《三角形內角和》數學教案

《三角形內角和》數學教案 篇1

大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鑽研教材,充分了解學生的基礎上,我準備從以下幾個方面進行說課:

一、教材分析

“三角形的內角和”是三角形的一個重要性質,它有助於學生理解三角形內角之間的關係,是進一步學習幾何的基礎。

二、教學目標

1、知識與技能:明確三角形的內角的概念,使學生自主探究發現三角形內角和等於180°,並運用這一規律解決問題。

2、過程和方法:通過學生猜、量、拼、折、觀察等活動,培養學生髮現問題、提出問題、分析問題和解決問題的能力。

3、情感與態度:使學生感受數學圖形之美及轉化思想,體驗數學就在我們身邊。

三、教學重難點

教學重點:動手操作、自主探究發現三角形的內角和是180°,並能進行簡單的運用。

教學難點:採用多種途徑驗證三角形的內角和是180°。

四、學情分析

通過前面的學習,學生已經掌握了三角形的一些基礎知識,會量角,部分學生已經知道三角形內角和是180°,但不知道怎樣得出這個結論。

五、教學法分析

本節課採用自主探索、合作交流的教學方法,學生自主參與知識的構建。領悟轉化思想在解決問題中的套用。

六、課前準備

1、教師準備:多媒體課件、三角形教具。

2、學生準備:銳、直、鈍角三角形各兩個,量角器、剪刀。

七、教學過程

(一)、創設情境,激趣導入

導入:“同學們,有三位老朋友已經恭候我們多時了。“(出示三角形動畫課件),讓學生依次說出各是什麼三角形。

課件分別閃爍三角形三個內角,並介紹:“這三個角叫做三角形的內角,把三個角的度數加起來,就是三角形的內角和。請學生畫一個三角形,要求:有兩個直角。為什麼不能畫,問題在哪呢?這節課我們就一起來探究三角形的內角和。板書課題。

(二)、自主探究、合作交流

1、探索特殊三角形內角和

拿出自己的一副三角板,同桌之間互相說一說各個角的度數。

三角形內角和是多少度呢?指名匯報。90°+30°+60°=180°

90°+45°+45°=180°

從剛才兩個三角形內角和的計算中,你發現了什麼?

2、探索一般三角形的內角和

一般三角形的內角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們採用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。

3、匯報交流

請小組代表匯報方法。

1)量:你測量的三個內角分別是多少度?和呢?(有不同意見)

沒有統一的結果,有沒有其他方法?

2)剪―拼:把三角形的三個內角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結論。(學生嘗試驗證)

3)折拼:學生邊演示邊匯報。把三角形的三個內角都向內折,把這三個內角拼組成一個平角。所以得出三角形的內角和是180°。(學生嘗試驗證)

4)教師課件驗證結果。

請看螢幕,老師也來驗證一下,是不是和你們的結果一樣?播放課件。我們可以得到一個怎樣的結論?

學生回答後教師板書:三角形的內角和是180°

為什麼有的小組用測量的方法不能得到180°?(誤差)

4、驗證深化

質疑:大小不同的三角形,它們的內角和會是一樣嗎?(一樣)

誰能說一說不能畫出有兩個直角的三角形的原因?

(三)、套用規律,解決問題:

揭示規律後,學生要掌握知識,就要通過解答實際問題。

1、為了讓學生積極參與,我設計了闖關的活動來激勵學生的興趣。闖關成功會獲得小獎章。

第一關:基礎練習,要求學生利用“三角形內角和是180°”這一規律在三角形內已知兩個角,求第三個角(課件出示)

第二關,提高練習,

①已知等腰三角形的底角,求頂角。

②求等邊三角形每個角的度數是多少。直角三角形已知一個銳角,求另一個。

讓學生靈活套用隱含條件來解決問題,進一步提高能力。

2、小組合作練習,完成相應做一做。

(四)、課堂總結,效果檢測。

一節成功的好課要有一個好的開頭,更要有一個完美的結尾,數學是使人變聰明的學科,通過這節課的學習,你收穫了什麼?學生們暢所欲言。接下來老師要檢查大家的學習效果,學生完成答題卡,組長評判,集體匯報。

(五)作業課下繼續探究三角形,看你有什麼新發現。

八、板書設計

通過這樣的設計,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,使學生在自主中學習,在探究中發現,在發現中成長。以上便是我對《三角形的內角和》這一堂課的說課,謝謝大家!

《三角形內角和》數學教案 篇2

尊敬的各位評審老師:

大家好!今天我很高興也很榮幸能有這個機會與大家共同交流,在深入鑽研教材,充分了解學生的基礎上,我準備從以下幾個方面進行說課:

一、教材分析

“三角形的內角和”是三角形的一個重要性質,它有助於學生理解三角形內角之間的關係,是進一步學習幾何的基礎。

二、教學目標

1、知識與技能:明確三角形的內角的概念,使學生自主探究發現三角形內角和等於180°,並運用這一規律解決問題。

2、過程和方法:通過學生猜、量、拼、折、觀察等活動,培養學生髮現問題、提出問題、分析問題和解決問題的能力。

3、情感與態度:使學生感受數學圖形之美及轉化思想,體驗數學就在我們身邊。

三、教學重難點

教學重點:動手操作、自主探究發現三角形的內角和是180°,並能進行簡單的運用。

教學難點:採用多種途徑驗證三角形的內角和是180°。

四、學情分析

通過前面的學習,學生已經掌握了三角形的一些基礎知識,會量角,部分學生已經知道三角形內角和是180°,但不知道怎樣得出這個結論。

五、教學法分析

本節課採用自主探索、合作交流的教學方法,學生自主參與知識的構建。領悟轉化思想在解決問題中的套用。

六、課前準備

1、教師準備:多媒體課件、三角形教具。

2、學生準備:銳、直、鈍角三角形各兩個,量角器、剪刀。

七、教學過程

(一)、創設情境,激趣導入

導入:“同學們,有三位老朋友已經恭候我們多時了。“(出示三角形動畫課件),讓學生依次說出各是什麼三角形。

課件分別閃爍三角形三個內角,並介紹:“這三個角叫做三角形的內角,把三個角的度數加起來,就是三角形的內角和。請學生畫一個三角形,要求:有兩個直角。為什麼不能畫,問題在哪呢?這節課我們就一起來探究三角形的內角和。板書課題。

(二)、自主探究、合作交流

1、探索特殊三角形內角和

拿出自己的一副三角板,同桌之間互相說一說各個角的度數。

三角形內角和是多少度呢?指名匯報。90°+30°+60°=180°

90°+45°+45°=180°

從剛才兩個三角形內角和的計算中,你發現了什麼?

2、探索一般三角形的內角和

一般三角形的內角和是多少度?猜一猜。你們能想辦法證明嗎?接下來,我們採用小組合作的方式進行探究,看看哪個組的方法多而且富有新意。

3、匯報交流

請小組代表匯報方法。

1)量:你測量的三個內角分別是多少度?和呢?(有不同意見)

沒有統一的結果,有沒有其他方法?

