初一數學基本知識點總結 篇1
1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
2.三角形的分類
3.三角形的三邊關係:三角形任意兩邊的和大於第三邊,任意兩邊的差小於第三邊。
4.高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。
5.中線:在三角形中,連線一個頂點和它的對邊中點的線段叫做三角形的中線。
6.角平分線:三角形的一個內角的平分線與這個角的對邊相交,這個角的頂點和交點之間的線段叫做三角形的角平分線。
7.高線、中線、角平分線的意義和做法
8.三角形的穩定性:三角形的形狀是固定的,三角形的這個性質叫三角形的穩定性。
9.三角形內角和定理:三角形三個內角的和等於180°
推論1直角三角形的兩個銳角互余;
推論2三角形的一個外角等於和它不相鄰的兩個內角和;
推論3三角形的一個外角大於任何一個和它不相鄰的內角;
三角形的內角和是外角和的一半。
10.三角形的外角:三角形的一條邊與另一條邊延長線的夾角,叫做三角形的外角。
11.三角形外角的性質
(1)頂點是三角形的一個頂點,一邊是三角形的一邊,另一邊是三角形的一邊的延長線;
(2)三角形的一個外角等於與它不相鄰的兩個內角和;
(3)三角形的一個外角大於與它不相鄰的任一內角;
(4)三角形的外角和是360°。
12.多邊形:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形。
13.多邊形的內角:多邊形相鄰兩邊組成的角叫做它的內角。
14.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外角。
15.多邊形的對角線:連線多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。
16.多邊形的分類:分為凸多邊形及凹多邊形,凸多邊形又可稱為平面多邊形,凹多邊形又稱空間多邊形。多邊形還可以分為正多邊形和非正多邊形。正多邊形各邊相等且各內角相等。
17.正多邊形:在平面內,各個角都相等,各條邊都相等的多邊形叫做正多邊形。
18.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多邊形覆蓋平面。
19.公式與性質
多邊形內角和公式:n邊形的內角和等於(n-2)·180°
20.多邊形外角和定理:
(1)n邊形外角和等於n·180°-(n-2)·180°=360°
(2)多邊形的每個內角與它相鄰的外角是鄰補角,所以n邊形內角和加外角和等於n·180°
21.多邊形對角線的條數:
(1)從n邊形的一個頂點出發可以引(n-3)條對角線,把多邊形分詞(n-2)個三角形。
(2)n邊形共有n(n-3)/2條對角線。
初一數學基本知識點總結 篇2
1、單項式的定義:
由數或字母的積組成的式子叫做單項式。
說明:單獨的一個數或者單獨的一個字母也是單項式.
2、單項式的係數:
單項式中的數字因數叫這個單項式的係數.
說明:
⑴單項式的係數可以是整數,也可能是分數或小數。如3x的係數是3的32
係數是1;4.8a的係數是4.8; 3
⑵單項式的係數有正有負,確定一個單項式的係數,要注意包含在它前面的符號,
4xy2的係數是4;2x2y的係數是4;
⑶對於只含有字母因數的單項式,其係數是1或-1,不能認為是0,如ab的係數是-1;ab的係數是1;
⑷表示圓周率的π,在數學中是一個固定的常數,當它出現在單項式中時,應將其作為係數的一部分,而不能當成字母。如2πxy的係數就是2。
3、單項式的次數:
一個單項式中,所有字母的指數的和叫做這個單項式的次數.
說明:
⑴計算單項式的次數時,應注意是所有字母的指數和,不要漏掉字母指數是1
的情況。如單項式2xyz的次數是字母z,y,x的指數和,即4+3+1=8,
而不是7次,應注意字母z的指數是1而不是0;
⑵單項式的指數隻和字母的指數有關,與係數的指數無關。
⑶單項式是一個單獨字母時,它的指數是1,如單項式m的指數是1,單項式是單獨的一個常數時,一般不討論它的次數;
4、在含有字母的式子中如果出現乘號,通常將乘號寫作“x ”或者省略不寫。
5、在書寫單項式時,數字因數寫在字母因數的前面,數字因數是帶分數時轉化成假分數.。
初一數學基本知識點總結 篇3
正數和負數
⒈、正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:
①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
有理數
1、有理數的概念
(1)正整數、0、負整數統稱為整數(0和正整數統稱為自然數)
(2)正分數和負分數統稱為分數
(3)正整數,0,負整數,正分數,負分數都可以寫成分數的形式,這樣的數稱為有理數。
理解:只有能化成分數的數才是有理數。①π是無限不循環小數,不能寫成分數形式,不是有理數。②有限小數和無限循環小數都可化成分數,都是有理數。③整數也能化成分數,也是有理數
注意:引入負數以後,奇數和偶數的範圍也擴大了,像—2,—4,—6,—8也是偶數,—1,—3,—5也是奇數。
初一數學基本知識點總結 篇4
1.同底數冪的乘法:am?an=am+n ,底數不變,指數相加。
2.同底數冪的除法:am÷an=am-n ,底數不變,指數相減。
3.冪的乘方與積的乘方:(am)n=amn ,底數不變,指數相乘; (ab)n=anbn ,積的乘方等於各因式乘方的積。
4.零指數與負指數公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無意義。
(2)有了負指數,可用科學記數法記錄小於1的數,例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個數的和與這兩個數的差的積等於這兩個數的平方差;
(2)完全平方公式:
① (a+b)2=a2+2ab+b2, 兩個數和的平方,等於它們的平方和,加上它們的積的2倍;
② (a-b)2=a2-2ab+b2 , 兩個數差的平方,等於它們的平方和,減去它們的積的2倍;
③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三項式x2+px+q是完全平方式,則有關係式: ;
(2)二次三項式ax2+bx+c經過配方,總可以變為a(x-h)2+k的形式。
注意:當x=h時,可求出ax2+bx+c的最大(或最小)值k。
(3)注意: 。
7.單項式的係數與次數:單項式中不為零的數字因數,叫單項式的數字係數,簡稱單項式的係數;
係數不為零時,單項式中所有字母指數的和,叫單項式的次數。
8.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;
多項式里,次數最高項的次數叫多項式的次數;
注意:(若a、b、c、p、q是常數)ax2+bx+c和x2+px+q是常見的兩個二次三項式。
9.同類項:所含字母相同,並且相同字母的指數也相同的單項式是同類項。
10.合併同類項法則:係數相加,字母與字母的指數不變。
11.去(添)括弧法則:去(添)括弧時,若括弧前邊是“+”號,括弧里的各項都不變號;若括弧前邊是“-”號,括弧里的各項都要變號。
注意:多項式計算的最後結果一般應該進行升冪(或降冪)排列。
平面幾何部分
1、補角重要性質:同角或等角的補角相等.
