可以用比例知識解答相應的套用題。

三、複習正、反比例套用題

1、整理解題思路。

(1)做複習第6題。

讓學生讀題,思考各成什麼比例的套用題。指名學生說明各是什麼套用題,為什麼。指名兩人板演,其餘學生做在練習本上。集體訂正,讓學生說明根據什麼列式的。

(2)提問:解答正、反比例套用題要怎樣想?在解題方法上有什麼不同的地方?

2、綜合練習。

(1)做複習第8題。

讓學生讀題。提問:“藥粉和水的比是1:500”你是怎樣想的?(引導學生看出藥粉和水的份數以及1:500表示比值一定等)這兩道題成什麼比例,為什麼?讓學生做在練習本上。指名學生口答等式,老師板書。再讓學生說說怎樣想的,根據什麼列式的。追問:這道題還可以怎樣做?(讓學生思考按比的意義,套用分數知識或歸一方法,口答算式)

(2)做複習第l0題。

要求學生思考有哪些方法解答第一個問題,指名一人板演,其餘學生做在練習本上。要求列出不同解法的式子。集體訂正,說說各是怎樣想的。

四、課堂小結

這節課複習了哪些內容?誰來說一說這節課你掌握了哪些知識或方法?

五、課堂作業

複習第7、9題,第10題第二個問題。

《反比例》數學教案 篇2

教學內容

反比例。(教材第47頁例2)。

教學目標

1、使學生理解反比例的意義,能正確地判斷兩種相關聯的量是不是成反比例的量。

2、讓學生經歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。

重點難點

引導學生總結出成反比例的量的特點,進而抽象概括出反比例的關係式。利用反比例的意義,正確判斷兩個量是否成反比例。

教學準備

投影儀。

複習導入

1、讓學生說說什麼是正比例,然後用投影出示下面的題。

下面各題中哪兩種量成正比例?為什麼?

(1)每公頃產量一定,總產量和公頃數。

(2)一袋大米的重量一定,吃了的和剩下的。

(3)修房屋時,粉刷的面積和所需塗料的數量。

2、說出每小時加工零件數、加工零件總數和加工時間三者之間的關係。在什麼條件下,其中兩種量成正比例?

教師:如果加工零件總數一定,每小時加工數和加工時間會成什麼變化?關係怎樣?這就是我們這節課要學習的內容。

新課講授

1、教學例2。

創設情境。

教師:把相同體積的水倒入底面積不同的杯子,高度會怎樣變化?

出示教材第47頁例2的情境圖和表格。

請學生認真觀察表中數據的變化情況,組織學生分小組討論:

(1)水的高度和底面積變化有關係嗎?

(2)水的高度是怎樣隨著底面積變化的?

(3)水的高度和底面積的變化有什麼規律?

學生不難發現:底面積越大,水的高度越低;底面積越小,水的高度越高,而且高度和底面積的乘積(水的體積)一定。

教師板書配合說明這一規律:

30×10=20×15=15×20=……=300

教師根據學生的匯報說明:高度和底面積有這樣的變化關係,我們就說高度和底面積成反比例的關係,高度和底面積叫做成反比例的量。

2、歸納反比例的意義。

組織學生小組內討論:反比例的意義是什麼?

學生小組內交流,指名匯報。

教師總結:像這樣,兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關係叫做反比例關係。

3、用字母表示。

如果用字母x和y表示兩種相關聯的量,用k表示它們的乘積(一定),反比例關係的式子怎么表示?

學生探討後得出結果。

y=k(一定)

4、師:生活中還有哪些成反比例的量?

在教師的引導下,學生舉例說明。如:

(1)大米的質量一定,每袋質量和袋數成反比例。

(2)教室地板面積一定,每塊地磚的面積和塊數成反比例。

(3)長方形的面積一定,長和寬成反比例。

5、組織學生將例1與例2進行比較,小組內討論:

正比例與反比例的相同點和不同點有哪些?

學生交流、匯報後,引導學生歸納:

相同點:都表示兩種相關聯的量,且一種量變化,另一種量也隨著變化。

不同點:正比例關係中比值一定,反比例關係中乘積一定。

6、你還有什麼疑問

?如果學生提出表示反比例關係的`圖像有什麼特徵,教師應該引導學生觀察教材第48頁“你知道嗎?”中的圖像。

反比例關係也可以用圖像來表示,表示兩個量的點不在同一條直線上,點所連線起來的圖像是一條曲線,圖像特徵不要求掌握。

課堂作業

1、教材第48頁的“做一做”。

2、教材第51頁第9、10題。

答案:1.(1)每天運的噸數和所需的天數兩種量,它們是相關聯的量。

(2)300×1=150×2=100×3=300(答案不唯一),積都是300。積表示貨物的總量。

(3)成反比例,因為每天運的噸數變化,需要的天數也隨著變化,且它們的積一定。

2、第9題:成反比例,因為每瓶的容量與瓶數的乘積一定。

第10題:5010012

課堂小結

說一說成反比例關係的量的變化特徵。

課後作業

1、完成練習冊中本課時的練習。

2、教材51~52頁第8、14題。

答案:

