三角形內角和教案範文

三角形內角和教案範文 篇1

【設計理念】

遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。《數學課程標準》指出,讓學生學習有價值的數學,讓學生帶著問題、帶著自己的思想、自己的思維進入數學課堂,對於學生的數學學習有著重要作用。因此,我嘗試著將數學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養學生提出問題、分析問題和解決問題的探究能力。

【教材分析】

三角形的內角和是三角形的一個重要特徵。本課是安排在學習三角形的概念及分類之後進行的,它是學生以後學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180°。

【學情分析】

學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖不在於了解,而在於驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。四年級的學生已經初步具備了動手操作的意識和能力,並形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。

【學習目標】

1、通過測量、剪、拼等活動發現、探索和發現“三角形內角和是180°”。

2、學會根據“三角形內角和是180°”這一知識求三角形中一個未知數的度數。

3、在課堂活動中培養學生的觀察、歸納、概括能力和初步的空間想像力。並通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

4、使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

【教學重點】

探索和發現“三角形的內角和是180°”。

【教學難點】

運用三角形的內角和解決實際問題。

【教學準備】

教師:多媒體、剪好的不同類型的三角形。

學生:量角器、剪刀、剪好的不同類型的三角形。

【教學過程】

一、創設情景,引出問題

1、猜謎語

師:同學們,你們喜歡猜謎語嗎?今天老師給你們帶來了一則謎語。請同學們讀一下(出示謎語)。

師:打一幾何圖形。猜猜看!

學生猜謎語。

根據學生的回答,出示謎底。

師:真是三角形,同學們的反應真快!

2、複習三角形的內容。

其實,三角形我們並不陌生,它是一種特別的平面圖形。關於三角形,你們已經掌握了哪些知識?

指名學生回答。

3、引出課題。

師:同學們知道的還真不少,可見你們平時學習很用功。知道嗎?其實三角形的這三個角就是三角形的三個內角,而這三個角的度數和就是三角形的內角和。你們知道三角形的內角和是多少度嗎?今天這節課就讓我們一起走進三角形內角和,探索其中的奧秘。

(板書課題:三角形的內角和)

二、探究新知

1、討論、交流驗證知識的方法。

師:那同學們用什麼方法來研究三角形的內角和呢?趕緊商量一下。(同桌交流)

學生匯報:

①用量的方法;

②用拼的方法;

③用折的方法。

2、操作驗證。

師:同學們的點子還真多!現在請同學們拿出準備好的三角形。

選1個自己喜歡的三角形,選擇自己喜歡的方法進行驗證。等研究完了我們再交流,發現了什麼,好嗎?好,現在開始!

3、學生匯報。

師:如果你們已經完成了,就把你的小手舉起來示意老師。老師有點迫不及待了,想趕緊分享一下你們研究的成果。誰先來說?

學生匯報,教師適時板書。

①用量的方法:

指名學生匯報度量的結果,教師板書。(指兩名學生匯報)

教師白板演示測量方法,並計算和板書出結果。

教師:同樣是測量的方法,有的同學得了180,有的不是180°,為什麼會出現這種情況?(指名學生說)

師:可能我們測量的時候會有誤差,但是同學們選擇比較精確的測量工具,使用正確的測量方法,還是可以得到精確的結果。看來這個辦法不能使人很信服,有沒有別的方法驗證?

②用拼的方法

a、學生匯報拼的方法並上台演示。

我這裡也有一個鈍角三角形,請兩名同學上台演示。

b、請大家四人小組合作,用他的方法驗證其它三角形。

c、展示學生作品。

d、師展示。

師:我們用量、拼得到了180度,還有什麼方法?

③用折的方法

師:還想向同學們請同學們看一看他是怎么折的(演示)。

師:剛才我們用量的方法、拼的方法和折的方法研究了銳角三角形、直角三角形和鈍角三角形內角和,得出什麼結論了?

教師根據學生板書:(任意)三角形的內角和是180度。

④數學文化

師:除了我們這節課大家想到的方法,還有很多方法也能驗證三角形的內角和是180°,到國中我們還要更嚴密的方法證明三角形的內角和是180°。其實,早在300多年前就有一位偉大的數學家,用科學的數學方法見證了任意三角形的內角和都是180度。這位偉大的數學家就是帕斯卡(出示帕斯卡),他是法國著名的數學家、物理學家。他在12歲時發現了三角形內角和定律,17時寫出了《圓錐截線論》19歲設計了第一架計算機。

三、鞏固練習

數學家發現了知識,今天我們也能夠總結出知識。你們棒不棒?真厲害,接下來白老師要考考你們。眼睛看好啦!

1、出示:我是小判官(對的打“√”錯的“×”。)。

強調:把兩個小三角形拼在一起,問:大三角形的內角和是多少度?

教師:為什麼不是360°?學生回答。

2、接下來我要獎勵你們一個遊戲:《幫角找朋友》。

3、求未知角的度數。

師:接下來,利用三角形的內角和我們來解決一些相關的問題吧!

①出示第一個三角形,學生嘗試獨立完成,教師巡視。

教師:剛才,我們利用了三角形的什麼?

②教師:如果一個都不知道,或只知道1個角,你能知道三角形各角的度數嗎?求出下面三角形各角的度數。

a、我三邊相等。

b、我是等腰三角形,我的頂角是96°。

c、我有一個銳角是40°。

教師:如果我們去求一個三角形內角的度數的時候,首先我們要去觀察三角形,找出它的特點,找出它給出的已知角的度數,然後再去計算三角形未知的內角的度數。

四、拓展延伸

師:看來三角形內角和的知識難不倒你們了,我們來一個挑戰題。你們敢接受挑戰嗎?(出示四邊形)你知道它的內角和是多少嗎?指名生回答,並說出理由。同學們,你們能用今天學的知識算出它的內角和嗎?