2)剪―拼:把三角形的三個內角剪下來拼在一起,成為一個平角,利用平角是180°這一特點,得出結論。(學生嘗試驗證)

3)折拼:學生邊演示邊匯報。把三角形的三個內角都向內折,把這三個內角拼組成一個平角。所以得出三角形的內角和是180°。(學生嘗試驗證)

4)教師課件驗證結果。

請看螢幕,老師也來驗證一下,是不是和你們的結果一樣?播放課件。我們可以得到一個怎樣的結論?

學生回答後教師板書:三角形的內角和是180°

為什麼有的小組用測量的方法不能得到180°?(誤差)

4、驗證深化

質疑:大小不同的三角形,它們的內角和會是一樣嗎?(一樣)

誰能說一說不能畫出有兩個直角的三角形的原因?

(三)、套用規律,解決問題:

揭示規律後,學生要掌握知識,就要通過解答實際問題。

1、為了讓學生積極參與,我設計了闖關的活動來激勵學生的興趣。闖關成功會獲得小獎章。

第一關:基礎練習,要求學生利用“三角形內角和是180°”這一規律在三角形內已知兩個角,求第三個角(課件出示)

第二關,提高練習,

①已知等腰三角形的底角,求頂角。②求等邊三角形每個角的度數是多少。直角三角形已知一個銳角,求另一個。

讓學生靈活套用隱含條件來解決問題,進一步提高能力。

2、小組合作練習,完成相應做一做。

(四)、課堂總結,效果檢測。

一節成功的好課要有一個好的開頭,更要有一個完美的結尾,數學是使人變聰明的學科,通過這節課的學習,你收穫了什麼?學生們暢所欲言。接下來老師要檢查大家的學習效果,學生完成答題卡,組長評判,集體匯報。

(五)作業課下繼續探究三角形,看你有什麼新發現。

八、板書設計

通過這樣的設計,使學生不僅學到科學的探究方法,而且體驗到探索的樂趣,使學生在自主中學習,在探究中發現,在發現中成長。以上便是我對《三角形的內角和》這一堂課的說課,謝謝大家!

《三角形內角和》數學教案 篇3

設計理念:

遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。《數學課程標準》指出,讓學生學習有價值的數學,讓學生帶著問題、帶著自己的思想、自己的思維進入數學課堂,對於學生的數學學習有著重要作用。因此,我嘗試著將數學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養學生提出問題、分析問題和解決問題的探究能力。

教材分析:

三角形的內角和是三角形的一個重要特徵。本課是安排在學習三角形的概念及分類之後進行的,它是學生以後學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180。

學情分析:

學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在於了解,而在於驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。四年級的學生已經初步具備了動手操作的意識和能力,並形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。

教學目標:

1、使學生經歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規律解決一些簡單的問題。

2、使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數學思考能力。

3、使學生在參與數學學習活動的過程中,獲得成功的體驗,感受探索數學規律的樂趣,產生喜歡數學的積極情感,培養積極與他人合作的意識

《三角形內角和》數學教案 篇4

教學內容:

人教版義務教育課程標準試驗教科書數學四年級下冊第67頁。

設計理念:

遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。《數學課程標準》指出,讓學生學習有價值的數學,讓學生帶著問題、帶著自己的思想、自己的思維進入數學課堂,對於學生的數學學習有著重要作用。因此,我嘗試著將數學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養學生提出問題、分析問題和解決問題的探究能力。

教材分析:

三角形的內角和是三角形的一個重要特徵。本課是安排在學習三角形的概念及分類之後進行的,它是學生以後學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180。

學情分析:

學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道三角形的內角和是180度的結論,但不一定清楚道理,所以本課的設計意圖不在於了解,而在於驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。四年級的學生已經初步具備了動手操作的意識和能力,並形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。

教學目標:

1. 使學生經歷自主探索三角形的內角和的過程,知道三角形的內角和是180°,能運用這一規律解決一些簡單的問題。

2. 使學生在觀察、操作、分析、猜想、驗證、合作、交流等具體活動中,提高動手操作能力和數學思考能力。

3. 使學生在參與數學學習活動的過程中,獲得成功的體驗,感受探索數學規律的樂趣,產生喜歡數學的積極情感,培養積極與他人合作的意識

《三角形內角和》數學教案 篇5

教學目標:

掌握探究方法(猜想—驗證—歸納總結),學會用“轉化”的數學思想探究三角形內角和。

重難點分析

重點分析:教材在呈現教學內容時,不但重視知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間。三角形的內角和的性質沒有直接給出,而是提供了豐富多彩的動手實踐的素材,讓學生通過探索、實驗、討論、交流而獲得,從而讓學生在動手操作,積極探索的活動過程中掌握知識,積累數學經驗,同時發展空間觀念和推理能力,不斷提高自己的思維水平。

難點分析:通過近四年的數學學習,學生已初步掌握了一些學習數學的基本方法,具備了一定的動手操作、觀察比較和合作交流的能力。但是圍繞數學問題開展初步的討論活動,能比較清楚的表達自己的意見,認真傾聽他人的發言,這些初步的數學交流能力還欠缺。

教學方法:

1、探索過程中培養學生的動手實踐能力、協作能力及創新意識和探究精神,發展學生的空間思維能力,同時使學生養成獨立思考的習慣。

2、在活動中,讓學生體驗主動探究數學規律的樂趣,體驗學數學的價值,激發學生學習數學的熱情。

教學過程

導入:各位同學大家好,今天由我來和大家一起學習人教版四年級下冊《三角形的內角和》,我們前面學習和了解了三角形的相關知識,請大家說說三角形按角分,可以分成哪幾類?知識講解(難點突破)

例五:畫出幾個不同類型的三角形。量一量,算一算,三角形3個內角的和各是多少度?解決這個問題的時候,我們先來了解一下什麼是三角形的內角和?

講解:三角形內兩條邊所夾的角就叫做這個三角形的內角。每個三角形都有三個內角,這三個內角的度數加起來就是三角形的內角和。

(一)量一量:我們如何解決這個問題呢?

同學們請看,這裡有一個直角三角形,我們先分別量一量這個直角三角形三個內角的度數並標註。90°30°60°現在我們將這三個內角的度數加起來等於180度°通過測量計算發現這個直角三角形內角和都是180°,是不是所有直角三角形的內角和都是180°呢?同學們你們也來量一量你剛才畫的直角三角形3個內角的度數,算一算是不是也和老師的結果一樣呢?注意在測量要認真,力求準確。停頓數秒從剛才的測量和計算結果中,你發現了什麼?你是不是發現直角三角形的內角和都是180°當然有些同學的測量結果不是等於180°,這是我們在測量時,由於在測量工具、測量方法等各方面的原因,使我們的測量結果存在一定的誤差。實際上,直角三角形三角形內角和就等於180°。

(二)

1、提出猜想:剛才我們通過測量和計算發現了直角三角形內角和等於180,那你能不能大膽的猜測一下:銳角三角形內角和,鈍角三角形的內角和是不是也是180°呢?