餘角重要性質:同角或等角的餘角相等.
2、
①直線公理:過兩點有且只有一條直線.
線段公理:兩點之間線段最短.
②有關垂線的定理:
(1)過一點有且只有一條直線與已知直線垂直;
(2)直線外一點與直線上各點連結的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實際距離,若圖上1厘米,表示實際距離m厘米.
3、三角形的內角和等於180
三角形的一個外角等於與它不相鄰的兩個內角的和
三角形的一個外角大於與它不相鄰的任何一個內角
4、n邊形的對角線公式:
各個角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內角和公式:180(n-2); 多邊形的外角和等於360
6、判斷三條線段能否組成三角形:
①a+b>c(a b為最短的兩條線段)②a-b
7、第三邊取值範圍:
a-b< c
8、對應周長取值範圍:
若兩邊分別為a,b則周長的取值範圍是 2a
如兩邊分別為5和7則周長的取值範圍是 14
9、相關命題:
(1) 三角形中最多有1個直角或鈍角,最多有3個銳角,最少有2個銳角。
(2) 銳角三角形中最大的銳角的取值範圍是60≤X<90 。最大銳角不小於60度。
(3)任意一個三角形兩角平分線的夾角=90+第三角的一半。
(4) 鈍角三角形有兩條高在外部。
(5) 全等圖形的大小(面積、周長)、形狀都相同。
(6) 面積相等的兩個三角形不一定是全等圖形。
(7) 三角形具有穩定性。
(8) 角平分線到角的兩邊距離相等。
(9)有一個角是60的等腰三角形是等邊三角形。
初一數學基本知識點總結 篇5
儘快地掌握科學知識,迅速提高學習能力,由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!
一、目標與要求
1.通過處理實際問題,讓學生體驗從算術方法到代數方法是一種進步;
2.初步學會如何尋找問題中的相等關係,列出方程,了解方程的概念;
3.培養學生獲取信息,分析問題,處理問題的能力。
二、重點
從實際問題中尋找相等關係;
建立列方程解決實際問題的思想方法,學會合併同類項,會解ax+bx=c類型的一元一次方程。
三、難點
從實際問題中尋找相等關係;
分析實際問題中的已經量和未知量,找出相等關係,列出方程,使學生逐步建立列方程解決實際問題的思想方法。
四、知識點、概念總結
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的係數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數;
(3)未知數最高次項為1;
(4)含未知數的項的係數不為0.
4.等式的性質:
等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。
等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。
等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。
5.合併同類項
(1)依據:乘法分配律
(2)把未知數相同且其次數也相同的相合併成一項;常數計算後合併成一項
(3)合併時次數不變,只是係數相加減。
6.移項
(1)含有未知數的項變號後都移到方程左邊,把不含未知數的項移到右邊。
(2)依據:等式的性質
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最低公倍數;
(2)去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)
(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合併同類項:把方程化成ax=b(a0)的形式;
(5)係數化成1:在方程兩邊都除以未知數的係數a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!
初一數學基本知識點總結 篇6
平面直角坐標系
1.定義:平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
2.平面上的任意一點都可以用一個有序數對來表示,記為(a,b),a是橫坐標,b是縱坐標。
3.原點的坐標是(0,0);
縱坐標相同的點的連線平行於x軸;
橫坐標相同的點的連線平行於y軸;
x軸上的點的縱坐標為0,表示為(x,0);
y軸上的點的橫坐標為0,表示為(0,y)。
4.建立了平面直角坐標系以後,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬於任何象限。
5.幾個象限內點的特點:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)關於原點對稱的點是(—x,—y);
(x,y)關於x軸對稱的點是(x,—y);
(x,y)關於y軸對稱的點是(—x,y)。
7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;
點P(x,y)到y軸的距離是︱x︳。
8.在第一、三象限角平分線上的點的坐標是(m,m);
在第二、四象限叫平分線上的點的坐標是(m,—m)。
不等式與不等式組
(1)不等式
用不等號(<,>,≥,≤,≠)連線的式子叫做不等式。
(2)不等式的性質
①對稱性;
②傳遞性;
③加法單調性,即同向不等式可加性;
④乘法單調性;
⑤同向正值不等式可乘性;
⑥正值不等式可乘方;
⑦正值不等式可開方;
(3)一元一次不等式
用不等號連線的,含有一個未知數,並且未知數的次數都是1,未知數的係數不為0,左右兩邊為整式的式子叫做一元一次不等式。
(4)一元一次不等式組
一元一次不等式組是由幾個含有同一個未知數的一元一次不等式組成的不等式組。
點、線、面、體知識點
1.幾何圖形的組成
點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。