接著讓學生嘗試求5邊形和6邊形的內角和。

三角形內角和教案範文 篇2

教學目標

通過猜想、驗證,了解三角形的內角和是180度。在學習的過程中進一步激發學生探索數學規律的興趣,初步感知計算多邊形內角和的公式。

教學重難點

三角形的內角和。

課前準備:

電腦課件、學具卡片。

教學活動

一、計算三角尺三個內角的和。

出示三角尺中的一個,提問:誰來說說三角尺上的三個角分別是多少度?

引導學生說出90度、60度、30度。

出示另一個三角尺,引導學生分別說出三個角的度數:90度、45度、45度。

提問:請同學們任選一個三角尺,算出他們三個角一共多少度?

學生計算後指名回答。

師:三角尺三個角的和是180度。

二、自主探索,解決問題

提問:是不是任一個三角形三個角的和都是180度呢?請同學們在自備本上任畫一個三角形,量出它們三個角分別是多少度,再求出它們的和,然後小組內交流。

學生小組活動,教師了解學生情況,個別同學加以輔導。

全班交流:讓學生分別說出三個角的度數以及它們的和。

提問:你發現了什麼?

:任何一個三角形三個角的和都是180度。利用三角形的這一性質,我們可以解決許多問題。

三、試一試

要求學生先計算,再用量角器量,最後比較結果是否相同?讓學生說說計算的方法。

教師說明:即使結果不完全一樣,是因為測量的結果存在誤差,我們還是以計算的結果為準。

三角形內角和教案範文 篇3

教學內容

人教版國小數學第八冊第五單元第85頁例5

任務分析

教材分析: 《三角形的內角和》是義務教育課程標準實驗教科書(數學)四年級下冊第五單元《三角形》中的一個教學內容。這部分內容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質,有助於學生理解三角形的三個內角之間的關係,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索並歸納出這一規律,即任意一個三角形,它的內角和都是180度。教材在編寫上也深刻的體現出了讓學生探究的特點,通過動手操作探究發現三角形內角和為180度。教學內容的核心思想體現在讓學生經歷猜想—驗證—結論的過程,來認識和體驗三角形內角和的特點。

學情分析:通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內角和是180°;並在相關的補充習題和數學練習冊的練習中,也有要求測量任意三角形的三個內角的度數並求出它們的和的練習,很多學生已經知道了三角形的內角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節課上的主要任務是通過實驗操作驗證三角形的內角和是180°。

教學目標

1、通過實驗、操作、推理歸納出三角形內角和是180°。

2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數並運用解決實際生活問題。

3、通過拼擺,感受數學的轉化思想。

教學重點

探究發現和驗證“三角形的內角和180度”。

教學難點

驗證三角形的內角和是180度。

教學準備

多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

教學過程

一、複習舊知,學習鋪墊

1、一個平角是多少度?等於幾個直角?

2、如下圖,已經∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解規律

1、說明三角形的三個內角和

說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)並說出三角形有幾個角?

師(指出):三角形的這三個角叫做三角形的三個內角,這三個內角的度數和叫做三角形的內角和。

板書課題:“三角形的內角和”。

揭示課題:今天我們一起來探究三角形的內角和有什麼規律。

2、探究三角形的內角和規律

探究1:量一量,算一算

以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

生討論匯報,並引導學生髮現:三角形的內角和接近180°。

師:三角形的內角和接近180°,那它到底與180° 有怎樣的關係呢?

學生預設:有學生可能會說出三角形的內角和就是180°,這時老師可以提問,為什麼就是180°?我們要進行驗證,你有什麼辦法呢?

探究2:擺一擺,拼一拼

引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

生可能很難想到,可以提示學生:把三個內角拼成一個角就只要量一次角。讓我們一起動手做一做

如圖:

(1)

銳角的三個內角拼成了一個平角,引導學生說出:銳角三角形的內角和是180°.

(2)

讓學生小組合作用同樣的方法,發現:直角三角形的內角和也是180°.

(3)

讓學生獨立用同樣的方法,發現:鈍角三角形的內角和也是180°.

引導學生歸納:三角形的內角和是180°。

是不是所有的三角形的內角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)

板書:三角形的內角和是180°

三、鞏固練習,套用規律

1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數嗎?

學生獨立完成,並說出原因:因為三角形的內角和是180°,也就是∠1+∠2+∠3=180°,藉助圖像

∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)

= 180°-140°-25° =180°-(140°+25°)

=40°-25° =180°-165°

=15° =15°

2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?

學生分析:因為等腰三角形的兩個底角相等,又因為三角形的內角和是180°,所以

(180°-80°)÷2

=100°÷2

=50°

四、拓展練習,深化規律

1、求出下面各角的度數。

(1) (2)

2、判斷

(1)三角形任意兩個內角的和大於第三個角。( )

(2)銳角三角形任意兩個內角的和大於直角。( )

(3)有一個角是60°的等腰三角形不一定是等邊三角形。( )

3、下面是兩塊三角形的玻璃打碎後留下的殘片,你知道它們原來各是什麼三角形嗎?

( ) ( )

五、課堂小結,分享提升

1、談談這節課你有什麼收穫?