2、第8題:成反比例,因為教室的面積一定,而每塊地磚的面積與所需數量的乘積都等於教室的面積54m2。

第14題:(1)斑馬和長頸鹿的奔跑路程和奔跑時間成正比例。

(2)分析:可以通過圖像直接估計,先在橫軸上找到18分的位置,然後在兩個圖像中找到相應的點,再分別在豎軸上找到與這個點對應的數值;也可以通過計算找到。

解答:從圖像中可以知道斑馬10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。

從圖像中可以知道長頸鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。

(3)斑馬跑得快。

第3課時反比例

兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關係叫做反比例關係。

用x和y表示兩種相關聯的量,x和y成反比例關係用字母表示為×y=k(一定)

正比例與反比例的相同點和不同點:

相同點:都表示兩種相關聯的量,且一種量變化,另一種量也隨著變化。

不同點:正比例關係中比值一定,反比例關係中乘積一定。

《反比例》數學教案 篇3

教學目標:

1、能利用反比例函式的相關的知識分析和解決一些簡單的實際問題

2、能根據實際問題中的條件確定反比例函式的解析式。

3、在解決實際問題的過程中,進一步體會和認識反比例函式是刻畫現實世界中數量關係的一種數學模型。

教學重點、難點:

重點:

能利用反比例函式的相關的知識分析和解決一些簡單的實際問題

難點:

根據實際問題中的條件確定反比例函式的解析式

教學過程:

一、情景創設:

為了預防“非典”,某學校對教室採用藥熏消毒法進行消毒, 已知藥物燃燒時,室內每立方米空氣中的含藥量(g)與時間x(in)成正比例。藥物燃燒後,與x成反比例(如圖所示),現測得藥物8in燃畢,此時室內空氣中每立方米的含藥量為6g,請根據題中所提供的信息,解答下列問題:

(1)藥物燃燒時,關於x 的函式關係式為: ________, 自變數x 的取值範圍是:_______,藥物燃燒後關於x的函式關係式為_______

(2)研究表明,當空氣中每立方米的含藥量低於1.6g時學生方可進教室,那么從消毒開始,至少需要經過______分鐘後,學生才能回到教室;

(3)研究表明,當空氣中每立方米的含藥量不低於3g且持續時間不低於10in時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什麼?

二、新授:

例1、小明將一篇24000字的社會調查報告錄入電腦,列印成文。

(1)如果小明以每分種120字的速度錄入,他需要多少時間才能完成錄入任務?

(2)錄入文字的速度v(字/in)與完成錄入的時間t(in)有怎樣的函式關係?

(3)小明希望能在3h內完成錄入任務,那么他每分鐘至少應錄入多少個字?

例2某自來水公司計畫新建一個容積為 的長方形蓄水池。

(1)蓄水池的底部S 與其深度 有怎樣的函式關係?

(2)如果蓄水池的深度設計為5,那么蓄水池的底面積應為多少平方米?

(3)由於綠化以及輔助用地的需要,經過實地測量,蓄水池的長與寬最多只能設計為100和60,那么蓄水池的深度至少達到多少才能滿足要求?(保留兩位小數)

三、課堂練習

1、一定質量的氧氣,它的密度 (g/3)是它的體積V( 3) 的反比例函式, 當V=103時,=1.43g/3(1)求與V的函式關係式;(2)求當V=23時求氧氣的密度

2、某地上年度電價為0.8元&nt;/&nt;度,年用電量為1億度.本年度計畫將電價調至0.55元至0.75元之間.經測算,若電價調至x元,則本年度新增用電量(億度)與(x-0.4)(元)成反比例,當x=0.65時,=-0.8

(1)求與x之間的函式關係式;

(2)若每度電的成本價為0.3元,則電價調至多少元時,本年度電力部門的收益將比上年度增加20%? [收益=(實際電價-成本價)×(用電量)]

3、如圖,矩形ABCD中,AB=6,AD=8,點P在BC邊上移動(不與點B、C重合),設PA=x,點D到PA的距離DE=.求與x之間的函式關係式及自變數x的取值範圍.

四、小結

五、作業

30.3——1、2、3

《反比例》數學教案 篇4

教學內容:教科書第22—24頁反比例的意義,練習六的第4—6題。

教學目的:

1.使學生理解反比例的意義.能夠正確判斷兩種量是不是成反比例。

2.使學生進一步認識事物之間的相互聯繫和發展變化規律。

3.初步滲透函式思想。

教具準備:投影儀、投影片、小黑板。

教學過程:

一、複習

1.讓學生說說什麼是成正比例的量:

2.用投影片出示下面的題:

(1)下面各題中哪兩種量成正比例?為什麼?

①筆記本單價一定,數量和總價:

⑨汽車行駛速度一定.行駛的路程和時間。

②工作效率一定.’工作時間和工作總量。

①一袋大米的重量一定.吃了的和剩下的。

(2)說出每小時加工零件數、加工時間和加工零件總數三者間的數量關係。在什麼條件下,其中兩種量成正比例?

二、導入新課

教師:如果加工零件總數一定。每小時加工數和加工時間會成什麼樣的變化.關係怎樣?就是我們這節課要學習的內容。

三、新課

1.教學例4。

出示例4;豐機械廠加工一批機器零件。每小時加工的數量和所需的加工時間如下表。

讓學生觀察這個表,然後每四人一組討論下面的問題:

(1)表中有哪兩種量?

(2)所需的加工時間怎樣隨著每小時加工的個數變化?

(3)每兩個相對應的數的乘積各是多少?

