高中數學試講教案

高中數學試講教案 篇1

教學準備

教學目標

運用充分條件、必要條件和充要條件

教學重難點

運用充分條件、必要條件和充要條件

教學過程

一、基礎知識

(一)充分條件、必要條件和充要條件

1.充分條件:如果A成立那么B成立,則條件A是B成立的充分條件。

2.必要條件:如果A成立那么B成立,這時B是A的必然結果,則條件B是A成立的必要條件。

3.充要條件:如果A既是B成立的充分條件,又是B成立的必要條件,則A是B成立的充要條件;同時B也是A成立的充要條件。

(二)充要條件的`判斷

1若成立則A是B成立的充分條件,B是A成立的必要條件。

2.若且BA,則A是B成立的充分且不必要條件,B是A成立必要且非充分條件。

3.若成立則A、B互為充要條件。

證明A是B的充要條件,分兩步:__

(1)充分性:把A當作已知條件,結合命題的前提條件推出B;

(2)必要性:把B當作已知條件,結合命題的前提條件推出A。

二、範例選講

例1.(充分必要條件的判斷)指出下列各組命題中,p是q的什麼條件?

(1)在△ABC中,p:A>B q:BC>AC;

(2)對於實數x、y,p:x+y≠8 q:x≠2或y≠6;

(3)在△ABC中,p:SinA>SinB q:tanA>tanB;

(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0

解:(1)p是q的充要條件(2)p是q的充分不必要條件

(3)p是q的既不充分又不必要條件(4)p是q的充分不必要條件

練習1(變式1)設f(x)=x2-4x(x∈R),則f(x)>0的一個必要而不充分條件是( C )

A、x4 C、│x-1│>1 D、│x-2│>3

例2.填空題

(3)若A是B的充分條件,B是C的充要條件,D是C的必要條件,則A是D的條件.

答案:(1)充分條件(2)充要、必要不充分(3)A=> B C=> D故填充分。

練習2(變式2)若命題甲是命題乙的充分不必要條件,命題丙是命題乙的必要不充分條件,命題丁是命題丙的充要條件,則命題丁是命題甲的( )

A、充分不必要條件B、必要不充分條件C、充要條件D、既不充分又不必要條件

例4.(證明充要條件)設x、y∈R,求證:|x+y|=|x|+∣y∣成立的充要條件是xy≥0.

證明:先證必要性:即|x+y|=|x|+∣y∣成立則xy≥0,

由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴ xy≥0;

再證充分性即:xy≥0則|x+y|=|x|+∣y∣

若xy≥0即xy>0或xy=0

下面分類證明

(Ⅰ)若x>0,y>0則|x+y|=x+y=|x|+∣y∣

(Ⅱ)若x<0,y<0則|x+y|=(-x)+(-y)=|x|+∣y∣

(Ⅲ)若xy=0,不妨設x=0則|x+y|=∣y∣=|x|+∣y∣

綜上所述: |x+y|=|x|+∣y∣

∴|x+y|=|x|+∣y∣成立的充要條件是xy≥0.

例5.已知拋物線y=-x2+mx-1點A(3,0) B(0,3),求拋物線與線段AB有兩個不同交點的充要條件.

解:線段AB:y=-x+3(0≤x≤3)-----------(1)

拋物線: y=-x2+mx-1---------------(2)

(1)代入(2)得:x2-(1+m)x+4=0--------(3)

拋物線y=-x2+mx-1與線段AB有兩個不同交點,等價於方程(3)在[0,3]上有兩個不同的解.

高中數學試講教案 篇2

1.課題

填寫課題名稱(高中代數類課題)

2.教學目標

(1)知識與技能:

通過本節課的學習,掌握......知識,提高學生解決實際問題的能力;

(2)過程與方法:

通過......(討論、發現、探究),提高......(分析、歸納、比較和概括)的能力;

(3)情感態度與價值觀:

通過本節課的學習,增強學生的學習興趣,將數學套用到實際生活中,增加學生數學學習的樂趣。

3.教學重難點

(1)教學重點:本節課的知識重點

(2)教學難點:易錯點、難以理解的知識點

4.教學方法(一般從中選擇3個就可以了)

(1)討論法

(2)情景教學法

(3)問答法

(4)發現法

(5)講授法

5.教學過程

(1)導入

簡單敘述導入課題的方式和方法(例:複習、類比、情境導出本節課的課題)

(2)新授課程(一般分為三個小步驟)

①簡單講解本節課基礎知識點(例:奇函式的定義)。

②歸納總結該課題中的重點知識內容,尤其對該注意的一些情況設定易錯點,進行強調。可以設計分組討論環節(分組判斷幾組函式圖像是否為奇函式,並歸納奇函式圖像的特點。設定定義域不關於原點對稱的函式是否為奇函式的易錯點)。

③拓展延伸,將所學知識拓展延伸到實際題目中,去解決實際生活中的問題。

(在新授課裡面一定要表下出講課的大體流程,但是不必太過詳細。)

(3)課堂小結

教師提問,學生回答本節課的收穫。

(4)作業提高

布置作業(儘量與實際生活相聯繫,有所創新)。

6.教學板書