2、課後思考題

三角形的內角和是180°,那長方形、正方形的內角和呢?(根據三角形的內角和是180°求,參考課本88頁第12題,完成89頁16題)

板書設計

三角形內角和教案範文 篇4

一、教材背景分析

《三角形的內角》是九年制義務教育人教版七年級下冊第七章《三角形》的第二節內容。本節課是在學生學習了與三角形有關的概念、邊、角之間的關係的基礎上,讓學生動手操作、實踐,說出“三角形的內角和等於180°”成立的理由,然後由淺入深,循序漸進,引導學生觀察、實驗、猜想、證明,逐步培養學生的邏輯推理能力。

二、教學目標設計

根據新課程標準的要求以及七年級學生的認知水平,我制定本節課的教學目標如下:

⑴了解三角形的內角;

⑵會用平行線的性質與平角的定義證明三角形的內角和等於180°;

⑶初步學會解決與角有關的實際問題;

⑷初步培養學生的說理能力;

根據對教材的分析和學情的分析我認為本節課的教學的重點與難點如下:

重點:了解三角形的內角和性質,學會解決簡單的實際問題。

難點:證明三角形的內角和等於180°。

三、課堂結構設計

四、教學媒體設計

本節課我主要採用了常規手段和計算機輔助相結合的方式進行教學。

本節課的板書設計如下:

五、教學過程設計

(一)創設情境、激發情趣

愛因斯坦說過:“問題的提出往往比解答問題更重要”。上課開始,我設計了一個趣味性問題。在一個直角三角形里住著三個內角,老二對老大說:“你憑什麼度數最大,我也要和你一樣大。”老大說:“這是不可能的,否則我們這個家再也圍不起來了…”。設定懸念讓學生評理說理,為三兄弟排憂解難,自然導入三角形內角和的學習。

(二)動手操作、初步感知

提問:三角形內角和是多少?由於學生在國小學過這樣的知識,可以預測到學生能輕鬆答出。緊接著提出第二個問題:有什麼辦法可以驗證這個結論呢?學生可能會提出度量、拼圖等方法,然後讓每個學生畫出一個三角形,並將它的內角剪下,試著拼拼看,再通過小組內部交流拼圖的方法,最後教師在學生的基礎上總結拼圖方法。從而讓學生從豐富的實踐活動中發展思維的靈活性、創造性,為下一環節“說理”證明作好準備,使學生體會到數學來源於實踐,同時對新知識的學習有了期待。

(三)實踐說明、深入新知

教是為學服務的,教的最終目的是為了不教,教給學生學習方法,證明方法比單純教給學生證明更有效。教師設問:從剛才拼圖的過程中,你能說出證明:“三角形內角和等於180°”這個結論的正確方法嗎?

⑴把你的想法與同伴交流。

⑵各小組派代表展示說理方法。

⑶請同學們歸納上述不同的方法。教師從中挑選一種方法進行講解,其餘方法讓學生自己證明。通過小組討論,讓學生各抒己見,暢所欲言,鼓勵學生傾聽他人的方法,從中獲益,增加了學生的合作探究精神,有意識地培養學生的說理能力,邏輯推理能力,增強了語言表達能力,培養學生的一題多思,一題多解的創新精神,讓學生體會數學輔助線的橋樑作用,在潛移默化中滲透了國中階段一個重要數學思想-轉化思想,為學好數學打下堅實的基礎。

(四)鞏固練習、拓展新知

我設計了一個問題:一個三角形中最多有幾個直角、鈍角,最多有幾個銳角,最少有幾個銳角。目的是為學生提供充分從事數學活動的時間、空間,讓學生在自主探索、合作交流的氛圍中,有機會分享同學的想法,培養了學生之間良好的人際關係。

(五)啟發誘導、實際運用

出示兩個練習題,讓學生進行鞏固和加深。

通過例題的解析,讓學生體會分析問題的基本方法,滲透國中階段一個重要數學思想:數形結合思想,使學生鞏固概念,加深認識,初步具備解決相關問題的能力,然後讓小組交流不同的解法,培養學生思維能力。

六、教學評價

本節課通過讓學生自主探究,合作學習來理解和掌握了三角形內角和定理,充分發揮了學生的主體意識,取得了良好的教學效果。

同時也讓我認識到教師不僅要教給學生知識,更要培養學生良好的數學素養和學習習慣。

三角形內角和教案範文 篇5

教學目標:

1、通過量、剪、拼、擺等直觀操作的方法,讓學生探索並發現三角形內角和等於180度。

2、在活動交流中培養學生合作學習的意識和能力,讓學生經歷猜測探索總結的數學學習過程,在實驗活動中體驗探索的過程和方法。

3、通過運用三角形內角和的性質解決一些簡單的問題,使學生體會數學與現實生活的聯繫,體會到數學的價值,增加學生學數學的信心和興趣。

教學重點:

探索發現三角形內角和等於180並能套用。

教學難點:

三角形內角和是180的探索和驗證。

教學過程:

一、創設情境,提出問題

師:大家喜歡猜謎語嗎?

生:喜歡。

師:下面請大家猜一個謎語(大螢幕出示形狀似座山,穩定性能堅。三竿首尾連,學問不簡單。

(打一幾何圖形))

生:三角形。

師:三角形中都有哪些學問?

生:三角形有三條邊,三個角,具有穩定性。

生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。

生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。

生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。

生:三角形的內有和是180。

生:(一臉疑惑)

師:(板書:三角形的內角和是180),你有什麼疑惑? 生:什麼是內角?

生:每個三角形的內角和都是180嗎?

(根據學生的問題,在三角形的內角和是180後面加上一個?)

二、自主探索,實踐驗證

1、理解內角 師:什麼是內角?

生:我認為三角形的內角就是指三角形的三個角。

師:三角形的每個角都是三角形的內角,每個三角形都有三個內角。

2、理解內角和。

師:那三角形的內角和又是指什麼?

生:我認為三角形的內角和就是把三角形的三個內角的度數加起來的和。

師:為了方便,我們將三角形的每個內角編上序號1、2、3、我們叫它1、2、3,這三個角的度數和,就是這個三角形的內角和。

3、實踐驗證

師:每個三角形的內角和都是180嗎?用什麼方法來驗證呢?

生:量一量每個角的度數,然後加起來看看是不是180。

師:請大家拿出課前準備的三角形,親自量一量,算一算。(學生動手量一量)

師:誰願意把你的勞動成果和大家分享一下?