學生分組討論後集中發言。然後每個小組選代表回答上面的問題。隨著學生的回答,教師板書如下:每小時加工數加工時間

10 × 60 =600。

30 × 20 =600。

40 × 15 =600,

“這個積600。實際上是什麼?”在“加工時間”後面板書:零件總數

“積一定,就說明零件總數怎樣?”在零件總數後面板書:(一定)

“每小時加工數、加工時間和零件總數這三種量有什麼關係呢?”

學生回答後,教師小結:通過剛才的觀察分析.我門可以看出。表中每小時加工零件數和所需的加工時間是兩種相關聯的量。所需的加工時間是隨著每小時加工數量的變化而變化的,每小時加工的數量擴大。所需的加工時間反而縮小3每小時加工的'數量縮小,所需的加工的時間反而擴大。它們擴大、縮小的規律是:每小時加工的零件的數量和所需的加工時間的積都等於600,即總是一定的:我們把這種關係寫成式子就是:每小時加工數×加工的時間=零件總數(一定)。

2.教學例5。

用小黑板出示例5用600頁紙裝訂成同樣的練習本,每本的頁數和裝訂的本數有什麼關係呢?請你先填寫下表。

(1)理解題意,填寫裝訂本數。

“誰能說說表中第一欄數據的意思?”(用600頁紙裝訂練習本,如果每本練習本15頁,可以裝訂40本。)

“這40本是怎么計算出來的?”(用600÷15)

“如果每本練習本是20頁,你能計算出可以裝訂多少這樣的練習本嗎?如果每本是25頁呢?……請你把計算出來的本數填在教科書第23頁的表中。”教師把學生報出的數據填在黑板上的表中。

(2)觀察分析表中兩種量的變化規律。

讓學生觀察上表,回答下面的問題:“表中有哪兩種量?”(板書:每本的頁數裝訂的本數)

“裝訂的本數是怎樣隨著每本的頁數變化的?”隨著學生的回答,板書如下:每本的頁數 裝訂的本數

15 40

20 30

25 24

一’然後讓學生判斷下面每題中的兩種量成不成比例,是成正比例還是成反比例。

1,單價一定.數量和總價。

2,路程一定,速度和時間。。

3,正方形的邊長和它的面積。

1.時間一定,工效和工作總量。

二、導入新課

教師:我們在前兩節課分別學習了成正比例的量和成反比例的量。初步學會判斷

兩種量是不是成正比例或反比例的關係,發現有些同學判斷時還不夠準確。這節課我

們要通過比較弄清成正比例的量和成反比例的量有什麼相同點和不同點。

板書課題:正比例和反比例的比較

三、新課

1.教學例7。

出示例7的兩個表:

表1 表2

讓學生觀察上面的兩個表,然後根據兩個表所提的問題,分別在教科書上填空。訂正時。指名說出自己是怎樣填的,教師板書:

在表l中: 在表2中:

相關聯的量是路程和時間. 路程隨著相關聯的量是速度 路程隨 時間變化,速度是 和時間,速度隨著時間變化

一定。因此,路程和時間 ,路程是一定的。因此,速

成正比例關係。 度和時間成反比例關係

然後提問:

(1)從表1,你怎樣發現速度是一定的?你根據什麼判斷路程和時間成正比例/

(2)從表2,你怎樣發現路程是一定的?你根據什麼判斷速度和時間成反比例?

教師:路程、速度和時間這三個量中每兩個量之間有什麼樣的比例關係?

板書:速度×時間=路程

=速度 =速度

教師:當速度一·定時,路程和時間成什麼比例關係?

教師:當路程一定時,速度和時間成什麼比例關係?

教師:當時間一定時。路程和速度成什麼比例關係?

2.比較正比例和反比例關係。

教師:結合上面兩個例子,比較——下正比例關係和反比例關係,你能寫出它們的相同點和不同點嗎?試試看。組織討論,教師歸納並板書:

四、鞏固練習

1.做教科書第28頁“做一做”中的題目。

讓學生自己填,並說一說為什麼。

2.做練習七的第1—2題。

教師巡視,個別輔導,最後訂正。

五、小結

教師:請同學們說說正比例和反比例關係有什麼相同點和不同點?

《反比例》數學教案 篇5

教學目標

1.使學生理解,能夠初步判斷兩種相關聯的量是否成比例,成什麼比例.

2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.

3.滲透辯證唯物主義的觀點,進行“運用變化觀點”的啟蒙教育.

教學重點

理解正反比例的意義,掌握正反比例的變化的規律.

教學難點

理解正反比例的意義,掌握正反比例的變化的規律.

教學過程

一、導入新課

(一)昨天老師買了一些蘋果,吃了一部分,你能想到什麼?

(二)教師提問

1.你為什麼馬上能想到還剩多少呢?

2.是不是因為吃了的和剩下的是兩種相關聯的量?

教師板書:兩種相關聯的量

(三)教師談話

在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和

數量也是兩種相關聯的量.你還能舉出一些例子嗎?

二、新授教學

(一)成正比例的量

例1.一列火車行駛的時間和所行的路程如下表:

1.寫出路程和時間的比並計算比值.

(1)

(2) 2表示什麼?180呢?比值呢?

(3) 這個比值表示什麼意義?

(4) 360比5可以嗎?為什麼?