2、動手操作,驗證猜想這時每個同學的心中都有了猜測的答案,這個猜想是否成立呢?除了用量角器量一量,你還有其他辦法來驗證嗎?聰明的你,是不是想到好辦法了,那就快快動手吧!

方法:

A、拼一拼的方法

B、折一折的方法把三角形的角1折向它的對邊,使頂點落在對邊上,然後另外兩個角相向對摺,使它們的頂點與角1的頂點互相重合,通過摺疊的方法,三角形的三個內角折到一起正好組成一個平角,所以也能證明三角形的內角和是180°。

同學們我們通過量一量拼一拼折一折,發現無論是直角三角形,銳角三角形鈍角三角形,它們內角和都等於180度,我們通過動作操作,折一折,拼一拼,把三角形的三個內角轉換成了一個平角,成功的得到了這個結論,讓我們為自己的成功鼓掌!齊讀結論。(板書:得到結論)

小結:通過剪拼的方法,把三個角剪下來,拼在一起,三角形的三個內角正好拼成一個平角,因為平角是180°,所以三角形的內角和是180°三角形的形狀和大小雖然不同,但是三角形的內角和都是180度。說明三角形的內角和和他的形狀大小無關

課堂練習(難點鞏固)

總結:我們今天用量一量,折一折,拼一拼的方法得到了三角形的內角和等於180°這一結論,希望同學們在在以後的學習中大膽探索,去發現數學的奧秘吧!我們今天的課程就到這裡了,同學們再見!

《三角形內角和》數學教案 篇6

一、教學目標:

1、理解掌握三角形內角和是180°,並運用這一性質解決一些簡單的問題。

2、通過直觀操作的方法,引導學生探索並發現三角形內角和等於180°,在實驗活動中,體驗探索的過程和方法。

3、在探索和發現三角形內角和的過程中獲得成功的體驗。

二、教學重、難點:

重點:探索並發現三角形內角和等於180°。

難點:運用三角形內角和等於180°的性質解決一些實際問題。

教具:課件、三角形若干。

學具:量角器、直角三角形、銳角三角形和鈍角三角形各一個。

三、教學過程

(一)創設情境,導入新課

我們已經學過了三角形的知識,我們來複習一下,看看大螢幕,各是什麼三角形?誰能說說什麼是銳角三角形、直角三角形、鈍角三角形?追問:不管是什麼三角形它們都有幾個角呢?這三個角都叫做三角形的內角,而這三個內角的和就是這個三角形的內角和。那么誰來說一說什麼是三角形的內角和?三角形有大有小,形狀也各不相同,那么它們的內角和有沒有什麼特點和規律呢?我們來看一個小片段,仔細聽它們都說了什麼?

教師放課件。

課件內容說明:一個大的直角三角形說:“我的個頭大,我的內角和一定比你們大。”一個鈍角三角形說:“我有一個鈍角,我的內角和才是最大的)一個小的銳角三角形很委屈的樣子說“是這樣嗎?”

都聽清它們在爭論什麼嗎?(它們在爭論誰的內角和大。)誰能說一說你的想法?(學生各抒己見,是不評價)果真是這樣嗎?下面我們就來研究“三角形內角和”。

(板書課題:三角形內角和)

(二)自主探究,發現規律

1、探究三角形內角和的特點。

(1)檢查作業,並提出要求:

昨天老師讓每位學生都分別剪出了銳角三角形、直角三角形和鈍角三角形,並量出了每個角的度數,都完成了嗎?拿出來吧,一會我們要算出三角形的內角和填在下面的表格里。我們來看一下表格以及要求。出示小組活動記錄表。

小組活動記錄表

小組成員的姓名

三角形的形狀

每個內角的度數

三角形內角的和

(要求:填完表後,請小組成員仔細觀察你發現了什麼?)

②小組合作。

會使用表格了嗎?下面我們就以小組為單位,按照要求把結果填在小組長手中的表格內。

各組長進行匯報。發現了三角形的內角和都是180°左右。

師:實際上,三角形三個內角和就是180°,只是因為測量有誤差,所以我們才得到剛才得到的數據。

2、驗證推測。

那么同學們有沒有什麼辦法知道三角形的內角和就是180°呢?大家可以討論一下,學生可能會想到用折拼或剪拼的方法來看一看三角形的三個角和起來是不是180°,也就是說三角形的三個角能不能拼成一個平角。師生先演示撕下三個角拼在一起是否是平角,同學們在下面操作進行體驗,再用課件演示把三個內角摺疊在一起(這時要注意平行折,把一個頂點放在邊上)學生也動手試一試。

通過我們的驗證我們可以得出三角形的內角和是180°。

板書:(三角形內角和等於180°。)

3、師談話:三個三角形討論的問題現在能解決了嗎?你現在想對這三個三角形說點什麼嗎?(讓學生暢所欲言,對得出的三角形內角和是180°做系統的整理。)

4、同學們還有什麼疑問嗎?大家想一想我們知道了三角形內角和是180°可以乾什麼呢?(知道三角形中兩個角,可以求出第三個角)

出示書28頁,試一試第3題,並講解。

說明:在直角三角形中一個銳角等於30°,求另一個銳角。

生獨立做,再訂正格式、以及強調不要忘記寫度。

小結:同學們有沒有不明白的地方?如果沒有我們來做練習。

(三)鞏固練習,拓展套用

1、出示書29頁第一題。說明:第一幅圖是銳角三角形已知一個銳角是75°,另一個銳角是28°,求第三個銳角?第二幅圖是直角三角形已知一個銳角是35°,求另一個銳角?第三幅圖是鈍角三角形已知一個銳角是20°,另一個銳角是45°,求鈍角?

完成,並填在書上。講一講直角三角形還有什麼解法。

2、出示29頁第2題。

說明:一個鈍角三角形說:我的兩個銳角之和大於90°。

一個直角三角形說:我的兩個銳角之和正好等於90°。讓學生判斷。

3、畫一畫:

出示四邊形和六邊形。運用三角形內角和是180°計算出各自的內角和。你能推算出多邊形的內角和嗎?

三角形內角和180度是科學家帕斯卡12歲時發現的。我們同學還沒到12歲,看你能不能通過自己的努力也去探索和發現。

(四)課堂總結

讓學生說說在這節課上的收穫!