生:我量的這個三角形的三個內角的度數分別是60、60、60,加起來一共是180。

師:這位同學量的是一個銳角三角形,並且是比較特殊的三角形等邊三角形。

生:我量這個三角形的三個內角的度數分別是45、45、90,加起來一共是180。

師:這是我們三角尺中的一個,也比較特殊,是一個等腰直角三角形。

生:我量的是三角尺中的另一個,三個內角的.度數分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內角的度數分別是85、60、38,加起來一共是183。

師:你發現了什麼?

生:有的三角形的內角和是180,而有的三角形的內角和卻不是180。

師:看來三角形的內角和不一定是180。

生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結果也不夠精確。雖然不都是三個內角加起來不都是180,但都接近180。

生:都接近180就能說一定是180嗎?

師:科學來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什麼方法來驗證呢?下面請同學們小組合作,發揮小組成員的智慧,充分利用大家的學具進行驗證,比一比哪些組的方法富有新意,開始!

(學生在小組內進行探索驗證。教師巡視,參與到學生的研究中)

師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。

生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內角都向內折,三個內角就拼成了一個平角,也就是180,所以我們小組得出三角形的內角和是180。

師:你折的只是銳角三角形,只能證明銳角三角形的內角和是180,直角三角形,鈍角三角形是不是也是這樣的?

生:我們小組也有折的直角三角形,鈍角三角形。

(其它的成員展示不同的三角形)

師:看這個小組的同學想問題多全面呀,不僅想到了用什麼方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!

師:哪個小組和他們的方法不一樣?

生:我們小組把三角形的三個內角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內角都可以拼成平角,所以我們小組得出結論,三角形的內角和是180。

師:這個小組的方法簡便,易操作,很好。

生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180。 師:你們小組很聰明,從長方形的內角和聯想到直角三角形的內角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!

4、小結

師:剛才同學們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什麼樣的三角形的內角和都是1800,你還有什麼疑問嗎?

生:沒有。

師:(去掉問號)那就讓我們大聲地讀出來三角形的內角和是1800。

三、鞏固套用,加深理解

1、說一說每個三角形的內角和是多少度

師:(出示一個大三角形)這個大三角形的內角和是多少度?

生: 180

師:(出示一個小三角形)這個小三角形的內角和是多少度?

生:180

師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內角和是多少度?

生:180

師:為什麼每個三角形的內角和是1800,而合起來還是180呢?另外那180去哪兒了?

生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內角,所以少了180

師:(演示)把一個大三角形分成兩個三角形,每個三角形的內角和是多少度?

生:180

2、求下面各角的度數

師:如果老師告訴你一個三角形的兩個角的度數,你能說出第三個角的度數嗎?

(出)

生:三角形內角和是180,在第一個三角形中,用180-75-28,A=77

生:用180-90-35,C =55。

生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。

生:第三個三角形中,用180-20-45,B=115。

3、一個等腰三角形的風箏,它的一個底角是70,它的頂角是多少度?

生:等腰三角形的兩個底角相等,所以用180-70-70 4、

師:三角形的內角和在我們的生活中套用很廣泛,老師給大家帶來一個在建築中套用的例子。

在設計這座大橋時,如果設計師將斜拉的鋼索與橋柱形成的夾角設計成了56,建築師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?

生:用量角器量一量

師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?

生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56

師:你真是個善於觀察、善於思考的孩子,努力學習,將來一定會成為一名優秀的建築師。

四、回顧總結,拓展延伸

師:40分鐘很快就過去了,你願意把自己的收穫與大家共同分享嗎?

生:我知道了三角形的內角和是180。

生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內角和都是180。

生:把一個大三角形分成兩個小三角形,每個三角形的內角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內角和還是180。

生:我可以用撕、拼、折等方法來驗證三角形的內角和是180。

師:這個同學不僅學會了知識,而且學會了方法,我們只有學會了方法,才能更好地去探究更多的知識。

師:那你現在知道為什麼一個三角形內只能有一個直角或一個鈍角嗎?

生:兩個直角的度數之和是180,再加上一個角,三個角的度數之和超過了180,所以一個三角形中最多只能有一個直角。

生:兩個鈍角的度數之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。

師:我們學習知識,必須知其然並知其所以然。

師:三角形中還有許許多多的學問,讓我們在以後的學習中繼續去研究。

三角形內角和教案範文 篇6

【設計意圖】

讓學生整體感知三角形內角和的知識,這樣的教學, 將三角形內角和置於平面圖形內角和的大背景中, 拓展了三角形內角和的數學知識背景, 滲透數學知識之間的聯繫, 有效地避免了新知識的"橫空出現"。

猜測

提出問題:長方形內角和是360°,那么三角形內角和是多少呢?

【設計意圖】

引導學生提出合理猜測:三角形的內角和是180°。

(三)驗證

(1)量:請學生每人畫一個自己喜歡的三角形,接著用量角器量一量,然後把這三個內角的度數加起來算一算,看看得出的三角形的內角和是多少度。

(2)撕―拼:利用平角是180°這一特點,啟發學生能否也把三角形的三個內角撕下來拼在一起,成為一個平角 請學生同桌合作,從學具中選出一個三角形,撕下來拼一拼。

(3)折—拼:把三角形的三個內角都向內折,把這三個內角拼組成一個平角,一個平角是180°,所以得出三角形的內角和是180°。

(4)畫:根據長方形的內角和來驗證三角形內角和是180°。

一個長方形有4個直角,每個直角90°,那么長方形的內角和就是360°,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內角和就是180°。從長方形的內角和聯想到直角三角形的內角和是180°。

【設計意圖】

利用已經學過的知識構建新的數學知識, 這不僅有助於學生理解新的知識, 而且是一種非常重要的學習方法。在探索三角形內角和規律的教學中,注意引導學生將三角形內角和與平角,長方形四個內角的和等知識聯繫起來, 並使學生在新舊知識的連線點和新知識的生長點上把握好他們之間的內在聯繫。在整個探索過程中, 學生積極思考並大膽發言, 他們的創造性思維得到了充分發揮。

深化

質疑: 大小不同的三角形, 它們的內角和會是一樣嗎?