2.思考

(1)180千米對應的時間是多少?4小時對應的路程又是多少?

(2)在這一組題中上邊的一列數表示什麼?下邊一列數表示什麼?所求出的比值呢?

教師板書:時間、路程、速度

(3)速度是怎樣得到的?

教師板書:

(4)路程比時間得到了速度,速度也就是比值,比值相當於除法中的什麼?

(5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例說明變化規律.

3.小結:有什麼規律?

教師板書:商不變

(二)成反比例的量

1.華豐機械廠加工一批機器零件,每小時加工的數量和所需的加工時間如下表.

2.教師提問

(1)計算工效和時間的乘積.

(2)這一組題中涉及了幾種量?誰與誰是相關聯的量?

(3)請你舉例說明誰與誰是相對應的兩個數?

(4)在這一組題中兩種相關聯的量是如何變化的?(舉例說明)

3.小結:有什麼規律?(板書:積不變)

(三)不成比例的量

1.出示表格

2.教師提問

(1)總噸數是怎樣得到的?

(2)誰與誰是兩種相關聯的量?

(3)它們又是怎樣變化的?變化的規律是什麼?

運走的噸數少,剩下的噸數多;運走的噸數多,剩下的噸數少;總和不變

(四)結合三組題觀察、討論、總結變化規律.

討論題:

1.這三組題每組題中誰與誰是兩種相關聯的量?

2.在變化過程當中,它們的異同點是什麼?

共同點:都有兩種相關聯的量,一種量變化,另一量也隨著變化

不同點:第一組商不變,第二組積不變,第三組和不變.

總結:

3.分別概括

4.強調第三組題中兩種相關聯的量叫做不成比例

5.教師提問

(1)兩種量成正比例必須具備什麼條件?

(2)兩種量成反比例必須具備什麼條件?

(五)字母關係式

三、鞏固練習

判斷下面各題是否成比例?成什麼比例?

1.一種原子筆

(1)表中有哪兩種相關聯的量?

(2)說出幾組這兩種量中相對應的兩個數的比

(3)每組等式說明了什麼?

(4)兩種相關的量是否成比例?成什麼比例?

2.當速度一定,時間路程成什麼比例?

當時間一定,路程和速度成什麼比例?

當路程一定,速度和時間成什麼比例?

3.長方形的面一定,長和寬

4.修一條路,已修的米數和剩下的米數.

四、課堂總結

今天這節課我們初步了解了正反比例的意義,並能運用正反比例的意義判斷一些簡單的問題.通過正反比例意義的'對比,使我們進一步認識到,要判斷兩種相關聯的量是成正比例關係還是反比例的關係,要抓住兩種相關聯的量的變化規律,這是本質.

五、課後作業

(一)判斷下面每題中的兩種量是不是成正比例,並說明理由.

1.蘋果的單價一定,購買蘋果的數量和總價.

2.輪船行駛的速度一定,行駛的路程和時間.

3.每小時織布米數一定,織布總米數和時間.

4.長方形的寬一定,它的面積和長.

(二)判斷下面每題中的兩種量是不是成反比例,並說明理由.

1.煤的總量一定,每天的燒煤量和能夠燒的天數.

2.種子的總量一定,每公頃的播種量和播種的公頃數.

3.李叔叔從家到工廠,騎腳踏車的速度和所需時間.

4.華容做12道數學題,做完的題和沒有做的題.

六、板書設計

《反比例》數學教案 篇6

教學目標:

經歷抽象反比例函式概念的過程,領會反比例函式的意義,理解反比例函式的 概念。

教學程式:

一、導入:

1、從現實情況和已有知識經驗出發,討論兩個變數之間的相依關係,加強對函式概念的理解,導入反比例函式。

2 、U=IR,當U=220V時,

(1)你能用含 R的代數式 表示I嗎?

(2)利用寫出的關係式完成下表:

R(Ω) 20 40 60 80 100

I(A)

當R越來越大時,I怎樣 變化?

當R越來越小呢?

( 3)變數I是R的函式嗎?為什麼?

答:① I = UR

② 當R越來越大時,I越來越小,當R越來越小時,I越來越大。

③變數I是R的函式 。當給定一 個R的值時,相應地就確定了一個I值,因此I是R的函式。

二、新授:

1、反比例函式的概念

一般地,如果兩個變數x, y之間的關係可以表示成 y=kx (k為常數,k≠0)的形式,那么稱y是x的反比例函 數。

反比例函式的自變數x 不能為零。

2、做一做

一個矩形的 面積為20cm2,相鄰兩條邊長分別為xcm和 ycm,那么變數y是變數x的 函式嗎?是反比例函式嗎?

解:y=20x ,是反比例函式。

三、課堂練習 :

P133,12

四、作業:

P133,習題5.1 1、2題

《反比例》數學教案 篇7

教學內容

根據教科書自選內容。

教學目標

1、通過練習,使學生進一步理解並掌握反比例的意義,會正確判斷兩種相關聯的量是否成反比例,並能解決簡單的實際問題。

2、進一步培養學生分析問題、解決問題的能力。

3、結合實例,培養學生仔細分析、主動探索的良好的學習習慣。

教學重點

正確理解反比例的意義,並能作出正確的判斷。

教學難點

能根據反比例的意義,解決相關的實際問題。

教學過程

一、學習準備,揭示課題

1、談話引入

上節課我們學了什麼?今天,我們進行練習(板書:反比例練習)。通過練習,達到以下兩個目標:①進一步理解反比例的意義,並能正確判斷兩個相關聯的量是否成反比例;②能根據反比例的意義,解決實際問題。

2、你知道哪些有關反比例的知識

板書:意義、字母表示:xy=k(一定)

二、基本練習

1.觀察下面三個表

(1)表1中的兩種量是怎樣變化的?哪種量是一定的?每天燒煤量和燒的天數成什麼比例?為什麼?