線:面和面相交的地方是線,分為直線和曲線。
面:包圍著體的是面,分為平面和曲面。
體:幾何體也簡稱體。
2.點動成線,線動成面,面動成體。
點、直線、射線和線段的表示
在幾何里,我們常用字母表示圖形。
一個點可以用一個大寫字母表示。
一條直線可以用一個小寫字母表示。
一條射線可以用端點和射線上另一點來表示。
一條線段可用它的端點的兩個大寫字母來表示。
注意:
(1)表示點、直線、射線、線段時,都要在字母前面註明點、直線、射線、線段。
(2)直線和射線無長度,線段有長度。
(3)直線無端點,射線有一個端點,線段有兩個端點。
(4)點和直線的位置關係有線面兩種:
①點在直線上,或者說直線經過這個點。
②點在直線外,或者說直線不經過這個點。
角的種類
銳角:大於0°,小於90°的角叫做銳角。
直角:等於90°的角叫做直角。
鈍角:大於90°而小於180°的角叫做鈍角。
平角:等於180°的角叫做平角。
優角:大於180°小於360°叫優角。
劣角:大於0°小於180°叫做劣角,銳角、直角、鈍角都是劣角。
周角:等於360°的角叫做周角。
負角:按照順時針方向旋轉而成的角叫做負角。
正角:逆時針旋轉的角為正角。
0角:等於零度的角。
餘角和補角:兩角之和為90°則兩角互為餘角,兩角之和為180°則兩角互為補角。等角的餘角相等,等角的補角相等。
對頂角:兩條直線相交後所得的只有一個公共頂點且兩個角的兩邊互為反向延長線,這樣的兩個角叫做互為對頂角。兩條直線相交,構成兩對對頂角。互為對頂角的兩個角相等。
還有許多種角的關係,如內錯角,同位角,同旁內角(三線八角中,主要用來判斷平行)。
初一數學基本知識點總結 篇7
有理數加法法則
1、同號兩數相加,取相同的符號,並把絕對值相加;
2、異號兩數相加,取絕對值較大的符號,並用較大的絕對值減去較小的絕對值;
3、一個數與0相加,仍得這個數。
有理數加法的運算律
1、加法的交換律:a+b=b+a;
2、加法的結合律:(a+b)+c=a+(b+c)
有理數減法法則
減去一個數,等於加上這個數的相反數;即a—b=a+(—b)
有理數乘法法則
1、兩數相乘,同號為正,異號為負,並把絕對值相乘;
2、任何數同零相乘都得零;
3、幾個數相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負因式的個數決定。
初一數學基本知識點總結 篇8
本學期,初一數學備課組結合xx區xx中學開學教師大會及教研組長備課組長會議精神以及xx區教研中心檔案精神,繼續實踐和打造以“和諧互助、提升效率”為理念的課堂,以“先學後教,以學定教”的教學理念指導教學研究,以“獨學、對學、合學、群學”的教學思路管理課堂,努力實現從“設計教師的教”到“設計學生的學”的轉變,統籌兼顧,認真開展和落實了各項工作。
一、強化和落實集體備課
結合學校和教研中心對集體備課的要求,開學初就明確了集體備課的要求,形成了如下備課常規:
每次集體備課之前,先明確此次集體備課到下次集體備課的教學內容,本組內各個教師先自備,集體備課時一起討論學習目標,重難點,考點,課時數,以及突破重難點的方法,達成共識,然後組內各個教師再根據共案三次備課,形成個性化教案,個案的學習目標、重難點、考點一致。
二、認真落實學生的作業布置、批改
學生的作業類型有:作業本、練習冊。
本學期,在作業的留批上做到了精選習題,分層布置,基本做到了批改時必須有日期和鼓勵性評語。同時,我組兩位教師針對學生作業情況在平時工作中經常交流、及時反饋,並研究對策。
三、積極參加教研中心和學校組織的各種教研活動
1.積極參加教研中心相關活動:
9月2日,教研中心教學指導團到校指導,我組與名師集體備課,並開展同課異構活動;
9月18日,在xx中學參加為期一天的新課標培訓;
10月7日、8日,名師送教到;
10月25日,我組張老師參加xx區教學能手賽;
11月5日,二中,新授課型公開課及優秀教材分析展示;
2.積極參加學校相關活動:
⑴與區一中校際聯盟活動:9月17日,參加了楊xx教授的講座,並聽評區一中兩位教師的課;
⑵參加學校各種教師賽課活動、教研活動;
⑶認真組織兩次月考,進行命題研究和試卷分析;
⑷材料上交:每月25日前,把本備課組的課件、心得反思、教學案例等上交教科室;每周提供8分材料上傳,可以是心得、體會、教案、試卷等,以確保的免費使用。
四、其他工作
1.配合學校、各個科室完成督導檢查工作。
2.認真完成教研中心、學科組交付的各項工作。
3.其它臨時性工作。
初一數學基本知識點總結 篇9
一、方程的有關概念
1.方程:含有未知數的等式就叫做方程.
2. 一元一次方程:只含有一個未知數(元)x,未知數x的指數都是1(次),這樣的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等號左右兩邊相等的未知數的值,叫做方程的解.
註:⑴ 方程的解和解方程是不同的概念,方程的解實質上是求得的結果,它是一個數值(或幾個數值),而解方程的含義是指求出方程的解或判斷方程無解的過程. ⑵ 方程的解的檢驗方法,首先把未知數的值分別代入方程的左、右兩邊計算它們的值,其次比較兩邊的值是否相等從而得出結論.
二、等式的性質
等式的性質(1):等式兩邊都加上(或減去)同個數(或式子),結果仍相等.
等式的性質(1)用式子形式表示為:如果a=b,那么a±c=b±c
等式的性質(2):等式兩邊乘同一個數,或除以同一個不為0的數,結果仍相等,等式的性質(2)用式子形式表示為:如果a=b,那么ac=bc;如果a=b(c≠0),那么ca=cb
三、移項法則:把等式一邊的某項變號後移到另一邊,叫做移項.
四、去括弧法則
1. 括弧外的因數是正數,去括弧後各項的符號與原括弧內相應各項的符號相同.
2. 括弧外的因數是負數,去括弧後各項的符號與原括弧內相應各項的符號改變.
五、解方程的一般步驟
1. 去分母(方程兩邊同乘各分母的最低公倍數)
2. 去括弧(按去括弧法則和分配律)
3. 移項(把含有未知數的項移到方程一邊,其他項都移到方程的另一邊,移項要變號)
4. 合併(把方程化成ax = b (a≠0)形式)
5. 係數化為1(在方程兩邊都除以未知數的係數a,得到方程的解x=a(b).