觀察:指著黑板上兩個大小不同但三個角對應相等的三角形並說明原因,三角形變大了, 但角的大小沒有變。

結論: 角的兩條邊長了, 但角的大小不變。因為角的大小與邊的長短無關。

實驗: 教師先在黑板上固定小棒, 然後用活動角與小棒組成一個三角形, 教師手拿活動角的頂點處, 往下壓, 形成一個新的三角形, 活動角在變大, 而另外兩個角在變小。這樣多次變化, 活動角越來越大, 而另外兩個角越來越小。最後, 當活動角的兩條邊與小棒重合時。

結論:活動角就是一個平角180°, 另外兩個角都是0°。

【設計意圖】

小學生由於年齡小, 容易受圖形或物體的外在形式的影響。教師主要是引導學生與角的有關知識聯繫起來,通過讓學生觀察利用"角的大小與邊的長短無關"的舊知識來理解說明。

對於利用精巧的小教具的演示, 讓學生通過觀察,交流,想像, 充分感受三角形三個角之間的聯繫和變化, 感悟三角形內角和不變的原因。

【設計意圖】

習題是溝通知識聯繫的有效手段。在本節課的四個層次的練習中, 能充分注意溝通知識之間的內在聯繫, 使學生從整體上把握知識的來龍去脈和縱橫聯繫,逐步形成對知識的整體認知, 構建自己的認知結構, 從而發展思維, 提高綜合運用知識解決問題的能力。

第一題將三角形內角和知識與三角形特徵結合起來,引導學生綜合運用內角和知識和直角三角形,等邊三角形等圖形特徵求三角形內角的度數。

第二題將三角形內角和知識與三角形的分類知識結合起來,引導學生運用三角形內角和的知識去解釋直角三角形,鈍角三角形中角的特徵, 較好地溝通了知識之間的聯繫。

第三題通過兩個三角形的分與合的過程,使學生感受此過程中三角內角的 變化情況, 進一步理解三角形內角和的知識。

第四題是對三角形內角和知識的進一步拓展, 引導學生進一步研究多邊形的內角和。教學中, 學生能把這些多邊形分成幾個三角形, 將多邊形內角和與三角形內角和聯繫起來,並逐步發現多邊形內角和的規律, 以此促進學生對多邊形內角和知識的整體構建。

三角形內角和教案範文 篇7

教學內容

人教版國小數學第八冊第五單元第85頁。

任務分析

教材分析: 《三角形的內角和》是義務教育課程標準實驗教科書(數學)四年級下冊第五單元《三角形》中的一個教學內容。這部分內容是在學生學習了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學的。它是三角形的一個重要性質,有助於學生理解三角形的三個內角之間的關係,也是進一步學習的基礎。教材通過實際操作,引導學生用實驗的方法探索並歸納出這一規律,即任意一個三角形,它的內角和都是180度。教材在編寫上也深刻的體現出了讓學生探究的特點,通過動手操作探究發現三角形內角和為180度。教學內容的核心思想體現在讓學生經歷猜想—驗證—結論的過程,來認識和體驗三角形內角和的特點。

學情分析:通過前面的學習,學生已經掌握了三角形的一些基礎知識,會用工具量角、畫角,具備了探索三角形內角和的知識與基礎技能。在四年級上冊《角的度量》的學習中,學生有接觸到兩把三角尺的內角和是180°;並在相關的補充習題和數學練習冊的練習中,也有要求測量任意三角形的三個內角的.度數並求出它們的和的練習,很多學生已經知道了三角形的內角和是180°。但是要真正理解和掌握需要進行驗證,因此,學生在這節課上的主要任務是通過實驗操作驗證三角形的內角和是180°。

教學目標

1、通過實驗、操作、推理歸納出三角形內角和是180°。

2、能運用三角形的內角和是180°這一規律,求三角形未知角的度數並運用解決實際生活問題。

3、通過拼擺,感受數學的轉化思想。

教學重點

探究發現和驗證“三角形的內角和180度”。

教學難點

驗證三角形的內角和是180度。

教學準備

多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。

教學過程

一、複習舊知,學習鋪墊

1、一個平角是多少度?等於幾個直角?

2、如下圖,已經∠ 1=35°,∠2=78°,求∠3是多少度?

二、探究新知,理解規律

1、說明三角形的三個內角和:

說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)並說出三角形有幾個角?

師(指出):三角形的這三個角叫做三角形的三個內角,這三個內角的度數和叫做三角形的內角和。

板書課題:“三角形的內角和”。

揭示課題:今天我們一起來探究三角形的內角和有什麼規律。

2、探究三角形的內角和規律

探究1:量一量,算一算

以小組為單位,用量角器計算出三種三角形的內角和各是多少度?

生討論匯報,並引導學生髮現:三角形的內角和接近180°。

師:三角形的內角和接近180°,那它到底與180° 有怎樣的關係呢?

學生預設:有學生可能會說出三角形的內角和就是180°,這時老師可以提問,為什麼就是180°?我們要進行驗證,你有什麼辦法呢?

探究2:擺一擺,拼一拼

引導:我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內角和有誤差。能不能換一種方法減少度量的次數,減少誤差呢?

生可能很難想到,可以提示學生:把三個內角拼成一個角就只要量一次角。讓我們一起動手做一做

如圖:

(1)

銳角的三個內角拼成了一個平角,引導學生說出:銳角三角形的內角和是180°。

(2)

讓學生小組合作用同樣的方法,發現:直角三角形的內角和也是180°。

(3)

讓學生獨立用同樣的方法,發現:鈍角三角形的內角和也是180°。

引導學生歸納:三角形的內角和是180°。

是不是所有的三角形的內角和都是180°呢?