(2)表2中的兩種量是怎樣變化的?哪種量是一定的?用去的煤和剩下煤的噸數成比例嗎?為什麼?

(3)表3中的兩種量是怎樣變化的?哪種量是一定的?平行四邊形的底和平行四邊形的高成什麼比例?為什麼?

2、判斷

判斷下面各題中的兩種量是否成比例。如果成比例,成什麼比例?

(1)平行四邊形的面積一定,它的底和高。

(2)一筐桃平均分給猴子,猴子的只數和每隻猴子分的個數。

(3)報紙的單價一定,訂閱的份數與總價。

(4)小剛跳高的高度和他的身高。

(5)C=4a

三、解決問題

1、鞏固練習

一輛汽車從甲地開往乙地,每時行70 km,5時到達。如果要4時到達,每時需要行駛多少千米?

(1)學生讀題,理解題意。

(2)會列式解答嗎?試試看。還可以怎么解?(引導學生用反比例知識解答)

2、用比例知識解答

(1)同學們做廣播操,每行站20人,正好站18行。如果每行站24人,可以站多少行?

(2)用同樣的磚鋪地,鋪18 m2要用618塊磚。如果鋪24 m2,要用多少塊磚?

學生獨立分析、解答,教師巡視,並加以指點。

根據這兩道題組織學生討論正比例關係和反比例關係的相同點和不同點。

討論後全班交流,教師引導學生歸納並板書。

相同點:都有兩種相關聯的量,一種量變化,另一種量也隨著變化。

不同點:正比例是相對應的兩個數的比值(商)一定。反比例是相對應的兩個數的積一定。

四、變式提高練習

按規律填數。

(1)(1,36),(2,18),(3,12),(4,),(5,)

(2)15,210,315,4,25

(3)81,27,,3,1,

五、全課小結

同學們,今天我們學習了什麼?你有什麼收穫?還有哪些疑問?

六、拓展練習

根據自己的生活經驗,各構建一道生活中用正比例和反比例解決的問題,再解決,並與同學交流你構建問題的思考方法和解決問題的方法。

《反比例》數學教案 篇8

教學目標

知識與技能目標:

使學生理解反比例關係的意義,能根據反比例的意義正確判斷兩種量是否成反比例。

能力目標:

經歷反比例意義的構建過程,培養發現的能力和歸納概括的能力。

情感與態度目標:

體會反比例與生活之間的聯繫,感悟到事物之間相互聯繫和相互轉化的辨證唯物主義的觀點。

教學重難點

重點:

理解反比例關係的意義,能根據反比例的意義正確判斷兩種量是否成反比例。

難點:

掌握反比例的特徵,能夠正確判斷反比例關係。

教學過程

(一)複習猜想導入,引出問題。

1、成正比例的量有什麼特徵?什麼叫正比例關係?

2、在生活中兩個相關聯的量有的成正比例關係,還可能成什麼關係?學生很自然想到反比例,激發學生的學習欲望,問學生想學反比例的哪些知識,學生大膽猜測,對反比例的意義展開合理的猜想。由此導入新課。

達成目標:猜想導課,激發探究願望

(二)共同探索,總結方法。

1、明確這節課的學習目標:

(1)理解反比例的意義,能正確地判斷兩種相關聯的量是不是成反比例的量。

(2)經歷反比例意義的探究過程,體驗觀察比較、推理、歸納的學習方法。

2、情境導入,學習探究。

(1)我們先來看一個實驗。

高度(厘米) 30 20 15 10 5

底面積(平方厘米) 10 15 20 30 60

體積(立方厘米)

提問:根據列表,你從中你發現了什麼?

(2)學生討論交流。

(3)引導學生回答:表中的兩個量是高度和底面積。

高度擴大,底面積反而縮小;高度縮小,底面積反而擴大。

每兩個相對應的數的乘積都是300.

(4)計算後你又發現了什麼?

每兩個相對應的數的乘積都是300,乘積一定。

教師小結:我們就說水的高度和體積成反比例關係,水的高度和體積是成反比例的量。

教師提問:高底面積和體積,怎樣用式子表示他們的關係?板書:高×底面積=水的體積(一定)

(5)如果用字母x和y表示兩種相關聯的量,用k表示他們的積一定,反比例關係可以用一個什麼樣的式子表示?板書:y=k(一定)

小結:通過上面的學習,你認為判斷兩種相關聯的量是否成反比例,關鍵是什麼?

(6)歸納總結反比例的意義。

(7)比較歸納正反比例的異同點。

達成目標:比較思想是在國小數學教學中套用十分普遍的數學思想方法,《成反比例的量》是繼《成正比例的量》一課後學習的內容,兩節課的學習內容和學習方法有相似之處,學生從知識的差別中找到同一,也可以從同一中找出差別,學生學習新知識,進行深化拓展,歸納總結。

(三)運用方法,解決問題。

1、生活中,哪些相關聯的量成反比例關係,舉例說一說。

2、課後做一做每天運的噸數和運貨的天數成反比例關係嗎?為什麼?