六、用方程思想解決實際問題的一般步驟
1. 審:審題,分析題中已知什麼,求什麼,明確各數量之間的關係.
2. 設:設未知數(可分直接設法,間接設法)
3. 列:根據題意列方程.
4. 解:解出所列方程.
5. 檢:檢驗所求的解是否符合題意.
6. 答:寫出答案(有單位要註明答案)
初一數學基本知識點總結 篇10
學期即將結束,在這個學期中,我們初一數學備課組,在教務處和教科室的領導下,開展有計畫、有步驟的工作,取得了一定的成績。總的來說,我們是在紮實做好常規教學的基礎上,圍繞如何在新課程教學中體現新理念,注重情感、態度、價值觀的培養;如何激發學生學數學用數學的興趣;如何引導學生髮現問題、探索猜想、分析論證;如何既要重視學習結果,更要重視學習過程,使學生在學習基本知識和基本技能的過程中學會學習;如何在教學中大膽創新,大面積提高教學質量等等來開展工作。我們發揮集體智慧,群策群力,積極探索。較好地完成了初一年級的數學教學任務。現將一學期的工作簡單回顧如下:
一、制定教學工作計畫
教學工作計畫是教師進行教學工作的一個總的綱領性的思想,只有在進行實際課堂教學活動之前制定出一個科學合理的教學工作計畫,教師才能有條不紊、胸有成竹地進行教學。我們的組員在開學初,根據教材,制定了本學期的教學計畫,根據計畫檢查了自己的教學工作,及時獲取反饋信息,總結經驗教訓,及時調整教學。
二、鑽研課程標準、分析教材、領會其精神實質
我們深入鑽研課程標準,掌握學期教材的結構體系,弄清前後學期教材內容的銜接,而且還了解各部分知識在整個教材中的意義與作用,確立教學目的,選擇適當的教學方法,分析確定教材中的重點、難點與教材內容相關的知識,在每周三下午第1、2節備課組的集體活動時,我們認真學習新課程標準、鑽研新教材,互相交流學習體會;發輝集體的智慧,進行集體備課;統一教學進度,統一各章節的重點、難點、制定難點的突破教法,探討交流教學上的問題,每次活動大家都能暢所欲言,達到了取長補短、相互促進、共同進步的目的。
三、積極開展主題教研活動
每上好一堂課,教師要布置作業,我們布置作業並不是完全按照練習題布置,而是有選擇性的一些習題作為課後作業,以達到減輕課業負擔、提高學習效率的目的,對於學生作業中的錯誤,及時訂正,個別輔導,減少疑惑。尤其是雙休日的作業如何才有效?應如何布置?我們認真進行了反思,讓雙休日的作業確保質量。課堂教學是學習的主陣地,對教學有效性的研究是我們教研的主題,也是研究的重要課題。圍繞這一課題我們在備課組活動中以“數學教學中問題情境的創設”、“數學課堂有效提問”為中心組織研討活動,能讓我們的課堂更最佳化,使課堂教學更有效。
四、正確評價教學效果
針對學校統一組織的月考、期中、期末考試,每當閱卷一結束,我們就認真翻閱學生試卷,尋找學生的典型錯誤,我們所關注的不是平均分幾分,合格率多少,優秀率有多高,而是想及時了解學生的失分原因,查找自己教學中的不足,在備課組研究時交流各自的觀點與想法,以便在後面的複習中加以重視,有利於提高教學質量。
五、認真把好複習關
在期中、期末的複習中,我們習慣於把知識點整理一遍,並將其穿插在相應的例題中,以題目為載體進行複習。在複習時會參考歷年來的期中、期末試題,以及其他區的考試卷,並結合自己這幾年來的教學實踐,有選擇性的出幾份試卷作為複習試題。在複習過程中,把自己認為的重點、易考內容讓學生作記號,要求學生必須弄懂,對於考試卷、無論是填空題、還是選擇題,我們要求學生把具體的解題過程寫出來,以達到真正掌握。
平時的工作中,我們備課組成員凝聚團結,大大促進了組內的各項活動的開展和效率。我們相信:有付出必有回報!
初一數學基本知識點總結 篇11
上個星期五,張老師對我們進行了數學第二單元的測試。
很多同學被填空題和操作題難住了。有的人這邊問問、那邊問問,有的人東望望、西望望,沒一個認真的!我想,這都是因為平時張老師叫我們背的定義沒背,家庭作業不認真做上課不認真聽講的緣故啊!
試捲髮下來了,我看到大部分同學都考得很差,連一個考滿分的也沒有,而且教室里所有的同學都在問答案。我回到座位上,我的試卷也被齊朵朵拿去看了,唉!
考試時,我也被填空題的第四題給難住了,我睡在桌上瞄同桌的卷子,但我絕望了,因為我同桌也被難住了。在做操作題的時候,我用三角板拼角時,心裡就急得很,想!快做完了,要快一點!最後就把角的頂點畫彎了。最後一題我不該錯,全班就只有我沒有寫等於符號,白白的丟掉了0.5分。
我做錯的原因就只有一個,就是:心很急。因為我心急,把定義忘記了;因為我心急,畫錯了角;因為我心急,沒有寫等於符號!為什麼心急?是因為我一直想著要比別人速度快一點,一直想著不能輸給別人,我還沒有得過第一,所以我的心就變得更急!
我覺得,跌倒了還要爬起來才行,因為失敗是成功之母,所以,以後我們還能是全年級第一!
初一數學基本知識點總結 篇12
一、目標與要求
1.通過處理實際問題,讓學生體驗從算術方法到代數方法是一種進步;
2.初步學會如何尋找問題中的相等關係,列出方程,了解方程的概念;
3.培養學生獲取信息,分析問題,處理問題的能力。
二、重點
從實際問題中尋找相等關係;
建立列方程解決實際問題的思想方法,學會合併同類項,會解ax+bx=c類型的一元一次方程。
三、難點
從實際問題中尋找相等關係;
分析實際問題中的已經量和未知量,找出相等關係,列出方程,使學生逐步建立列方程解決實際問題的思想方法。
四、知識點、概念總結
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的係數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數;
(3)未知數最高次項為1;
(4)含未知數的項的係數不為0.
