八年級數學教案集錦

八年級數學教案集錦 篇1

菱形

學習目標(學習重點):

1.經歷探索菱形的識別方法的過程,在活動中培養探究意識與合作交流的習慣;

2.運用菱形的識別方法進行有關推理.

補充例題:

例1. 如圖,在△ABC中,AD是△ABC的角平分線。DE∥AC交AB於E,DF∥AB交AC於F.四邊形AEDF是菱形嗎?說明你的理由.

例2.如圖,平行四邊形ABCD的對 角線AC的垂直平分線與邊AD、BC分別交於E、F.

四邊形AFCE是菱形嗎?說明理由.

例3.如圖 , ABCD是矩形紙片,翻折B、D,使BC、AD恰好落在AC上,設F、H分別是B、D落在AC上的兩點,E、G分別是摺痕CE、AG與AB、CD的交點

(1)試說明四邊形AECG是平行四邊形;

(2)若AB=4cm,BC=3cm,求線段EF的長;

(3)當矩形兩邊AB、BC具備怎樣的關係時,四邊形AECG是菱形.

課後續助:

一、填空題

1.如果四邊形ABCD是平行四邊形,加上條件___________________,就可以是矩形;加上條件_______________________,就可以是菱形

2.如圖,D、E、F分別是△ABC的邊BC、CA、AB上的點,

且DE∥BA,DF∥ CA

(1)要使四邊形AFDE是菱形,則要增加條件______________________

(2)要使四邊形AFDE是矩形,則要增加條件______________________

二、解答題

1.如圖,在□ABCD中 ,若2,判斷□ABCD是矩形還是菱形?並說明理由。

2.如圖 ,平行四邊形A BCD的兩條對角線AC,BD相交於點O,OA=4,OB=3,AB=5.

(1) AC,BD互相垂直嗎?為什麼?

(2) 四邊形ABCD是菱形 嗎?

3.如圖,在□ABCD中,已知ADAB,ABC的平分線交AD於E,EF∥AB交BC於F,試問: 四 邊形ABFE是菱形嗎?請說明理由。

4.如圖,把一張矩形的紙ABCD沿對角線BD摺疊,使點C落在點E處,BE與AD交於點F.

⑴求證:ABF≌

⑵若將摺疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連線DM,試判斷四邊形BMDF的形狀,並說明理由.

八年級數學教案集錦 篇2

教材分析

1、本小節內容安排在第十四章“軸對稱”的第三節。等腰三角形是一種特殊的三角形,它是軸對稱圖形,可以藉助軸對稱變換來研究等腰三角形的一些特殊性質。這一節的主要內容是等腰三角形的性質與判定,以及等邊三角形的相關知識,重點是等腰三角形的性質與判定,它是研究等邊三角形,是證明線段相等角相等的重要依據,這也是全章的重點之一。

2、本節重在呈現一個動手操作得出概念、觀察實驗得出性質、推理證明論證性質的過程,學生通過學習,既體會到一個觀察、實驗、猜想、論證的研究幾何圖形問題的全過程,又能夠運用等腰三角形的性質解決有關的問題,提高運用知識和技能解決問題的能力。

學情分析

1、學生在此之前已接觸過等腰三角形,具有運用全等三角形的判定及軸對稱的知識和技能,本節教學要突出“自主探究”的特點,即教師引導學生通過觀察、實驗、猜想、論證,得出等腰三角形的性質,讓學生做學習的主人,享受探求新知、獲得新知的樂趣。

2、在與等腰三角形有關的一些命題的證明過程中,會遇到一些添加輔助線的問題,這會給學生的學習帶來困難。另外,以前學生證明問題是習慣於找全等三角形,形成了依賴全等三角形的思維定勢,對於可直接利用等腰三角形性質的問題,沒有注意選擇簡便方法。

教學目標

知識技能:1、理解掌握等腰三角形的性質。

2、運用等腰三角形的性質進行證明和計算。

數學思考:1、觀察等腰三角形的對稱性,發展形象思維。

2、通過時間、觀察、證明等腰三角形性質,發展學生合情推理能力和演繹推理能力。

情感態度:引導學生對圖形的觀察、發現,激發學生的好奇心和求知慾,並在運用數學知識解決問題的活動中獲取成功的體驗,建立學習的`自信心。

教學重點和難點

重點:等腰三角形的性質及套用。

難點:等腰三角形的性質證明。

八年級數學教案集錦 篇3

【教學目標】

一、教學知識點

1.命題的組成.