3、出示反比例圖像,與正比例圖像進行比較學習。

達成目標:學生利用對反比例概念的理解,判斷相關聯的量是否成反比例,學會分析並進行判斷。

(四)反饋鞏固,分層練習。

判斷下面每題中的兩個量是不是成反比例,並說明理由。

(1)路程一定,速度和時間。

(2)小明從家到學校,每分走的速度和所需時間。

(3)平行四邊形面積一定,底和高。

(4)小林做10道數學題,已做的題和沒有做的題。

(5)小明拿一些錢買鉛筆,單價和購買的數量。

達成目標:使學生體會到數學來源於現實生活,又服務於現實生活的特點,體現數學的套用性。

(五)課堂總結,提升認識

總結:今天我們學習了什麼?(揭示課題—反比例)你有什麼收穫?學習中,你要提示大家注意什麼?你對今天的學習還有什麼疑問嗎?

《反比例》數學教案 篇9

教學目標

1.使學生理解正、反比例的意義,能夠初步判斷兩種相關聯的量是否成比例,成什麼比例.

2.通過觀察、比較、歸納,提高學生綜合概括推理的能力.

3.滲透辯證唯物主義的觀點,進行運用變化觀點的啟蒙教育.

教學重難點

理解正反比例的意義,掌握正反比例的變化的規律.

教學過程

一、導入新課

(一)昨天老師買了一些蘋果,吃了一部分,你能想到什麼?

(二)教師提問

1.你為什麼馬上能想到還剩多少呢?

2.是不是因為吃了的和剩下的是兩種相關聯的量?

教師板書:兩種相關聯的量

(三)教師談話

在實際生活中兩種相關的量是很多的,例如總價和單價是兩種相關聯的量,總價和

數量也是兩種相關聯的量.你還能舉出一些例子嗎?

二、新授教學

(一)成正比例的量

例1.一列火車行駛的時間和所行的'路程如下表:

時間(時):路程(千米)

1 :90

2 :180

3 :270

4 :360

5 :450

6 :540

7 :630

8 :720

1.寫出路程和時間的比並計算比值.

(1) 2表示什麼?180呢?比值呢?

(2) 這個比值表示什麼意義?

(3) 360比5可以嗎?為什麼?

2.思考

(1)180千米對應的時間是多少?4小時對應的路程又是多少?

(2)在這一組題中上邊的一列數表示什麼?下邊一列數表示什麼?所求出的比值呢?

教師板書:時間、路程、速度

(3)速度是怎樣得到的?

教師板書:

(4)路程比時間得到了速度,速度也就是比值,比值相當於除法中的什麼?

(5)在這組題中誰與誰是兩種相關聯的量?它們是如何相關聯的?舉例說明變化規律.

3.小結:有什麼規律?

《反比例》數學教案 篇10

一、創設情境 引入課題

活動1

問題:

你們還記得一次函式圖象與性質嗎?

設計意圖

通過創設問題情境,引導學生複習一次函式圖象的知識,激發學生參與課堂學習的熱情,為學習反比例函式的圖象奠定基礎。

師生形為:

教師提出問題。學生思考、交流,回答問題。教師根據學生活動情況進行補充和完善。

二、類比聯想 探究交流

活動2

問題:

例2 畫出反比例函式y= 與y=- 的圖象。

(教師先引導學生思考,示範畫出反比例函式y= 的圖象,再讓學生嘗試畫出反比例函式y=- 的圖象。)

設計意圖:

通過畫反比例函式的圖象使學生進一步了解用描點的方法畫函式圖象的基本步驟,其他函式的圖象奠定基礎,同時也培養了學生動手操作能力。

師生形為:

學生可以先自己動手畫圖,相互觀摩。

在此活動中,教師應重點關註:

1學生能否順利進行三種表示方法的相互轉換:

2是否熟悉作出函式圖象的主要步驟,會作反比例函式的圖象;

3在動手作圖的過程中,能否勤於動手,樂於探索。

比較y= 、y=- 的圖象有什麼共同特徵?它們之間有什麼關係?

(由學生觀察思考,回答問題,並使學生了解反比例函式的圖象是一種雙曲線。)

設計意圖:

學生通過觀察比較,總結兩個反比例函式圖象的共同特徵(都是雙曲線),以及在平面直角坐標系中的位置。在活動中,讓學生自己去觀察、類比發現,過程讓學生自己去感受,結論讓學生自己去總結,實現學生主動參與、探究新知的目的。

師生形為:

學生分組針對問題結合畫出的圖象分類討論,歸納總結反比例函式圖象的共同點,為後面性質的探索打下基礎。

教師參與到學生的討論中去,積極引導。

三、探索比較 發現規律

活動3

問題:

觀察反比例函式y= 與y=- 的圖象。

你能發現它們的共同特徵以及不同點嗎?

每個函式的圖象分別位於哪幾個象限?

在每一個象限內,y隨x的變化如何變化?