三角形內角和教案範文 篇8

【設計理念】

遵循由特殊到一般的規律進行探究活動是這節課設計的主要特點之一。《數學課程標準》指出,讓學生學習有價值的數學,讓學生帶著問題、帶著自己的思想、自己的思維進入數學課堂,對於學生的數學學習有著重要作用。因此,我嘗試著將數學文本、課外預習、課堂教學三方有機整合,在質疑、解疑、釋疑中展開教學,培養學生提出問題、分析問題和解決問題的探究能力。

【教材分析】

三角形的內角和是三角形的一個重要特徵。本課是安排在學習三角形的概念及分類之後進行的,它是學生以後學習多邊形的內角和及解決其它實際問題的基礎。學生在掌握知識方面:已經掌握了三角形的分類,比較熟悉平角等有關知識;能力方面:經過三年多的學習,已具備了初步的動手操作能力和主動探究能力以及合作學習的習慣。因此,教材很重視知識的探索與發現,安排了一系列的實驗操作活動。教材呈現教學內容時,不但重視體現知識的形成過程,而且注意留給學生充分進行自主探索和交流的空間,為教師靈活組織教學提供了清晰的思路。概念的形成沒有直接給出結論,而是通過量、算、拼等活動,讓學生探索、實驗、發現、討論交流、推理歸納出三角形的內角和是180°。

【學情分析】

學生已經掌握三角形特性和分類,熟悉了鈍角、銳角、平角這些角的知識,大多數學生已經在課前通過不同的途徑知道“三角形的內角和是180度”的結論,但不一定清楚道理,所以本課的設計意圖不在於了解,而在於驗證,讓學生在課堂上經歷研究問題的過程是本節課的重點。四年級的學生已經初步具備了動手操作的意識和能力,並形成了一定的空間觀念,能夠在探究問題的過程中,運用已有知識和經驗,通過交流、比較、評價尋找解決問題的途徑和策略。

【學習目標】

1、通過測量、剪、拼等活動發現、探索和發現“三角形內角和是180°”。

2、學會根據“三角形內角和是180°”這一知識求三角形中一個未知數的度數。

3、在課堂活動中培養學生的觀察、歸納、概括能力和初步的空間想像力。並通過動手操作把三角形內角和轉化為平角的探究活動,向學生滲透“轉化”數學思想。

4、使學生體驗成功的喜悅,激發學生主動學習數學的興趣。

【教學重點】

探索和發現“三角形的內角和是180°”。

【教學難點】

運用三角形的內角和解決實際問題。

【教學準備】

教師:多媒體課件、剪好的不同類型的三角形。

學生:量角器、剪刀、剪好的不同類型的三角形。

【教學過程】

一、創設情景,引出問題

1、猜謎語。

師:同學們,你們喜歡猜謎語嗎?今天老師給你們帶來了一則謎語。請同學們讀一下(課件出示謎語)。

師:打一幾何圖形。猜猜看!

學生猜謎語。

根據學生的回答,課件出示謎底。

師:真是三角形,同學們的反應真快!

2、複習三角形的內容。

其實,三角形我們並不陌生,它是一種特別的平面圖形。關於三角形,你們已經掌握了哪些知識?

指名學生回答。

(當學生回答出三角形有3個頂點、3條邊和3個角時,請這名學生到台上分別指出三角形的3個角,並標出角。)

3、引出課題。

師:同學們知道的還真不少,可見你們平時學習很用功。知道嗎?其實三角形的這三個角就是三角形的三個內角,而這三個角的度數和就是三角形的內角和。你們知道三角形的內角和是多少度嗎?今天這節課就讓我們一起走進三角形內角和,探索其中的奧秘。

(板書課題:三角形的內角和)

二、探究新知

1、討論、交流驗證知識的方法。

師:那同學們用什麼方法來研究三角形的內角和呢?趕緊商量一下。(同桌交流)

學生匯報:①用量的方法;②用拼的方法;③用折的方法......

2、操作驗證。

師:同學們的點子還真多!現在請同學們拿出準備好的三角形,

選1個自己喜歡的三角形,選擇自己喜歡的方法進行驗證。(或說研究)等研究完了我們再交流,發現了什麼,好嗎?好,現在開始!

3、學生匯報。

師:如果你們已經完成了,就把你的小手舉起來示意老師。老師有點迫不及待了,想趕緊分享一下你們研究的成果。誰先來說?

學生匯報,教師適時板書。

①用量的方法:

指名學生匯報度量的結果,教師板書。(指兩名學生匯報)

教師白板演示測量方法,並計算和板書出結果。

教師:同樣是測量的方法,有的同學得了180,有的不是180°,為什麼會出現這種情況?(指名學生說)

師:可能我們測量的時候會有誤差,但是同學們選擇比較精確的測量工具,使用正確的測量方法,還是可以得到精確的結果。看來這個辦法不能使人很信服,有沒有別的方法驗證?

②用拼的方法

a、學生匯報拼的方法並上台演示。

我這裡也有一個鈍角三角形,請兩名同學上台演示。

b、請大家四人小組合作,用他的方法驗證其它三角形。

c、展示學生作品。

d、師課件展示。

師:我們用量、拼得到了180度,還有什麼方法?

③用折的方法

師:還想向同學們請同學們看一看他是怎么折的(課件演示)。

師:剛才我們用量的方法、拼的方法和折的方法研究了銳角三角形、直角三角形和鈍角三角形內角和,得出什麼結論了?