2.命題真假的判斷。

二、能力訓練要求:

1.使學生能夠分清命題的條件和結論,能判斷命題的真假

2.通過舉例判定一個命題是假命題,使學生學會反面思考問題的方法

三、情感與價值觀要求:

1.通過反例說明假命題,使學生認識到任何事情都是正反兩方面對立統一

2.幫助學生了解數學發展史,拓展視野,激發學習興趣

3.通過對《原本》介紹,使學生感受數學發展史和人類文明價值

【教學重點】準確的找出命題的條件和結論

【教學難點】理解判斷一個真命題需要證明

【教學方】探討、合作交流

【教具準備】投影片

【教學過程】

一、情景創設、引入新課

師:如果這個星期不下雨,我們就去郊遊,這是命題嗎?分析這句話,這個周日,我們郊遊一定能成行嗎?為什麼?

新課:

(1)觀察下列命題,你能發現這些命題有什麼共同結構特徵?與同伴交流。

1.如果兩個三角形的三條邊對應相等,那么這兩個三角形全等。

2.如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形。

3.如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等。

4.如果一個四邊形的對角線相等,那么這個四邊形是矩形。

5.如果一個四邊形的兩條對角線相互垂直,那么這個四邊形是菱形。

師:由此可見,每個命題都是由條件和結論兩部分組成的,條件是已知的事項,結論是由已知事項推出的事項。一般地,命題都可以寫成“如果……那么……”的形式,其中“如果”引出部分是條件,“那么”引出部分是結論。

二、例題講解:

例1:師:下列命題的條件是什麼?結論是什麼?

1.如果兩個角相等,那么他們是對頂角;

2.如果a>b,b>c,那么a=c;

3.兩角和其中一角的對邊對應相等的兩個三角形全等;

4.菱形的四條邊都相等;

5.全等三角形的面積相等。

例題教學建議:1:其中(1)、(2)請學生直接回答,(3)、(4)、(5)請學生分成小組交流然後回答。

2:有的命題的描述沒有用“如果……那么……”的形式,在分析時可以擴展成這種形式,以分清條件和結論。

例2:上述命題哪些是正確的,哪些是不正確的?你是怎么知道它是不正確的?與同伴交流。

師:正確的命題叫真命題,不正確的命題叫假命題。要說明一個命題是假命題,通常可以舉一個例子,使之具備命題的條件,卻不具備命題的結論,即反例。

教學建議:對於反例的要求可以採取啟發式層層遞進方式給出,即:說明命題錯誤可以舉例→綜合命題(1)、(2)的兩例,兩例條件具備→例子結論不吻合→給出如何舉反例要求。

三、思維拓展:

拓展1.師:如何證實一個命題是真命題呢?請同學們分小組交流一下。

教學建議:不急於解決學生怎么證實真命題的問題,可按以下程式設計教學過程

(1)首先給學生介紹歐幾里得的《原本》

(2)引出概念:公理、定理,證明

(3)啟發學生,現在如何證實一個命題的正確性

(4)給出本套教材所選用如下6個命題作為公理

(5)等式性質、不等式有關性質,等量代換也看作定理。

拓展2.師:任何公理、定理是命題嗎?是真命題嗎?為什麼?

建議:在學生回答後歸納總結:公理是經過長期實踐驗證的,不需要再進行推理論證都承認的真命題。定理是經過推理論證的真命題。

練習書p197習題6.31

四、問題式總結

師:經過本節課我們在一起共同探討交流,你了解了有關命題的哪些知識?

建議:可對學生進行提示性引導,如:命題的構成特點、命題是否都正確、如何判斷一個命題是假命題、如何證實一個命題是真命題。

作業:書p197習題6.32、3

板書設計:

定義與命題

課時2

條件

1.命題的結構特徵

結論

1.假命題——可以舉反例

2.命題真假的判別

2.真命題——需要證明 學生活動一——

探索命題的結構特徵

學生觀察、分組討論,得出結論:

(1)這五個命題都是用“如果……那么……”形式敘述的

(2)這五個命題都是由已知得到結論

(3)這五個命題都有條件和結論

學生活動二——

探索命題的條件和結論

生:命題1、2如果部分是條件,那么部分是結論;命題3如果兩個三角形兩角和其中一角對邊對應相等是條件,那么這兩個三角形全等是結論;命題4如果是菱形是條件,那么四條邊相等是結論;命題5如果兩三角形全等是條件,那么面積相等是結論。

學生活動三

探索命題的真假——如何判斷假命題

生:可以舉一個例子,說明命題1是不正確的,如圖:

已知:∠AOB,∠1=∠2,∠1,∠2不是對頂角

生:命題2,若a=10,b=8,c=5,此時a>b,b>c,但a≠c

生:由此說明:命題1、2是不正確的

生:命題3、4、5是正確的

學生活動四

探索命題的真假——如何證實一個命題是真命題

學生交流:

生:用我們以前學過的觀察、實驗、驗證特例等方法

生:這些方法往往並不可靠

生:能夠根據已知道的真命題證實呢?