由學生分小組討論,觀察思考後進行分析、歸納,得到反比例函式y= 的性質:

形狀: 反比例函式的圖象是由兩支雙曲線組成的.因此稱反比例函式的圖象為雙曲線;

位置: 當k0時,兩支雙曲線分別位於第一,三象限內,在每個象限內y隨x增大而減小;當k0時,兩支雙曲線分別位於第二,四象限內,在每個象限內y隨x增大而增大;

任意一組變數的乘積是一個定值,即xy=k.

(注意:雙曲線的兩個分支都不會與x軸,y軸相交。)

學生通過對反比例函式圖象進行觀察、分析,總結出了反比例函式的性質,使學生明白性質的可靠性;通過對函式圖象的位置與k值符號關係的探討,以及反比例函式的兩個分支在相應的象限內,y隨x值的增大(或減小)而增大(或減小)的探討,有利於加深學生對性質的理解和掌握;使學生經歷從特殊到一般的過程,體驗知識產生、形成的過程,逐步達到培養學生抽象概括能力和激發求知慾望;同時通過對反比例函式增減性的討論,對學生進行辯證唯物主義思想教育.

四、 運用新知 拓展訓練

設計意圖:

拓展練習是為了讓學生靈活運用反比例函式性質解決問題,學生在研究問題的特點時,能夠緊扣性質進行分析,達到理解並掌握性質的目的.

師生形為:

學生獨立思考完成。

教師巡視,引導學困生完成任務。

五、歸納總結 布置作業

問題:

本節課學習了哪些知識?在知識套用過程中需要注意什麼?你有什麼收穫?

《反比例》數學教案 篇11

教學目標:

1、理解反比例函式,並能從實際問題中抽象出反比例關係的函式解析式;

2、會畫出反比例函式的圖象,並結合圖象分析總結出反比例函式的性質;

3、滲透數形結合的數學思想及普遍聯繫的辨證唯物主義思想;

4、體會數學從實踐中來又到實際中去的研究、套用過程;

5、培養學生的觀察能力,及數學地發現問題,解決問題的能力.

教學重點:

結合圖象分析總結出反比例函式的性質;

教學難點:描點畫出反比例函式的圖象

教學用具:直尺

教學方法:小組合作、探究式

教學過程:

1、從實際引出反比例函式的概念

我們在國小學過反比例關係.例如:當路程S一定時,時間t與速度v成反比例

即vt=S(S是常數);

當矩形面積S一定時,長a與寬b成反比例,即ab=S(S是常數)

從函式的觀點看,在運動變化的過程中,有兩個變數可以分別看成自變數與函式,寫成:

(S是常數)

(S是常數)

一般地,函式 (k是常數, )叫做反比例函式.

如上例,當路程S是常數時,時間t就是v的反比例函式.當矩形面積S是常數時,長a是寬b的反比例函式.

在現實生活中,也有許多反比例關係的例子.可以組織學生進行討論.下面的例子僅供

2、列表、描點畫出反比例函式的圖象

例1、畫出反比例函式 與 的圖象

解:列表

說明:由於學生第一次接觸反比例函式,無法推測出它的大致圖象.取點的時候最好多取幾個,正負可以對稱著取分別畫點描圖

一般地反比例函式 (k是常數, )的圖象由兩條曲線組成,叫做雙曲線.

3、觀察圖象,歸納、總結出反比例函式的性質

前面學習了三類基本的初等函式,有了一定的基礎,這裡可視學生的程度或展開全面的討論,或在老師的引導下完成知識的學習.

顯示這兩個函式的圖象,提出問題:你能從圖象上發現什麼有關反比例函式的性質呢?並能從解析式或列表中得到論證.(下列答案僅供參考)

(1) 的圖象在第一、三象限.可以擴展到k 0時的情形,即k0時,雙曲線兩支各在第一和第三象限.從解析式中,也可以得出這個結論:xy=k,即x與y同號,因此,圖象在第一、三象限.

的討論與此類似.

抓住機會,說明數與形的'統一,也滲透了數形結合的數學思想方法.體現了由特殊到一般的研究過程.

(2)函式 的圖象,在每一個象限內,y隨x的增大而減小;

從圖象中可以看出,當x從左向右變化時,圖象呈下坡趨勢.從列表中也可以看出這樣的變化趨勢.有理數除法說明了同樣的道理,被除數一定時,若除數大於零,除數越大,商越小;若除數小於零,同樣是除數越大,商越小.由此可歸納出,當k0時,函式 的圖象,在每一個象限內,y隨x的增大而減小.

同樣可以推出 的圖象的性質.

(3)函式 的圖象不經過原點,且不與x軸、y軸交.從解析式中也可以看出, .如果x取值越來越大時,y的值越來越小,趨近於零;如果x取負值且越來越小時,y的值也越來越趨近於零.因此,呈現的是雙曲線的樣子.同理,抽象出 圖象的性質.

函式 的圖象性質的討論與次類似.

4、小結:

本節課我們學習了反比例函式的概念及其圖象的性質.大家展開了充分的討論,對函式的概念,函式的圖象的性質有了進一步的認識.數學學習要求我們要深刻地理解,找出事物間的普遍聯繫和發展規律,能數學地發現問題,並能運用已有的數學知識,給以一定的解釋.即數學是世界的一個部分,同時又隱藏在世界中.