教師根據學生板書:(任意)三角形的內角和是180度。

④數學文化

師:除了我們這節課大家想到的方法,還有很多方法也能驗證三角形的內角和是180°,到國中我們還要更嚴密的方法證明三角形的內角和是180°。其實,早在300多年前就有一位偉大的數學家,用科學的數學方法見證了任意三角形的內角和都是180度。這位偉大的數學家就是帕斯卡(課件出示帕斯卡),他是法國著名的數學家、物理學家。他在12歲時發現了三角形內角和定律,17時寫出了《圓錐截線論》19歲設計了第一架計算機。

三、鞏固練習

數學家發現了知識,今天我們也能夠總結出知識。你們棒不棒?真厲害,接下來白老師要考考你們。眼睛看好啦!

1、課件出示:我是小判官(對的打“√”錯的“×”。)

強調:把兩個小三角形拼在一起,問:大三角形的內角和是多少度?

教師:為什麼不是360°?學生回答。

2、接下來我要獎勵你們一個遊戲:《幫角找朋友》

3、求未知角的度數。

師:接下來,利用三角形的內角和我們來解決一些相關的問題吧!

①課件出示第一個三角形,學生嘗試獨立完成,教師巡視。

教師:剛才,我們利用了三角形的什麼?

②教師:如果一個都不知道,或只知道1個角,你能知道三角形各角的度數嗎?求出下面三角形各角的度數。

a、我三邊相等;b、我是等腰三角形,我的頂角是96°。c、我有一個銳角是40°。

教師:如果我們去求一個三角形內角的度數的時候,首先我們要去觀察三角形,找出它的特點,找出它給出的已知角的度數,然後再去計算三角形未知的內角的度數。

四、拓展延伸

師:看來三角形內角和的知識難不倒你們了,我們來一個挑戰題。你們敢接受挑戰嗎?(課件出示四邊形)你知道它的內角和是多少嗎?指名生回答,並說出理由。同學們,你們能用今天學的知識算出它的內角和嗎?

接著讓學生嘗試求5邊形和6邊形的內角和。

小結:求多邊形的內角和,可以從一個頂點出發,引出它的對角線,這樣就把這個多邊形分割成了N個三角形,它的內角和就是N個180°

五、課堂總結。

師:這節課你有什麼收穫?

學生自由發言。

師生交流後總結:知道了三角形的內角和是180度,根據這個規律知道可以用180°減去兩個內角的度數,求出第三個未知角的度數。

同學們,只要我們在日常的學習中,細心觀察,大膽質疑,認真研究,一定會有意想不到的收穫。

六、作業布置

完成教材練習十六的第1、3題。

七、板書設計:

(任意)三角形的內角和是180°

∠1+∠2+∠3=180°

度量剪拼折拼

三角形內角和教案範文 篇9

【教學目標】

1、學生動手操作,通過量、剪、拼、折的方法,探索並發現"三角形內角和等於180度"的規律。

2、在探究過程中,經歷知識產生、發展和變化的過程,通過交流、比較,培養策略意識和初步的空間思維能力。

3、體驗探究的過程和方法,感受思維提升的過程,激發求知慾和探索興趣。

【教學重點】

探究發現和驗證"三角形的內角和為180度"的規律。

【教學難點】

理解並掌握三角形的內角和是180度。

【教具準備】

PPT課件、三角尺、各類三角形、長方形、正方形。

【學生準備】

各類三角形、長方形、正方形、量角器、剪刀等。

【教學過程】

口算訓練(出示口算題)

訓練學生口算的速度與正確率。

一、謎語導入

(出示謎語)

請畫出你猜到的圖形。誰來公布謎底?

同桌互相看一看,你們畫出的三角形一樣嗎?

誰來說說,你畫出的是什麼三角形?(學生匯報)

(1)銳角三角形,(銳角三角形中有幾個銳角?)

(2)直角三角形,(直角三角形中可以有兩個直角嗎?)

(3)鈍角三角形,(鈍角三角形中可以有兩個鈍角嗎?)

看來,在一個三角形中,只能有一個直角或一個鈍角,為什麼不能有兩個直角或兩個鈍角呢?三角形的三個角究竟存在什麼奧秘呢?這節課,我們一起來學習"三角形的內角和。"(板書課題:三角形的內角和)

看到這個課題,你有什麼疑問嗎?

(1)什麼是內角?有沒有同學知道?

內:裡面,三角形裡面的角。

三角形有幾個內角呢?請指出你畫的三角形的內角,並分別標上∠1、∠2、∠3。

(2)誰還有疑問?什麼是內角和?誰來解釋?(三個內角度數的和)。

(3)大膽猜測一下,三角形的內角和是多少度呢?

【設計意圖】創設數學化的情境。學生用已經學的三角形的特徵只能解釋"不能是這樣",而不能解釋"為什麼不能是這樣"。這樣引入問題恰好可以利用學生的這種認知衝突,激發學生的學習興趣。

二、探究新知

有猜想就要有驗證,我們一起來探究用什麼方法能知道三角形的內角和呢?

1、確定研究範圍

先請大家想一想,研究三角形的.內角和,是不是應該包括所用的三角形?

只研究你畫出的那一個三角形,行嗎?

那就隨便畫,挨個研究吧?(太麻煩了)

怎么辦?請你想個辦法吧。

分類研究:銳角三角形,直角三角形,鈍角三角形(貼圖)

2、探究三角形的內角和

思考一下:你準備用什麼方法探究三角形的內角和呢?

小組合作:從你的學具袋中,任選一個三角形,來探究三角形的內角和是多少度?

小組匯報:

(1)量一量:把三角形三個內角的度數相加。

直接測量的方法挺好,雖然測量有誤差,但我們知道了三角形的內角和在180°左右。究竟是不是一定就是180°呢?哪個小組還有不同的方法?