《三角形內角和》數學教案 篇7

【設計理念】

新課標重視讓學生經歷數學知識的形成過程,要求教師創設有效的問題情境激發學生的參與欲望,提供足夠的時間和空間讓學生經歷觀察、猜測、驗證、交流反思等過程,使學生在動手操作、合作交流等活動中親身經歷知識的形成過程。這樣,學生不僅可以掌握知識,而且可以積累探究數學問題的活動經驗,發展空間觀念和推理能力。

【教材內容】

新人教版義務教育課程標準實驗教科書四年級下冊數學第67頁例6、“做一做”及練習十六的第1、2、3題。

【教材分析】

三角形的內角和是三角形的一個重要特徵。本課是安排在三角形的概念及分類之後教學的,它是學生以後學習多邊形的內角和及解決其它實際問題的基礎。教材很重視知識的探索與發現,安排兩次實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間和時間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、拼等活動,讓學生探索、實驗、交流、推理歸納出三角形的內角和是180°。

【學情分析】

1、在學習本課時,學生已經有了探索三角形內角和的知識基礎:知道直角和平角的度數,會用量角器度量角的度數;認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經知道了等腰三角形和正三角形。

2、已經有一部分學生知道了三角形內角和是180°,只是知其然而不知所以然。

【教學目標】

1通過“量、剪、拼”等活動發現、驗證三角形的內角和是180°,並能運用這個知識解決一些簡單的問題。

2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數學活動經驗,發展空間觀念和推理能力。

3.在參與數學學習活動的過程中,獲得成功的體驗,感受數學探究的嚴謹與樂趣。

【教學重點】

探索發現、驗證“三角形內角和是180°”,並運用這個知識解決實際問題。

【教學難點】

驗證“三角形的內角和是180°”。

【教(學)具準備】

多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。

【教學步驟】

一、複習舊知 引出課題

1、你已經知道有關三角形的哪些知識?

2、出示課題:三角形的內角和

【設計意圖:也自然導入新課。】

二、提出問題 引發猜想

1、提出問題:看到這個課題,你有什麼問題想問的?

預設:

(1)三角形的內角指的是哪些角?

(2)三角形的內角和是什麼意思?

(3)三角形的內角一共是多少度?

2、引發猜想

猜一猜:三角形的內角和是多少度?你是怎么猜的?

三、操作驗證 形成結論

1、交流驗證方法:

(1)用什麼方法證明三角形的內角和是180度呢?

預設:

①量算法

②剪拼法

③折拼法等

(2)三角形的個數有無數個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?

2、動手驗證

3、全班匯報交流

4、小結:剛才通過大家的動手操作驗證了三角形的內角和是180 °度。但動手操作會存在一定的誤差,我們的結論也可能存在偏差。

5、方法拓展

推理驗證:用直角三角形的內角和來證明其他三角形內角和是180 °的方法。

6、形成結論:任意三角形的內角和是180 °。

四、套用結論 解決問題

1、鞏固新知:想一想,算一算。

2、解決問題:等腰三角形風箏的頂角是多少度?

3、辨析訓練,完善結論。

五、課堂總結,歸納研究方法

今天這節課你學到了哪些知識?你是怎樣得到這些知識的?

六、課後延伸:用今天所學的方法繼續研究四邊形的內角和。

七、板書設計:

三角形的內角和

猜測: 三角形的內角和是180°?

驗證: 量 拼

結論: 任意三角形的內角和是180°

《三角形內角和》數學教案 篇8

教學要求

1.通過動手操作,使學生理解並掌握三角形的內角和是180°的結論。

2.能運用三角形的內角和是180°這一規律,求三角形中未知角的度數。

3.培養學生動手動腦及分析推理能力。

教學重點:三角形的內角和是180°的規律。

教學難點:使學生理解三角形的內角和是180°這一規律。

教學用具:每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

教學過程:

一、複習準備

1.三角形按角的不同可以分成哪幾類?

2.一個平角是多少度?1個平角等於幾個直角?

3.如圖,已知∠1=35°,∠2=75°,求∠3的度數。

二、教學新課

1.投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)

2.三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的內角和有什麼規律。

3.以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內角的和各是多少度?

4.指名學生匯報各組度量和計算的結果。你有什麼發現?

5.大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關係呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

6.剛才我們計算三角形的內角和都是先測量每個角的度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

提示學生,可以把三個內角拼成一個角,就只需測量一次了。

7.請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

8.三個角拼在一起組成了一個什麼角?我們可以得出什麼結論?(直角三角形的內角和是180°)

9.拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發現了什麼?(直角三角形和鈍角三角形的內角和也是180°)

10.那么,我們能不能說所有三角形的內角和都是180°呢?為什麼?(能,因為這三種三角形就包括了所有三角形)11.老師板書結論:三角形的內角和是180°。

12.一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?

13.出示教材85頁做一做。讓學生試做。

14.指名匯報怎樣列式計算的。兩種方法均可。

∠2=180°-140°-25°=15°

∠2=180°(140°+25°)=15°

三、鞏固練習

1.88頁第9題

這一題是不是只知道一個角的度數?另一個角是多少度,從哪看出來的?獨立完成,集體訂正。

直角三角形中的一個銳角還可以怎樣算?

2、88頁第10題

①等腰三角形有什麼特點?(兩底角相等)

②列式計算 180°-70°-70°=40°或

180°-(70°×2)=40°

2.88頁第10題

①連線長方形、正方形一組對角頂點,把長方形、正方形分成兩個什麼圖形?

②一個三角形的內角和是180°,兩個三角形呢?

四、布置作業

《三角形內角和》數學教案 篇9

一、教材簡介:

本微課選自北京師範大學出版社國中數學七年級下冊第四章《三角形》的第一節《認識三角形》的內容,學生在學習了“三角形的概念”之後,自然要想到“三角形的內角和”,因此本節微課起著承上啟下的作用。教學內容是《三角形內角和》。

二、設計理念:

我在設計這一堂微課時,主要從七年級學生以形象思維為主,對新事物容易產生興趣的特點出發,創設問題情景“在以前國小學習三角形的內角和的結論時,是通過撕、拼的方法直觀得到的,你知道其中的依據嗎?”來激發學生探究的欲望。然後通過老師藉助Z+Z超級畫板展示“三角形的內角和等於180°”的動畫以及通過旋轉和平移三角形的兩個角到第三個角的方法,一方面讓學生去發現問題,另一方面使學生通過多角度思考、分析、說理、操作加深學生對三角形內角和為180°的理解,從而突出和解決了本節課的重點,同時在教學中注重在直觀操作的基礎上進行簡單的推理,使學生學會用一定的方式有條理地表達推理過程。在學生探究得出三角形的內角和等於180°之後,教師通過藉助Z+Z超級畫板拖動三角形的任意一個點,改變三角形的形狀,動態顯示了“三角形的內角和”始終等於180°的數據。加深對“三角形的內角和“的理解。最後同過練習,檢測學生對“三角形的內角和”的套用掌握程度,拓展學生視野,提高學生認識水平。

設計特色是力求通過Z+Z超級畫板動畫等多媒體教學手段,使抽象知識動態化,降低學生認知難度。以問題為導向,引導學生推斷分析,鍛鍊學生邏輯思維。教學過程充分體現出以學生為主體,教師為主導的特點,啟發引導學生通過多角度思考、分析、說理、操作的過程中主動地去獲取知識,體驗過程、感悟方法,以提高學生學習的有效性。

三、學情分析:

七年級的學生形象思維比較好,但空間思維比較差,注意力容易轉移,需要教師結運用多媒體技術展示三角形內角和,因此本節課我展示“三角形的內角和”的動畫給學生看,將思維的可視化展示給學生,使學生能保持較大的學習興趣,從而努力培養學生的發現問題的能力、推理能力、有條理的表達能力、發展空間觀念。

四、教學目標

知識與技能:通過觀察、操作、想像、推理“三角形內角和等於180°”的活動過程,發展空間觀念,推理能力和有條理地表達能力。

過程與方法:通過自主探究,結合具體實例,掌握三角形三個角和等於180°。

情感、態度價值觀:在探究學習中體會數學的現實意義,培養學習數學的信心,體驗解決問題方法的多樣性。

五、教學重難點

教學重點:三角形的內角和。

教學難點:三角形的內角和。

六、教學用具

“三角形的內角和”動畫、製作多媒體課件。

七、教學過程:

教學環節

教學內容

教學活動

設計意圖

教師的組織和引導

學生活動

提出問題,自主探究

一、三角形內角和

展示書本P81頁的做一做,提出問題:

1、在國小通過撕、拼方法得到三角形內角和等於180°,依據是什麼?

2、展示“三角形內角和等於180°”動畫。

3、引導學生利用“平行線的判定與性質”探究、推理、得出“三角形內角和等於180°”的結論

3、利用“三角形內角和”的動畫,拖動三角形的任意點,用數據顯示三角形的內角和等於180°。

閱讀課本p81頁,回憶國小通過撕、拼方法得到三角形內角和等於180°。

觀看“三角形內角和等於180°”動畫。

探究、想像、推理、得出結論。

觀看動畫,加深理解三角形內角和等於180°。

根據做一做,激發學生的探究欲望。

動畫形象地呈現在學生眼前,直觀操作與說理結合起來。

培養學生的推理能力和有條理地表達能力,發展空間觀念。

效果檢測,引領提升

練習

展示有梯度的課堂練習。

做練習

對所學知識加以運用和深化歸納總結,深化認知

總結拓展

總結本節知識點

歸納知識點

學會總結

板書設計

一、三角形三個內角和等於180°

教學反思

該微課針對我校生源不是很好的實際情況和“三角形內角和”很難理解的特點,面向學生,聚焦學習過程,關注個性差異,採用問題導學、自主探究模式,聚焦知識點講解,呈現教師如何用Z+Z超級畫板軟體引導學生學習,學生如何在教師的引導下自主學習的過程,充分體現教師的主導作用和學生的主體作用;針對七年級學生以形象思維為主、好奇心強的特點,充分發揮多媒體在學科中的運用,教師展示“三角形內角和”動畫,讓學生根據“平行線的判定和性質”獲得“三角形內角和等於180°”的結論,體現思維過程。培養學生的推理能力和有條理地表達能力,發展空間觀念。符合新課標倡導的探究性學習的理念。事實證明,符合學生的認知心理,達到了很好的效果。

《三角形內角和》數學教案 篇10

教學目標

通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。

教學重難點

三角形的內角和

課前準備

電腦課件、學具卡片

教學活動

一、計算三角尺三個內角的和。

出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

引導學生說出90度、60度、30度。

出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。

提問:請同學們任選一個三角尺,算出他們三個角一共多少度?

學生計算後指名回答。

師:三角尺三個角的和是180度。

二、自主探索,解決問題

提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上

任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然後小組內交流。

學生小組活動,教師了解學生情況,個別同學加以輔導。

全班交流:讓學生分別說出三個角的度數以及它們的和。

提問:你發現了什麼?

:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。

三、試一試

要求學生先計算,再用量角器量,最後比較結果是否相同?讓學生說說計算的方法。

教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以

計算的結果為準。

四、鞏固提高

完成想想做做的題目。

第1題

學生獨立計算,交流算法。要求學生用量角器量出結果,和計算的結果想比較。

第2題

指導學生看圖,弄清拼成的三角形的三個內角指的是哪三個角。計算三角形三個角的內角和,幫助學生進一步理解:三角形三個內角的和是180度。

第3題

通過操作、計算,使學生認識到:不管三角形的大小怎樣變化,它的內角和是不會變化的。

第4、5、6

引導學生運用三角形的分類及三角形內角和的有關知識解決有關問題,重點培養學生靈活運用知識解決問題的能力。

《三角形內角和》數學教案 篇11

學習目標:

(1) 知識與技能 :

掌握三角形內角和定理的證明過程,並能根據這個定理解決實際問題。

(2) 過程與方法 :

通過學生猜想動手實驗,互相交流,師生合作等活動探索三角形內角和為180度,發展學生的推理能力和語言表達能力。對比過去撕紙等探索過程,體會思維實驗和符號化的理性作用。逐漸由實驗過渡到論證。

通過一題多解、一題多變等,初步體會思維的多向性,引導學生的個性化發展。

(3)情感態度與價值觀:

通過猜想、推理等數學活動,感受數學活動充滿著探索以及數學結論的確定性,提高學生的學習數學的興趣。使學生主動探索,敢於實驗,勇於發現,合作交流。

一.自主預習

二.回顧課本

1、三角形的內角和是多少度?你是怎樣知道的?

2、那么如何證明此命題是真命題呢?你能用學過的知識說一說這一結論的證明思路嗎?你能用比較簡潔的語言寫出這一證明過程嗎?與同伴進行交流。

3、回憶證明一個命題的步驟

①畫圖

②分析命題的題設和結論,寫出已知求證,把文字語言轉化為幾何語言。

③分析、探究證明方法。

4、要證三角形三個內角和是180,觀察圖形,三個角間沒什麼關係,能不能象前面那樣,把這三個角拼在一起呢?拼成什麼樣的角呢?

①平角,②兩平行線間的同旁內角。

5、要把三角形三個內角轉化為上述兩種角,就要在原圖形上添加一些線,這些線叫做輔助線,在平面幾何里,輔助線常畫成虛線,添輔助線是解決問題的重要思想方法。如何把三個角轉化為平角或兩平行線間的同旁內角呢?

① 如圖1,延長BC得到一平角BCD,然後以CA為一邊,在△ABC的外部畫A。

② 如圖1,延長BC,過C作CE∥AB

③ 如圖2,過A作DE∥AB

④ 如圖3,在BC邊上任取一點P,作PR∥AB,PQ∥AC。

三、鞏固練習

四、學習小結:

(回顧一下這一節所學的,看看你學會了嗎?)