4.等式的性質:
等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。
等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。
等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。
5.合併同類項
(1)依據:乘法分配律
(2)把未知數相同且其次數也相同的相合併成一項;常數計算後合併成一項
(3)合併時次數不變,只是係數相加減。
6.移項
(1)含有未知數的項變號後都移到方程左邊,把不含未知數的項移到右邊。
(2)依據:等式的性質
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最低公倍數;
(2)去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)
(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合併同類項:把方程化成ax=b(a0)的形式;
(5)係數化成1:在方程兩邊都除以未知數的係數a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
初一數學基本知識點總結 篇13
一個學期已到尾聲,細細回顧,七年級數學備課組在學校領導們的高度重視和大力支持下,在全組教師共同努力下,我們獲得“優秀備課組”稱號,取得了一定的成績,受到領導與老師們的一致肯定。下面就具體談談一學期來我們所做的一些工作。
一、認真做好教學工作
教學目標明確。為了讓學生儘快形成國中階段學習的習慣,備課組統一認識,日常教學要注重興趣的激發、方法的指導、知識點的落實。通過一個學期的訓練,學生在解題能力、解題思路方面都得到了長足的進步。
複習有條有理。初一的課程驟然增多,為了讓學生有充足的時間複習,我們在第17周就結束了新課。根據以往的複習經驗,分單元、分知識點進行系統複習。在單元複習中落實知識點、加強能力訓練、滲透解題技巧、養成良好的書寫習慣。從目前兩周的複習情況來看,學生的書寫習慣良好,審題能力有所增強,複習目的比較明確。
二、積極參與課改
一方面備課組按時開展研討活動。開學之初,備課組召開了會議,布置了有關事項。為了推進七年級數學教學,備課組開展聽評課活動,組員統一思想,互幫互助,關係融洽。即聽即評,不留情面,不拖拖拉拉,注重實效。每位老師的教學水平明顯提升。
另一方面,本學期學校全面深化課改,備課組積極回響,一方面迅速制定、印發學案,一方面積極採用洋思上課模式,堅持“模組導學,教學合一”教學模式。學生的學習積極性空前高漲,但在組織課堂,激發學生興趣方面還有待加強。
三、強化訓練,提高成績
為了提高學生的學習成績,我們實行了集體備課研討重、難點,討論教法,分析和總結學生的認知規律,按照估計的學生總體的平均接受水平來設計課堂,以單元檢測為評價和反饋方式,採取引導激勵嘗試提高的結構評價,每次檢測時,以第一次檢查時結果為學生的標準起點,讓學習還不是很紮實的同學,準備3~5天,然後再進行補償檢查,這樣,在心理上消除了學生對檢測的恐懼,激發起學生不服輸的願望,和別人比較,和自己的過去比較,學生不再厭煩第二次檢測,而是嚮往和急切期盼,從而達到了我們的預期效果。總之,在過去的一學期中,我們收穫了不少,但也有許多不足,如後進生轉化一直比較緩慢,過程性評價缺乏必要的現實環境、學生厭學的現象還不同程度的存在,隨著學生認知的變化,課堂組織的模式也要不斷的更新的有關探索還不是很到位等等,我們將在以後的實踐中,創造性的繼續探索、解決。
光陰似箭,一個緊張、充實、有序的學期即將結束。本學期我們組的每位教師都能服從工作安排,認真研究教材教法,團結協作,積極開展各項活動,完成了教育教學和教研工作。現總結如下:
1、做好常規工作
初一數學備課組教師們面對學生基礎薄弱這一事實,不怨天尤人,而是積極主動以極大的熱枕來進行教學。教師們針對學生現狀,精心備課,認真上課,並抓好學生的課堂練習、課後作業的反饋,及時訂正,及時補漏補缺,為此,教師們利用了大量的課餘時間耗費了大量的心血和汗水。
2、堅持理論學習,認真撰寫論文
為加強修養,提高素質,我們一方面認真學習學科刊物,另一方面積極向網路了解課改信息,還注意用教學理論指導教學實踐,認真撰寫論文。
3、發揚團體合作精神,注重相互交流探討我們組教師積極參加學校組織的教研活動,積極外出學習先進的教學經驗,完善和改進教學方法和手段,以提高課堂教學效率。另外,平時備課組內也推行推門聽課制度,在教師之間開展互相學習、取長補短的聽課活動,此外,平時我們在教學中有什麼好的方法、點子,有什麼疑難的問題都會在辦公室進行交流。其實備課組活動不一定都要統一一個時間坐在一起討論,任何時間只要大家有想法都可以進行交流。同事們通過討論,不但提高了對許多模糊問題的認識與理解,而且還進一步增進了彼此之間的友誼。
4、與現代信息技術進行有機的整合
讓現代信息教育技術與數學教學進行更好的整合,以信息化帶動教育現代化,利用現代信息教育技術,為學生創造一個數學實驗的環境。所以我們組上課時儘量多地使用多媒體、網路資源,以此強化課堂交流、探索、創新、提高效率。
5、注重學生的全面發展
在教學中我們一方面認真做好“提優補差”工作。對“尖子生”嚴格要求、精心培養,如在課堂教學中適當提高教學的難度,舉行每周一次的“擂台賽”等。另一方面對那些“學習有困難的學生”,我們做到不歧視、不放棄,經常有針對性地輔導他們,幫助他們樹立學習信心。以上所述,只是這一學期來我們備課組教師工作的一部分。當然,我們的工作中還存在著許多不足之處,取得的成績尚不理想,教學工作苦樂相伴,我們將一如既往務實地工作,再接再厲,把工作做得更好,真誠地希望領導及學校同仁們給予批評指正,幫助我們提高。
初一數學基本知識點總結 篇14
一、目標與要求
1.通過處理實際問題,讓學生體驗從算術方法到代數方法是一種進步;
2.初步學會如何尋找問題中的相等關係,列出方程,了解方程的概念;
3.培養學生獲取信息,分析問題,處理問題的能力。
二、重點
從實際問題中尋找相等關係;
建立列方程解決實際問題的思想方法,學會合併同類項,會解ax+bx=c類型的一元一次方程。
三、難點
從實際問題中尋找相等關係;
分析實際問題中的已經量和未知量,找出相等關係,列出方程,使學生逐步建立列方程解決實際問題的思想方法。
四、知識點、概念總結
1.一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的係數不是零的整式方程是一元一次方程。
2.一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a0)。
3.條件:一元一次方程必須同時滿足4個條件:
(1)它是等式;
(2)分母中不含有未知數;
(3)未知數最高次項為1;
(4)含未知數的項的係數不為0.