5、布置作業 習題13.8 1-4

《反比例》數學教案 篇12

教學內容:

《反比例的意義》是六年制國小數學(北師版)第十二冊第二單元中的內容。是在學過“正比例的意義”的基礎上,讓學生理解反比例的意義,並會判斷兩個量是否成反比例關係,加深對比例的理解。

學生分析:

在此之前,他們學習了正比例的意義,對“相關聯的量”、“成正比例的兩個量的變化規律”、“如何判斷兩個量是否成正比例”已經有了認識,這為學習《反比例的意義》奠定了基礎。

教學目標:

1、知識與技能目標:使學生認識成反比例的量,理解反比例的意義,並學會判斷兩種相關聯的量是否成反比例。進一步培養學生觀察、學析、綜合和概括等能力。初步滲透函式思想。

2、過程與方法:為學生營造一個經歷知識產生過程的情境。

3、情感與態度目標:使學生在自主探索與合作交流中體驗成功的樂趣,進一步增強學好數學的信心。

教學重點:理解反比例的意義。

教學難點:兩種相關聯的量的變化規律。

教學準備:學生準備:複習正比例關係,預習本節內容。

教師準備:投影片3張,每張有例題一個。

教學過程設計:

一、談話引入,激發興趣。

1、談話:通過最近一段時間的觀察,我發現同學們越來越聰明了,會學數學了,這是因為同學們掌握了一定的數學學習的基本方法。下面請回想一下,我們是怎樣學習成正比例的量的?這節課我們用同樣的學習方法來研究比例的另外一個規律。

2、導入:在實際生活中,存在著許多相關聯的量,這些相關聯的量之間有的是成正比例關係,有的成其他形式的關係,讓我們一起來探究下面的問題。

二、創設情景引新:

(出示:十二個小方塊)

師:同學們,這十二個小方塊有幾種排法?

(生答後,老師板書下表的排列過程)

每行個數1234612

行數1264321

師:請你觀察上表中每行個數與行數成正比例關係嗎?為什麼?

生:……

師:這兩種量這間有關係嗎?有什麼關係?這就是我們今天要研究的內容。

(出示課題:反比例的意義)

三、合作自學探知

1、學習例4。

(1)出示例4。

師:請同學們在小組內互相交流,並圍繞這三個問題進行討論,再選出一位組員作代表進行匯報。

A、表中有哪兩種量?

B、怎樣隨著每小時加工的數量變化?

c、每兩個相對應的數的乘積各是多少?

學生討論……

生反饋:……

師:能不能舉出三個例子

生:1020=6002030=6003020=600……

師:這裡的600是什麼數量?你能說出這裡的數量關係式嗎?

生:……

[板書出示:每小時加工數加工時間=零件總數(一定)]

2、自學例5:

(1)出示例5:

師:先請同學們按要求在書上填空,並說說是怎樣算的?根據什麼?

生:……

師:模仿例4的方法,提出三個問題自己學習例5(出示三個問題)

生:……

3、討論準備題:

(1)請你根據例4的方法,四人小組內說一說。

(2)請你舉例說明表中每行個數與行數是什麼關係?為什麼?

四、比較感知特徵

綜合例4、例5、準備題的共同點師:比較一下例4、例5和準備題,請同學們在小組中討論一下,互相說說這三個題目有什麼共同的特徵?

生:……

五、引導概括意義

1、概括反比例意義。

學生在說相同點時老師邊引導邊說明。當學生說出三個特徵後,教師板書這三個特徵。

師:請同學們根據我們上節課學的正比例的意義猜測一下,符合三個特徵的二個量叫做成什麼量?相互這間成什麼關係?

生:……

師:請閱讀課本第十六頁,同桌互相說說怎樣的兩個量成反比例關係。

學生互相練習……

師:哪位同學來告訴大家,兩種量如果成反比例必須符合哪三個條件?

生:……

師:例4、例5和準備題中的兩種量成不成反比例?為什麼?

生:……(學生回答後,老師及時糾正)

師:如果用x和y表示兩種相關聯的'量,用k表示它們的乘積,那么上面這種關係式可以怎樣寫呢?

生:……[板書出示y=k(一定)]

2、教學例6。

(1)課件出示例6。

(學生讀題、思考)

師:怎樣判斷兩種量成不成反比例?

師:哪位同學說說,每天播種的公頃數和要用的天數是不是成反比例?為什麼?

生:因為每天播種的公頃數要用的天數=播種的總公頃數(一定),所以每天播種的公頃數和要用的天數是成反比例的量。

六、小結:這節課同學們學到了哪些知識?運用了哪些學習方法?還有哪些不懂的問題?

[案例分析]:

通過聯繫生活實際,學習成反比例的量,體會數學與生活的緊密聯繫。不對研究的過程做詳細的引導和說明,只提供研究的素材和數據,出示關鍵性的結論,充分發揮學生的主動性,以體現自主探究、合作交流的學習過程,獲得學習成功的體驗。通過引導學生觀察、分析、比較、歸納,形成良好的思維習慣和思維品質。同時加深學生對數量關係的認識,滲透函式思想,為中學的數學學習做好知識準備。學習方式的轉變是新課改的顯著特徵,就是把學習過程中的分析、發現、探究、創新等認識活動凸顯出來。在設計《反比例的意義》時,根據學生的知識水平,對教學內容進行處理,克服教材的局限性,最大限度地拓寬探究學習的空間,提供自主學習的機會。