五、達標檢測:

六、布置作業

《三角形內角和》數學教案 篇12

一、 說教材

三角形的內角和是北師大版四年級下冊第二單元的內容。三角形的內角和是三角形的一個重要性質,學好它有助於學生理解三角形內角之間的關係,也是進一步學習幾何的基礎。

二、說學情

本節課是在學生學過角的度量、三角形的特徵和分類等知識的基礎上進行教學的,學生已經具備一定的關於三角形的認識的直接經驗,也已具備了一些相應的三角形知識和技能,這為感受、理解、抽象三角形的內角和的規律,打下了堅實的基礎。

因此,我確定本節課的教學目標是:

教學目標:

知識與技能:通過測量、撕拼、摺疊等方法,探索和發現三角形三個內角的和等於180。知道三角形兩個角的度數,能求出第三個角的度數。能套用三角形內角和的性質解決一些簡單的問題。

過程與方法:

1.發展學生動手操作、觀察比較和抽象概括的能力。

2.情感、態度與價值觀:體驗數學活動的探索樂趣,體會研究數學問題的思想方法。

教學重點:

學生經歷探究三角形內角和的全過程並歸納概括三角形內角和等於180。

教學難點:

三角形內角和的探索與驗證,對不同探究方法的指導和學生對規律的靈活套用。

三、說教法、學法

整個教學將體現以人為本,先放後扶的教學策略。放,不是漫無目的的放,而是為學生提供足夠的探究規律的材料和時間,放手讓學生自主學習,合作探究;扶,則是根據學生的不同探究方法和出現的錯誤,給予恰當指導,引導學生歸納概括出規律。

《課程標準》明確指出:要結合有關內容的教學,引導學生進行觀察、操作、猜想,培養學生初步的思維能力。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作、主動探究的能力,他們正處於由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數學思維方式。在教學中,學生通過測量、拼折、驗證等方式確定三角形內角的度數和。這樣,既培養了觀察能力和歸納概括能力,又體現了動手實踐、合作交流,自主探索的學習方式,同時也培養了探索能力和創新精神。

四、說教學過程

基於以上分析,我以猜測、驗證、結論和套用四個活動環節為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。

第一, 猜測。

通過出示一個角形,讓學生說知道三角形的知識來引出三角形的內角的概念,讓學生自由猜測,三角形內角和是多少?引出課題,以疑激思。

第二,動手操作,探究新知。

動手實踐,自主探究,是學生學習數學的重要方式,新課程的一個重要理念就是提倡學生做數學用親身體驗的方式來經歷數學,探究數學,這要求老師首先為學生提供充分的研究材料,以及充裕的時間,保證學生能真正地試驗,操作和探索。

這一環節我設計為以下三步:

1、操作感知。

組織學生通過算一算初步感知三角形的內角和。根據學生特點,為了節約學生上課的時間,作為預習作業,我提前讓學生在家裡自製鈍角、銳角、直角三角形,並測量出每個角的度數,寫在三角形對應的角上,也填在書上的表格里。這時直接讓學生計算,學生匯報計算結果,不同的學生可能會有不同的結果,有可能大於180或小於180甚至等於180,只要相對合理(允許一點誤差)都給與肯定。這時可引導學生得出結論(強調在排除測量誤差的前提下):三角形的內角和是180度。在這一過程中,學生有困惑,有疑問,而正是這些困惑激發了學生更強的探究欲望,正是這些疑問,使得合作成為學生的內在需要。

2、小組合作。

針對探究過程中不同思維能力的學生,要做到因材施教。對於得出結論的學生要鼓勵他們思考新的方法,對於無法下手的學生,要啟發他們知道三角形的內角和,我們可以把角合起來看是多少?能用什麼方法將三個角合起來。在探究學習中,老師只是起一個引導者的作用,引導學生不斷地深入探究,儘可能用多種合理的方法,驗證結論。

3、交流反饋,得出結論。

學生完成探究活動之後,在有親身體驗的基礎上,我將選擇不同方法的代表,在展示平台上展示自己的探究過程,並說說自己是怎樣想的。我關注的不是學生最後論證的結果,而是學生思維的過程。學生可能通過:拼一拼、折一折、畫一畫的方法,驗證得出三角形的內角和是180度,並通過觀察對比各組所用的三角形,是不同類型的而且大小不同的,發現這一規律是具有普遍性的,對於任意三角形都是適用。在學生探究之後,我用課件重新演示了3種方法,讓學生有一個系統的知識體系。

第三是靈活套用,拓展延伸。

揭示規律之後,學生要掌握知識,形成技能技巧,就要通過解答實際問題的練習來鞏固內化。根據學生能力的不同,我將練習分為以下3個層次。

1、基礎練習。要求學生利用三角形內角和是180度在三角形內已知兩個角,求第三個角。由於學生空間思維能力的局限,我將先出示有具體圖形的題目,再出示文字敘述題。在這之間指導學生注意一題多解。

2、提高練習。如已知一個直角三角形的一個角的度數,求另一個角的度數;已知一個等腰三角形的頂角或底角的度數,求底角或頂角的度數。

3、拓展練習。針對不同思維能力的學生,我設計的思考題是要求學生套用三角形內角和是180的規律,求多邊形的內角和。我的目的不僅僅是為了讓學生去求解多邊形的內角和,更重要的是為了讓學生靈活套用知識點,培養學生的空間思維能力。

這樣安排可以兼顧不同能力的學生,在保證基本教學要求的同時,儘量滿足學生的學習需要,啟發學生的思維活動。

本節課通過這樣的設計,學生全身心投入到數學探究互動中去,學生不僅學到科學探究的方法,而體驗到探索的甘苦,領略成功的喜悅,學生在探索中學習,在探索中發現,在探索中成長,最終實現可持續性發展。

板書:

三角形的內角和

猜測驗證結論套用

三角形內角和等於180。

《三角形內角和》數學教案 篇13

一、教學目標

課程標準這樣描述:通過觀察、操作了解三角形內角和是180。

分析教材內容,在上學期的學習中學生已經掌握了角的分類及度量的知識。在本課之前,學生又研究了三角形的特性、三邊間的關係及三角形的分類等知識。積累了一些有關三角形的知識和經驗,形成了一定的空間觀念,可以在比較抽象的水平上進一步認識三角形,探索新知。教材中安排了學生對不同形狀的、大小的三角形進行度量,再運用拼、折、剪等方法發現三角形的內角和是180°,學好它有助於學生理解三角形的三個內角之間的關係,也是進一步學習其他圖形內角和的基礎,同時為國中進一步論證做好準備。

課前我對學情進行了分析:

1、學生在學習本課前已經掌握了銳角、直角、鈍角、平角和周角的度數,認識了三角形的基本特徵及其分類,由於學生的數學知識、能力和思考問題的角度有一定的差異,因此比較容易出現解決問題策略的多樣化。

2、已經有不少學生知道了三角形內角和是180度的結論,但是很可能都知其然不知其所以然。

通過對課程標準的認識,以及內容分析和學情分析,我制定了這樣的學習目標:

1、通過量、拼、折、剪等方法探索和發現三角形的內角和等於180°並會套用這一規律解決實際的問題。

2、通過研究直角三角形進而研究銳角三角形、鈍角三角形,初步認識、理解由特殊到一般的邏輯思辨方法。

二、評價設計

針對這一目標的完成,我設計了一下評價方式:

1、交流式評價:通過師生、生生對話交流,在交流中對學生進行評價。

2、表現性評價:通過小組討論表現、學生回答問題情況,適當對學生進行點撥。

3、操作反應評價:通過學生在研究三角形內角和過程中的測量、簡拼、折等活動對學生進行評價

評價題目

1、通過3個練習題(1、做一做。2、說一說3、拼一拼、想一想)

檢測學習目標1的掌握情況。

2、通過小組、同桌合作、匯報,教師引導學生理解本節課所蘊含的學習方法,檢測學習目標2的掌握情況

三、教具學具準備

教具準備:課件、3個直角三角形,2個銳角三角形、2個鈍角三角形、一張表格

學具準備:三角板、量角器、

四、教學過程

這節課的教學我通過一下四個環節完成。

1、觀察猜測,引入新知;

2、動手操作,探索新知;

3、鞏固新知,拓展套用;

4、總結評價、延伸知識。

第一環節,觀察猜測,引入新知。

由圖形引入,讓學生指出銳角三角形,直角三角形,鈍角三角形的三個內角,發現在這些三角形中最大的內角是鈍角。問:想看鈍角三角形72變嗎?我們一起來看一看。課件演示:

(1)鈍角變小,另外兩個角怎樣變?