4.等式的性質:
等式的性質一:等式兩邊同時加一個數或減去同一個數或同一個整式,等式仍然成立。
等式的性質二:等式兩邊同時擴大或縮小相同的倍數(0除外),等式仍然成立。
等式的性質三:等式兩邊同時乘方(或開方),等式仍然成立。
解方程都是依據等式的這三個性質等式的性質一:等式兩邊同時加一個數或減同一個數,等式仍然成立。
5.合併同類項
(1)依據:乘法分配律
(2)把未知數相同且其次數也相同的相合併成一項;常數計算後合併成一項
(3)合併時次數不變,只是係數相加減。
6.移項
(1)含有未知數的項變號後都移到方程左邊,把不含未知數的項移到右邊。
(2)依據:等式的性質
(3)把方程一邊某項移到另一邊時,一定要變號。
7.一元一次方程解法的一般步驟:
使方程左右兩邊相等的未知數的值叫做方程的解。
一般解法:
(1)去分母:在方程兩邊都乘以各分母的最低公倍數;
(2)去括弧:先去小括弧,再去中括弧,最後去大括弧;(記住如括弧外有減號的話一定要變號)
(3)移項:把含有未知數的項都移到方程的一邊,其他項都移到方程的另一邊;移項要變號
(4)合併同類項:把方程化成ax=b(a0)的形式;
(5)係數化成1:在方程兩邊都除以未知數的係數a,得到方程的解x=b/a.
8.同解方程
如果兩個方程的解相同,那么這兩個方程叫做同解方程。
9.方程的同解原理:
(1)方程的兩邊都加或減同一個數或同一個等式所得的方程與原方程是同解方程。
(2)方程的兩邊同乘或同除同一個不為0的數所得的方程與原方程是同解方程。
由編輯老師為您提供的初一年級新學期數學知識點,希望給您帶來啟發!
初一數學基本知識點總結 篇15
有理數
1.1 正數與負數
在以前學過的0以外的數前面加上負號“—”的數叫負數(negative number)。
與負數具有相反意義,即以前學過的0以外的數叫做正數(positive number)(根據需要,有時在正數前面也加上“+”)。
1.2 有理數
正整數、0、負整數統稱整數(integer),正分數和負分數統稱分數(fraction)。
整數和分數統稱有理數(rational number)。
通常用一條直線上的點表示數,這條直線叫數軸(number axis)。
數軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數0,這個點叫做原點(origin)。
只有符號不同的兩個數叫做互為相反數(opposite number)。(例:2的相反數是-2;0的相反數是0)
數軸上表示數a的點與原點的距離叫做數a的絕對值(absolute value),記作|a|。
一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;0的絕對值是0。兩個負數,絕對值大的反而小。
下面是對平面直角坐標系的內容學習,希望同學們很好的掌握下面的內容。
平面直角坐標系
平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。
水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。
平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合
三個規定:
①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向
②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。
③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。
平面直角坐標系的構成
在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。
通過上面對平面直角坐標系的構成知識的講解學習,希望同學們對上面的內容都能很好的掌握,同學們認真學習吧。
點的坐標的性質
建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。
對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。
一個點在不同的象限或坐標軸上,點的坐標不一樣。
希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個範圍內因式分解,應該是指在有理數範圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④
因式分解與整式乘法的關係:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①係數是整數時取各項最大公約數。②相同字母取最低次冪③係數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準丟字母
②不準丟常數項注意查項數
③雙重括弧化成單括弧
④結果按數單字母單項式多項式順序排列
⑤相同因式寫成冪的形式
⑥首項負號放括弧外
⑦括弧內同類項合併。
初一數學基本知識點總結 篇16
第一章有理數
1、大於0的數是正數。
2、有理數分類:正有理數、0、負有理數。
3、有理數分類:整數(正整數、0、負整數)、分數(正分數、負分數)
4、規定了原點,單位長度,正方向的直線稱為數軸。
5、數的大小比較:
①正數大於0,0大於負數,正數大於負數。
②兩個負數比較,絕對值大的反而小。
6、只有符號不同的兩個數稱互為相反數。
7、若a+b=0,則a,b互為相反數
8、表示數a的點到原點的距離稱為數a的絕對值
9、絕對值的三句:正數的絕對值是它本身,
負數的絕對值是它的相反數,0的絕對值是0。
10、有理數的計算:先算符號、再算數值。
11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О)
12、乘除:同號得正,異號的負
13、乘方:表示n個相同因數的乘積。
14、負數的奇次冪是負數,負數的偶次冪是正數。
15、混合運算:先乘方,再乘除,後加減,同級運算從左到右,有括弧的先算括弧。
16、科學計數法:用ax10n 表示一個數。(其中a是整數數位只有一位的數)
17、左邊第一個非零的數字起,所有的數字都是有效數字。
【知識梳理】
1.數軸:數軸三要素:原點,正方向和單位長度;數軸上的點與實數是一一對應的。
2.相反數實數a的相反數是-a;若a與b互為相反數,則有a+b=0,反之亦然;幾何意義:在數軸上,表示相反數的兩個點位於原點的兩側,並且到原點的距離相等。
3.倒數:若兩個數的積等於1,則這兩個數互為倒數。
4.絕對值:代數意義:正數的絕對值是它本身,負數的絕對值是它的相反數,0的絕對值是0;
幾何意義:一個數的絕對值,就是在數軸上表示這個數的點到原點的距離.