(2)拼一拼:把三角形的三個內角剪下來,拼成了一個平角。

能想到這種剪一剪拼一拼的方法,真不簡單。三個角拼在一起,看起來像個平角,究竟是不是平角呢?誰還有別的方法?

(3)折一折:把三角形的三個角折下來,拼成了一個平角。

這種方法真了不起,能藉助平角的度數來推想三角形內角和是180°。

總結:同學們動腦思考,動手操作,運用不同的方法來驗證三角形的內角和。這三種方法都很好,但在操作過程中,難免會有誤差,不太有說服力。我們能不能藉助學過的圖形,更科學更準確的來驗證三角形的內角和?

3、演繹推理的方法。

正方形四個角都是直角,正方形內角和是多少度?

你能藉助正方形創造出三角形嗎?(對角折)

把正方形分成了兩個完全一樣的直角三角形,每個直角三角形的內角和:360°÷2=180°

再來看看長方形:沿對角線折一折,分成了兩個完全一樣的直角三角形,內角和:360°÷2=180°

這種方法避免了在剪拼過程中操作出現的誤差,

舉例驗證,你發現了什麼?

通過驗證,知道了直角三角形的內角和是180度。

你能把銳角三角形變成直角三角形嗎?

把銳角三角形沿高對摺,分成了兩個直角三角形。

一個直角三角形的內角和是180°,那么這個銳角三角形的內角和就是180°×2=360°了,對嗎?(360—180=180°)

通過計算,我們知道了這個銳角三角形的內角和是180°,那么所有的銳角三角形的內角和都是180°嗎?你是怎么知道的?

通過剛才的計算,你發現了什麼?(銳角三角形內角和180°)

鈍角三角形的內角和,你們會驗證嗎?誰來說說你的想法?180×2—90—90=180°

通過驗證,你又發現了什麼?(鈍角三角形內角和180°)

4、總結

通過分類驗證,我們發現:直角180,銳角180,鈍角180,也就是說:三角形的內角和是180°。也驗證了我們的猜想是正確的。(板書)

5、想一想,下面三角形的內角和是多少度?(小——大)

你有什麼新發現?(三角形的內角和與它的大小,形狀沒有關係。)

【設計意圖】為了滿足學生的探究欲望,發揮學生的主觀能動性,通過獨立探究和組內交流,實現對多種方法的體驗和感悟。學生通過小組合作的方式學到方法,分享經驗,更重要的是領悟到科學研究問題的方法。就學生的發展而言,探究的過程比探究獲得的結論更有價值。

三、自主練習

1、在一個三角形中,如果想求一個角的度數,至少得知道幾個角的度數呢?(2個)那我們就試一試,挑戰第一關。(兩道題)

2、算得真快!如果只知道一個角的度數,還能求出未知角的度數嗎?挑戰第二關。(三道題)

3、說得真清楚,如果一個角的度數也不知道,你還能求出未知角的度數嗎?挑戰第三關。(一道題)

師:同學們真了不起,從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,都能正確求出未知角的度數。

4、學無止境,課下,請你利用三角形的內角和,探究一下四邊形、五邊形、六邊形的內角和各是多少度?

【設計意圖】練習由淺入深,層層遞進。從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,要求學生求出未知角的的度數,梯度訓練,拓展思維。

四、課堂總結

同學們,回想一下,這節課我們學習了什麼?通過這節課的學習,你有哪些收穫呢?

真了不起,同學們不僅學到了知識,還掌握了學習的方法。"在數學的天地里,重要的不是我們知道什麼,而是我們怎么知道的",在這節課上,重要的不是我們知道了三角形的內角和是180°,而是我們通過猜測,一步一步驗證,得到這個規律的過程。

課後反思

《三角形的內角和》是五四制青島版四年級上冊第四單元的信息窗二,本節課是在學生學習了與三角形有關的概念、邊、角之間的關係的基礎上,讓學生動手操作,通過一系列活動得出"三角形的內角和等於180°"。

本著"學貴在思,思源於疑"的思想,這節課我不斷創設問題情境,讓學生去猜想、去探究、去發現新知識的奧妙,從而讓學生在動手操作、積極探索的活動中掌握知識,積累數學活動經驗,發展空間觀念。"問題的提出往往比解答問題更重要",其實三角形內角和是多少?大部分的學生已經知道了這一知識,所以很輕鬆地就可以答出。但是只是"知其然而不知其所以然"。

為此,我設計了大量的操作活動:畫一畫、量一量、折一折、拼一拼等,我沒有限定了具體的操作環節。在操作活動中,老師有"扶"有"放"。做到了"扶"而不死,"伴"而有度,"放"而不亂。利用課件演示,更直觀的展示了活動過程,生動又形象,吸引學生的注意力。使學生感受到每種活動的特點,這對他認識能力的提高是有幫助的。

最後通過習題鞏固三角形內角和知識,培養學生思維的廣闊性,為了強化學生對這節課的掌握,從知道兩個角的度數,到知道一個角的度數,再到一個角的度數也不知道,要求學生求出未知角的的度數,層級練習,步步加深,梯度訓練。

教學是遺憾的藝術。當然本節課的教學中,存在許多不盡如意之處:

1、讓學生養成良好的學具運用習慣,特別是小組學生在合作操作時,應有效指導,對學生及時評價,激勵表揚,調動學生學習的積極性與主動性。

2、學生在介紹剪拼的方法時,可以讓介紹的學生先上台演示是如何把內角拼在一起,這樣學生在動手操作的時候就可以節省時間。

3、在做練習時,為了趕時間,題出現的頻率較快,留給學生計算思考的時間不足,可能只照顧到好學生的進程,沒有關注全體學生,今後應注意這一點。

教學是一門藝術,上一節課容易,上好一節課談何容易,在今後的課堂教學中,只有勤學、多練,才能更好的為學生的學習和成長服務,讓自己的人生舞台綻放光彩。