(2)鈍角變大,另外兩個角怎樣變?

(3)鈍角變大、變大、變大再變大,還能再大嗎?發現再大就成平角了。平角多少度?這時把三角形三個內角的加起來,和可能多少呢?猜測:180度。

這只是我們的猜測,(板書:猜測)數學是要用事實說話的,這節課我們就來學習三角形的內角和。(板書課題)這樣由三種變化的三角形引入新課,激發學生興趣的同時為後面的學習做準備

第二環節,動手操作,探索新知。

1、直角三角形的內角和。

(一)直角三角形內角和

先讓學生觀察一副三角板的內角和,發現都是180度,和猜測是一樣的,是不是所有的直角三角形內角和都是180度呢?課件出示一些直角三角形,讓學生用手中的工具驗證你的猜測。

四人小組合作,拿出學具袋裡三個紅色的直角三角形和表格,用不同的方法驗證猜測。學生可以“量一量”,也可以“剪一剪”,還可以“折一折”。匯報時要讓學生說一說方法,同時在課件上展示。

這個環節引導學生通過量、拼、推理等實踐操作活動,自主探究直角三角形的內角和是180度,體驗解決問題策略的多樣化。通過這些過程使學生明白:探究問題有不同的方法、途徑,並且方法之間可以互為驗證,達到結論的統一,從而使學生明白獲得探究問題的方法比獲得結論更為重要。

(二)、銳角三角形、鈍角三角形的內角和

課件出示將銳角三角形、鈍角三角形,問:你能利用我們剛才學到的知識來研究它們的內角和嗎?動手試一試,可以同桌討論。(學生操作,匯報,課件演示)讓學生模仿老師操作說理。由此得到了銳角三角形和鈍角三角形的內角和也是180度。我們就可以說所有三角形的內角和都是180度。這是三角形的一個特性。

這樣引導學生通過直角三角形的內角和是180度來推導出銳角和鈍角三角形的內角和是180度,使學生初步掌握由特殊到一般的邏輯思辨方法。

第三環節、鞏固新知,拓展套用

用三角形的這一特性來解決一些問題

1、基本練習

通過做一做和說一說這兩個練習來強化學生認知。

2、拓展練習

拼一拼、想一想

(1)兩個三角形拼成大三角形,說出大三角形的內角和

(2)一個三角形去掉一部分

引導學生髮現,無論三角形的形狀或大小如何改變,內角和都是180度,看來三角形的內角和度數和他的大小形狀都無關。

(3)再把這個三角形剪去一部分剪成一個四邊形,它的內角和是多少度?

(4)如果變成五邊形,你還能求出他的度數嗎?

充分利用多媒體資源幫助學生理解、消化、新的知識,能夠靈活的運用三角形的內角和等於180度。在此基礎上滲透數學的“轉化”思想和“分割”思想提高學生靈活運用和推理等各方面的能力。

第四環節、總結評價、延伸知識

通過這個環節讓學生談一談自己的收穫或感受,對本節課的知識進行拓展升華。

《三角形內角和》數學教案 篇14

教學要求

1、通過動手操作,使學生理解並掌握三角形的內角和是180°的結論。

2、能運用三角形的內角和是180°這一規律,求三角形中未知角的度數。

3、培養學生動手動腦及分析推理能力。

教學重點

三角形的內角和是180°的規律。

教學難點

使學生理解三角形的內角和是180°這一規律。

教學用具

每個學生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。

教學過程:

一、出示預習提綱

1、三角形按角的不同可以分成哪幾類?

2、一個平角是多少度?1個平角等於幾個直角?

3、如圖,已知∠1=35°,∠2=75°,求∠3的度數。

二、展示匯報交流

1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內角。(板書:內角)

2、三角形三個內角的度數和叫做三角形的內角和。(板書課題:三角形的內角和)今天我們一起來研究三角形的內角和有什麼規律。

3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內角的和各是多少度?

4、指名學生匯報各組度量和計算的結果。你有什麼發現?

5、大家算出的三角形的內角和都接近180°,那么,三角形的內角和與180°究竟是怎樣的關係呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。

6、剛才我們計算三角形的內角和都是先測量每個角的度數再相加的。在量每個內角度數時只要有一點誤差,內角和就有誤差了。我們能不能換一種方法,減少度量的次數呢?

提示學生,可以把三個內角拼成一個角,就只需測量一次了。

7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。

8、三個角拼在一起組成了一個什麼角?我們可以得出什麼結論?(直角三角形的內角和是180°)

9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發現了什麼?(直角三角形和鈍角三角形的內角和也是180°)

10、那么,我們能不能說所有三角形的內角和都是180°呢?為什麼?(能,因為這三種三角形就包括了所有三角形)

11、老師板書結論:三角形的內角和是180°。

12、一個三角形中如果知道了兩個內角的度數,你能求出另一個角是多少度嗎?怎樣求?

13、出示教材85頁做一做。讓學生試做。

14、指名匯報怎樣列式計算的。兩種方法均可。

∠2=180°—140°—25°=15°

∠2=180°(140°+25°)=15°

課後反思:

對於三角形的內角和,學生並不陌生,在平時的做題中已經涉及到了。可是學生並不知道如何去驗證,所以本節課,重點讓孩子們經歷體驗,感悟圖形。從而收穫了經驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。

《三角形內角和》數學教案 篇15

一、說教材

(一)教材的地位和作用

《三角形內角和》一課是人教版義務教育課程標準實驗教材四年級下冊第五單元的內容,是在學生學習了《三角形的特性》以及《三角形三邊關係》,《三角形的分類》之後進行的,在此之後則是《圖形的拼組》,它是三角形的一個重要特徵,也是掌握多邊形內角和及解決其他實際問題的基礎,因此,學習,掌握三角形的內角和是180°這一規律具有重要意義。

(二)教學目標

基於以上對教材的分析以及對教學現狀的思考,我從知識與技能,教學過程與方法,情感態度價值觀三方面擬定了本節課的教學目標:

1、通過量一量、算一算、拼一拼、折一折的小組活動的方法,探索發現驗證三角形內角和等於180°,並能套用這一知識解決一些簡單問題。

2、通過把三角形的內角和轉化為平角進行探究實驗,滲透轉化;的數學思想。

3、通過數學活動使學生獲得成功的體驗,增強自信心。培養學生的創新意識,探索精神和實踐能力。

(三)教學重,難點

因為學生已經掌握了三角形的概念,分類,熟悉了鈍角,銳角,平角這些角的知識。對於三角形的內角和是多少度,學生並不陌生,也有提前預習的習慣,學生幾乎都能回答出三角形的內角和是180°。在整個過程中學生要了解的是內角的概念,如何驗證得出三角形的內角和是180°。因此本節課我提出的教學的重點是:驗證三角形的內角和是180°。

二、說教法,學法

本節課主要是通過教師的精心引導和點撥,學生在小組中合作探索,通過量一量,折一折,撕一撕,畫一畫,選擇不同的一種或者幾種方法來驗證三角形的內角和是180°。

因為《課程標準》明確指出要結合有關內容的教學,引導學生進行觀察,操作,猜想,培養學生初步的思維能力。四年級學生經過第一學段以及本單元的學習,已經掌握了三角形的分類,比較熟悉平角等有關知識;具備了初步的動手操作,主動探究的能力,他們正處於由形象思維向抽象思維過渡的階段。因此,本節課,我將重點引導學生從猜測――驗證展開學習活動,讓學生感受這種重要的數學思維方式。

三、說教學過程

我以引入,猜測,證實,深化和套用五個活動環節為主線,讓學生通過自主探究學習進行數學的思考過程,積累數學活動經驗。

(一)引入

呈現情境:出示多個已學的平面圖形,讓學生認識什麼是內角;。(把圖形中相鄰兩邊的夾角稱為內角)長方形有幾個內角(四個)它的內角有什麼特點(都是直角)這四個內角的和是多少(360°)三角形有幾個內角呢從而引入課題。

【設計意圖】讓學生整體感知三角形內角和的知識,這樣的教學,將三角形內角和置於平面圖形內角和的大背景中,拓展了三角形內角和的數學知識背景,滲透數學知識之間的聯繫,有效地避免了新知識的橫空出現

(二)猜測

提出問題:長方形內角和是360°,那么三角形內角和是多少呢

【設計意圖】引導學生提出合理猜測:三角形的內角和是180°。

(三)驗證

(1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然後把這三個內角的度數加起來算一算,看看得出的三角形的內角和是多少度

(2)撕―拼:利用平角是180°這一特點,啟發學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

(3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。

(4)畫:根據長方形的內角和來驗證三角形內角和是180°。

一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。

【設計意圖】利用已經學過的知識構建新的數學知識,這不僅有助於學生理解新的知識,而且是一種非常重要的學習方法。在探索三角形內角和規律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯繫起來,並使學生在新舊知識的連線點和新知識的生長點上把握好他們之間的內在聯繫。在整個探索過程中學生積極思考並大膽發言,他們的創造性思維得到了充分發揮。

(四)深化

質疑:大小不同的三角形,它們的內角和會是一樣嗎?

觀察指著黑板上兩個大小不同但三個角對應相等的三角形並說明原因,三角形變大了,但角的大小沒有變。

結論:角的兩條邊長了,但角的大小不變。因為角的大小與邊的長短無關。

實驗:教師先在黑板上固定小棒,然後用活動角與小棒組成一個三角形,教師手拿活動角的頂點處,往下壓,形成一個新的三角形,活動角在變大,而另外兩個角在變小。這樣多次變化,活動角越來越大,而另外兩個角越來越小。最後,當活動角的兩條邊與小棒重合時。

結論:活動角就是一個平角180°,另外兩個角都是0°。

【設計意圖】小學生由於年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯繫起來,通過讓學生觀察利用角的大小與邊的長短無關的舊知識來理解說明。

對於利用精巧的小教具的演示,讓學生通過觀察,交流,想像,充分感受三角形三個角之間的聯繫和變化,感悟三角形內角和不變的原因。

(五)套用

1、基礎練習:書本練習十四的習題9,求出三角形各個角的度數。

2、變式練習:一個三角形可能有兩個直角嗎一個三角形可能有兩個鈍角嗎你能用今天所學的知識說明嗎?

3、(1)將兩個完全一樣的直角三角形拼成一個大三角形,這個大三角形的內角和是多少?

(2)將一個大三角形分成兩個小三角形,這兩個小三角形的內角和分別是多少?

4、智力大挑戰:你能求出下面圖形的內角和嗎書本練習十四的習題

【設計意圖】習題是溝通知識聯繫的有效手段。在本節課的四個層次的練習中,能充分注意溝通知識之間的內在聯繫,使學生從整體上把握知識的來龍去脈和縱橫聯繫,逐步形成對知識的整體認知,構建自己的認知結構,從而發展思維,提高綜合運用知識解決問題的能力。

第一題將三角形內角和知識與三角形特徵結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特徵求三角形內角的度數。

第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特徵,較好地溝通了知識之間的聯繫。

第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的變化情況,進一步理解三角形內角和的知識。

第四題是對三角形內角和知識的進一步拓展,引導學生進一步研究多邊形的內角和。教學中,學生能把這些多邊形分成幾個三角形,將多邊形內角和與三角形內角和聯繫起來,並逐步發現多邊形內角和的規律,以此促進學生對多邊形內角和知識的整體構建。能充分注意溝通知識之間的內在聯繫,使學生從整體上把握知識的來龍去脈和縱橫聯繫,逐步形成對知識的整體認知,構建自己的認知結構,從而發展思維,提高綜合運用知識解決問題的能力。

《三角形內角和》數學教案 篇16

我在講“認識三角形”時,“三角形內角和等於180度”這一結論學生早知曉,為什麼三角形內角和會一樣?這也正是我本節課要與學生共同研究的問題。這時學生想說為什麼又不知怎么說,又因不知道怎么說而感情特別激動。處於這種狀態的學生注意力特別集中,學習興趣異常高漲,到了一觸即發的地步。於是我讓他們將課前準備好的三角形拿出來進行研究,學生通過折一折、拼一拼、剪一剪、之後找到自己的驗證方法時,他們體驗了成功,也學會了學習。在這節課中我們共同找到了幾種驗證三角形內角和是180°方法。學生們拿著他們手中的三角形,在講台上講述自己的驗證方法,雖然有的方法很不成熟,但也可以看出這個過程中,滲透了他們發現的樂趣。有的學生將三角形的三個角都撕下來拼接到一起,有的同學將三角形的三個角沿著三角形的中位線折到一起……其中有一組同學竟然用稚嫩的聲音說:可以用數學方法來證明。於是他們闡述自己藉助與三角形底邊平行的線與三角形所形成的內錯角進行證明的方法。至此學生完成了感性認識到理性認識的轉化過程,充分展示了數學地思維方式和思想方法。