5.科學記數法:,其中。
6.實數大小的比較:利用法則比較大小;利用數軸比較大小。
7.在實數範圍內,加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負數不能開偶次方。實數的運算基礎是有理數運算,有理數的一切運算性質和運算律都適用於實數運算。正確的確定運算結果的符號和靈活的使用運算律是掌握好實數運算的關鍵。
一元一次方程知識點
知識點1:等式的概念:用等號表示相等關係的式子叫做等式.
知識點2:方程的概念:含有未知數的等式叫方程,方程中一定含有未知數,而且必須是等式,二者缺一不可.
說明:代數式不含等號,方程是用等號把代數式連線而成的式子,且其中一定要含有未知數.
知識點3:一元一次方程的概念:只含有一個未知數,並且未知數的次數是1的方程叫一元一次方程.任何形式的一元一次方程,經變形後,總能變成形為ax=b(a≠0,a、b為已知數)的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個重要條件,它也是判斷方程是否是一元一次方程的重要依據.
例2:如果(a+1) +45=0是一元一次方程,則a________,b________.
分析:一元一次方程需要滿足的條件:未知數係數不等於0,次數為1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1.
知識點4:等式的基本性質(1)等式兩邊加上(或減去)同一個數或同一個代數式,所得的結果仍是等式.即若a=b,則a±m=b±m.
(2) 等式兩邊乘以(或除以)同一個不為0的數或代數式, 所得的結果仍是等式.
即若a=b,則am=bm.或. 此外等式還有其它性質: 若a=b,則b=a.若a=b,b=c,則a=c.
說明:等式的性質是解方程的重要依據.
例3:下列變形正確的是( )
A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1
C.如果x=y,則x-5=5-y D.如果則
分析:利用等式的性質解題.應選D.
說明:等式兩邊不可能同時除以為零的數或式,這一點務必要引起同學們的高度重視.
知識點5:方程的解與解方程:使方程兩邊相等的未知數的值叫做方程的解,求方程解的過程叫解方程.
知識點6:關於移項:⑴移項實質是等式的基本性質1的運用.
⑵移項時,一定記住要改變所移項的符號.
知識點7:解一元一次方程的一般步驟:去分母、去括弧、移項、合併同類項、將未知數的係數化為1.具體解題時,有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運算,要根據方程的特點靈活運用.
例4:解方程 .
分析:靈活運用一元一次方程的步驟解答本題.
解答:去分母,得9x-6=2x,移項,得9x-2x=6,合併同類項,得7x=6,係數化為1,得x=.
說明:去分母時,易漏乘方程左、右兩邊代數式中的某些項,如本題易錯解為:去分母得9x-1=2x,漏乘了常數項.
知識點8:方程的檢驗
檢驗某數是否為原方程的解,應將該數分別代入原方程左邊和右邊,看兩邊的值是否相等.
注意:應代入原方程的左、右兩邊分別計算,不能代入變形後的方程的'左邊和右邊.
三、一元一次方程的套用
一元一次方程在實際生活中的套用,是很多同學在學習一元一次方程過程中遇到的一個棘手問題.下面是對一元一次方程在實際生活中的套用的一個專題介紹,希望能為同學們的學習提供幫助.
一、行程問題
行程問題的基本關係:路程=速度×時間,
速度=,時間=.
1.相遇問題:速度和×相遇時間=路程和
例1甲、乙二人分別從A、B兩地相向而行,甲的速度是200米/分鐘,乙的速度是300米/分鐘,已知A、B兩地相距1000米,問甲、乙二人經過多長時間能相遇?
解:設甲、乙二人t分鐘後能相遇,則
(200+300)× t =1000,
t=2.
答:甲、乙二人2鍾後能相遇.
2.追趕問題:速度差×追趕時間=追趕距離
例2甲、乙二人分別從A、B兩地同向而行,甲的速度是200米/分鐘,乙的速度是300米/分鐘,已知A、B兩地相距1000米,問幾分鐘後乙能追上甲? 解:設t分鐘後,乙能追上甲,則
(300-200)t=1000,
t=10.
答:10分鐘後乙能追上甲.
3. 航行問題:順水速度=靜水速度+水流速度,逆水速度=靜水速度-水流速度. 例3甲乘小船從A地順流到B地用了3小時,已知A、B兩地相距90千米.水流速度是20千米/小時,求小船在靜水中的速度.
解:設小船在靜水中的速度為v,則有
(v+20)×3=90,
v=10(千米/小時).
答:小船在靜水中的速度是10千米/小時.
二、工程問題
工程問題的基本關係:①工作量=工作效率×工作時間,工作效率=,工作時間=;②常把工作量看作單位1.
例4已知甲、乙二人合作一項工程,甲25天獨立完成,乙20天獨立完成,甲、乙二人合作5天后,甲另有事,乙再單獨做幾天才能完成?
解:設甲再單獨做x天才能完成,有
(+)×5+=1,
x=11.
答:乙再單獨做11天才能完成.
三、環行問題
環行問題的基本關係:同時同地同向而行,第一次相遇:快者路程-慢者路程=環行周長.同時同地背向而行,第一次相遇:甲路程+乙路程=環形周長.
例5王叢和張蘭繞環行跑道行走,跑道長400米,王叢的速度是200米/分鐘,張蘭的速度是300米/分鐘,二人如從同地同時同向而行,經過幾分鐘二人相遇?
解:設經過t分鐘二人相遇,則
(300-200)t=400,
t=4.
答:經過4分鐘二人相遇.
四、數字問題
數字問題的基本關係:數字和數是不同的,同一個數字在不同數位上,表示的數值不同.
例6一個兩位數,個位數字比十位數字小1,這個兩位數的個位十位互換後,它們的和是33,求這個兩位數.
解:設原兩位數的個位數字是x,則十位數字為x+1,根據題意,得
[10(x-1)+x]+[10x+(x+1)]=33,
x=1,則x+1=2.
∴這個數是21.
答:這個兩位數是21.
五、利潤問題
利潤問題的基本關係:①獲利=售價-進價②打幾折就是原價的十分之幾 例7某商場按定價銷售某種電器時,每台獲利48元,按定價的9折銷售該電器6台與將定價降低30元銷售該電器9台所獲得的利潤相等,該電器每台進價、定價各是多少元?
解:設該電器每台的進價為x元,則定價為(48+x)元,根據題意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] ,
x=162.
48+x=48+162=210.
答:該電器每台進價、定價各分別是162元、210元.
六、濃度問題
濃度問題的基本關係:溶液濃度=,溶液質量=溶質質量+溶劑質量,溶質質量=溶液質量×溶液濃度
例8用“84”消毒液配製藥液對白色衣物進行消毒,要求按1∶200的比例進行稀釋.現要配製此種藥液4020克,則需要“84”消毒液多少克?
解:設需要“84”消毒液x克,根據題意得
=,
x=20.
答:需要“84”消毒液20克.
七、等積變形問題
例1用直徑為90mm的圓柱形玻璃杯(已裝滿水,且水足夠多)向一個內底面積為131×131mm2,內高為81mm的長方體鐵盒倒水,當鐵盒裝滿水時,玻璃杯中水的高度下降了多少?(結果保留π)
第9 / 11頁
分析:玻璃杯里倒掉的水的體積和長方體鐵盒裡所裝的水的體積相等,所以等量關係為:
玻璃杯里倒掉的水的體積=長方體鐵盒的容積.
解:設玻璃杯中水的高度下降了xmm,根據題意,得經檢驗,它符合題意.
八、利息問題
例2儲戶到銀行存款,一段時間後,銀行要向儲戶支付存款利息,同時銀行還將代扣由儲戶向國家繳納的利息稅,稅率為利息的20%.
(1)將8500元錢以一年期的定期儲蓄存入銀行,年利率為2.2%,到期支取時可得到利息________元.扣除利息稅後實得________元.
(2)小明的父親將一筆資金按一年期的定期儲蓄存入銀行,年利率為2.2%,到期支取時,扣除所得稅後得本金和利息總計71232元,問這筆資金是多少元?
(3)王紅的爸爸把一筆錢按三年期的定期儲蓄存入銀行,假設年利率為3%,到期支取時扣除所得稅後實得利息為432元,問王紅的爸爸存入銀行的本金是多少?
分析:利息=本金×利率×期數,存幾年,期數就是幾,另外,還要注意,實得利息=利息-利息稅.
解:(1)利息=本金×利率×期數=8500×2.2%×1=187元.
實得利息 =利息×(1-20%)=187×0.8=149.6元.
(2)設這筆資金為x元,依題意,有x(1+2.2%×0.8)=71232.
解方程,得x=70000.
經檢驗,符合題意.
答:這筆資金為70000元.
(3)設這筆資金為x元,依題意,得x×3×3%×(1-20%)=432.
解方程,得x=6000.
經檢驗,符合題意.
答:這筆資金為6000元.
初一數學基本知識點總結 篇17
一、一元一次不等式的解法:
一元一次不等式的解法與一元一次方程的解法類似,其步驟為:
1、去分母;
2、去括弧;
3、移項;
4、合併同類項;
5、係數化為1
二、不等式的基本性質:
1、不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變;
2、不等式的兩邊都乘以(或除以)同一個正數,不等號的方向不變;
3、不等式的兩邊都乘以(或除以)同一個負數,不等號的方向改變。
三、不等式的解:
能使不等式成立的未知數的值,叫做不等式的解。
四、不等式的解集:
一個含有未知數的不等式的所有解,組成這個不等式的解集。
五、解不等式的依據不等式的基本性質:
性質1:不等式兩邊加上(或減去)同一個數(或式子),不等號的方向不變,
性質2:不等式兩邊乘以(或除以)同一個正數,不等號的方向不變,
性質3:不等式兩邊乘以(或除以)同一個負數,不等號的方向改變,
常見考法
(1)考查一元一次不等式的解法;
(2)考查不等式的性質。
誤區提醒
忽略不等號變向問題。
國中數學重點知識點歸納
有理數乘法的運算律
1、乘法的交換律:ab=ba;
2、乘法的結合律:(ab)c=a(bc);
3、乘法的分配律:a(b+c)=ab+ac
單項式
只含有數字與字母的積的代數式叫做單項式。
注意:單項式是由係數、字母、字母的指數構成的。
多項式
1、幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數項。多項式中次數最高的項的次數,叫做這個多項式的次數。
2、同類項所有字母相同,並且相同字母的指數也分別相同的項叫做同類項。幾個常數項也是同類項。
提高數學思維的方法
轉化思維
轉化思維,既是一種方法,也是一種思維。轉化思維,是指在解決問題的過程中遇到障礙時,通過改變問題的方向,從不同的角度,把問題由一種形式轉換成另一種形式,尋求最佳方法,使問題變得更簡單、清晰。
創新思維
創新思維是指以新穎獨創的方法解決問題的思維過程,通過這種思維能突破常規思維的界限,以超常規甚至反常規的方法、視角去思考問題,得出與眾不同的解
要培養質疑的習慣
在親職教育中,家長要經常引導孩子主動提問,學會質疑、反省,並逐步養成習慣。
在孩子放學回家後,讓孩子回顧當天所學的知識:老師如何講解的,同學是如何回答的?當孩子回答出來之後,接著追問:“為什麼?”“你是怎樣想的?”啟發孩子講出思維的過程並儘量讓他自己作出評價。
有時,可以故意製造一些錯誤讓孩子去發現、評價、思考。通過這樣的訓練,孩子會在思維上逐步形成獨立見解,養成一種質疑的習慣。