生:那已經知道的真命題又是如何證實的?

生:那可怎么辦呢?

生:可通過證明的方法

學生分小組討論得出結論

生:命題的結構特徵:條件和結論

生:命題有真假之分

生:可以通過舉反例的方法判斷假命題

生:可通過證明的方法證實真命題

八年級數學教案集錦 篇4

一、教學目標:

1、理解極差的定義,知道極差是用來反映數據波動範圍的一個量。

2、會求一組數據的極差。

二、重點、難點和難點的突破方法

1、重點:會求一組數據的極差。

2、難點:本節課內容較容易接受,不存在難點.

三、課堂引入:

下表顯示的是上海20xx年2月下旬和20xx年同期的每日最高氣溫,如何對這兩段時間的氣溫進行比較呢?

從表中你能得到哪些信息?

比較兩段時間氣溫的高低,求平均氣溫是一種常用的方法.

經計算可以看出,對於2月下旬的這段時間而言,20xx年和20xx年上海地區的平均氣溫相等,都是12度.

這是不是說,兩個時段的氣溫情況沒有什麼差異呢?

根據兩段時間的氣溫情況可繪成的折線圖.

觀察一下,它們有區別嗎?說說你觀察得到的結果.

用一組數據中的最大值減去最小值所得到的差來反映這組數據的變化範圍.用這種方法得到的差稱為極差(range).

四、例習題分析

本節課在教材中沒有相應的例題,教材P152習題分析

問題1可由極差計算公式直接得出,由於差值較大,結合本題背景可以說明該村貧富差距較大.問題2涉及前一個學期統計知識首先應回憶複習已學知識.問題3答案並不唯一,合理即可。

八年級數學教案集錦 篇5

第11章平面直角坐標系

11。1平面上點的坐標

第1課時平面上點的坐標(一)

教學目標

【知識與技能】

1。知道有序實數對的概念,認識平面直角坐標系的相關知識,如平面直角坐標系的構成:橫軸、縱軸、原點等。

2。理解坐標平面內的點與有序實數對的一一對應關係,能寫出給定的平面直角坐標系中某一點的坐標。已知點的坐標,能在平面直角坐標系中描出點。

3。能在方格紙中建立適當的平面直角坐標系來描述點的位置。

【過程與方法】

1。結合現實生活中表示物體位置的例子,理解有序實數對和平面直角坐標系的作用。

2。學會用有序實數對和平面直角坐標系中的點來描述物體的位置。

【情感、態度與價值觀】

通過引入有序實數對、平面直角坐標系讓學生體會到現實生活中的問題的解決與數學的發展之間有聯繫,感受到數學的價值。

重點難點

【重點】

認識平面直角坐標系,寫出坐標平面內點的坐標,已知坐標能在坐標平面內描出點。

【難點】

理解坐標系中的坐標與坐標軸上的數字之間的關係。

教學過程

一、創設情境、導入新知

師:如果讓你描述自己在班級中的位置,你會怎么說?

生甲:我在第3排第5個座位。

生乙:我在第4行第7列。

師:很好!我們買的電影票上寫著幾排幾號,是對應某一個座位,也就是這個座位可以用排號和列號兩個數字確定下來。

二、合作探究,獲取新知

師:在以上幾個問題中,我們根據一個物體在兩個互相垂直的方向上的數量來表示這個物體

的`位置,這兩個數量我們可以用一個實數對來表示,但是,如果(5,3)表示5排3號的話,那么(3,5)表示什麼呢?

生:3排5號。

師:對,它們對應的不是同一個位置,所以要求表示物體位置的這個實數對是有序的。誰來說說我們應該怎樣表示一個物體的位置呢?

生:用一個有序的實數對來表示。

師:對。我們學過實數與數軸上的點是一一對應的,有序實數對是不是也可以和一個點對應起來呢?

生:可以。

教師在黑板上作圖:

我們可以在平面內畫兩條互相垂直、原點重合的數軸。水平的數軸叫做x軸或橫軸,取向右為

正方向;豎直的數軸叫做y軸或縱軸,取向上為正方向;兩軸交點為原點。這樣就構成了平面直角坐標系,這個平面叫做坐標平面。

師:有了平面直角坐標系,平面內的點就可以用一個有序實數對來表示了。現在請大家自己動手畫一個平面直角坐標系。

學生操作,教師巡視。教師指正學生易犯的錯誤。

教師邊操作邊講解:

如圖,由點P分別向x軸和y軸作垂線,垂足M在x軸上的坐標是3,垂足N在y軸上的坐標是5,我們就說P點的橫坐標是3,縱坐標是5,我們把橫坐標寫在前,縱坐標寫在後,(3,5)就是點P的坐標。在x軸上的點,過這點向y軸作垂線,對應的坐標是0,所以它的縱坐標就是0;在y軸上的點,過這點向x軸作垂線,對應的坐標是0,所以它的橫坐標就是0;原點的橫坐標和縱坐標都是0,即原點的坐標是(0,0)。

教師多媒體出示:

師:如圖,請同學們寫出A、B、C、D這四點的坐標。

生甲:A點的坐標是(—5,4)。

生乙:B點的坐標是(—3,—2)。

生丙:C點的坐標是(4,0)。

生丁:D點的坐標是(0,—6)。

師:很好!我們已經知道了怎樣寫出點的坐標,如果已知一點的坐標為(3,—2),怎樣在平面直角坐標系中找到這個點呢?

教師邊操作邊講解:

在x軸上找出橫坐標是3的點,過這一點向x軸作垂線,橫坐標是3的點都在這條直線上;在y軸上找出縱坐標是—2的點,過這一點向y軸作垂線,縱坐標是—2的點都在這條直線上;這兩條直線交於一點,這一點既滿足橫坐標為3,又滿足縱坐標為—2,所以這就是坐標為(3,—2)的點。下面請同學們在方格紙中建立一個平面直角坐標系,並描出A(2,—4),B(0,5),C(—2,—3),D(—5,6)這幾個點。

學生動手作圖,教師巡視指導。

三、深入探究,層層推進

師:兩個坐標軸把坐標平面劃分為四個區域,從x軸正半軸開始,按逆時針方向,把這四個區域分別叫做第一象限、第二象限、第三象限和第四象限。注意:坐標軸不屬於任何一個象限。在同一象限內的點,它們的橫坐標的符號一樣嗎?縱坐標的符號一樣嗎?

生:都一樣。

師:對,由作垂線求坐標的過程,我們知道第一象限內的點的橫坐標的符號為+,縱坐標的符號也為+。你能說出其他象限內點的坐標的符號嗎?

生:能。第二象限內的點的坐標的符號為(—,+),第三象限內的點的坐標的符號為(—,—),第四象限內的點的坐標的符號為(+,—)。

師:很好!我們知道了一點所在的象限,就能知道它的坐標的符號。同樣的,我們由點的坐標也能知道它所在的象限。一點的坐標的符號為(—,+),你能判斷這點是在哪個象限嗎?

生:能,在第二象限。

四、練習新知

師:現在我給出幾個點,你們判斷一下它們分別在哪個象限。

教師寫出四個點的坐標:A(—5,—4),B(3,—1),C(0,4),D(5,0)。

生甲:A點在第三象限。

生乙:B點在第四象限。

生丙:C點不屬於任何一個象限,它在y軸上。

生丁:D點不屬於任何一個象限,它在x軸上。

師:很好!現在請大家在方格紙上建立一個平面直角坐標系,在上面描出這些點。

學生作圖,教師巡視,並予以指導。

五、課堂小結

師:本節課你學到了哪些新的知識?

生:認識了平面直角坐標系,會寫出坐標平面內點的坐標,已知坐標能描點,知道了四個象限以及四個象限內點的符號特徵。

教師補充完善。

教學反思

物體位置的說法和表述物體的位置等問題,學生在實際生活中經常遇到,但可能沒有想到這些問題與數學的聯繫。教師在這節課上引導學生去想到建立一個平面直角坐標系來表示物體的位置,讓學生參與到探索獲取新知的活動中,主動學習思考,感受數學的魅力。在教學中我讓學生由生活中的實例與坐標的聯繫感受坐標的實用性,增強了學生學習數學的興趣。

第2課時平面上點的坐標(二)

教學目標

【知識與技能】

進一步學習和套用平面直角坐標系,認識坐標系中的圖形。

【過程與方法】

通過探索平面上的點連線成的圖形,形成二維平面圖形的概念,發展抽象思維能力。

【情感、態度與價值觀】

培養學生的合作交流意識和探索精神,體驗通過二維坐標來描述圖形頂點,從而描述圖形的方法。

重點難點

【重點】

理解平面上的點連線成的圖形,計算圍成的圖形的面積。

【難點】

不規則圖形面積的求法。

教學過程

一、創設情境,導入新知

師:上節課我們學習了平面直角坐標系的概念,也學習了已知點的坐標,怎樣在平面直角坐標系中把這個點表示出來。下面請大家在方格紙上建立一個平面直角坐標系,並在上面標出A(5,1),B(2,1),C(2,—3)這三個點。

學生作圖。

教師邊操作邊講解:

二、合作探究,獲取新知

師:現在我們把這三個點用線段連線起來,看一下得到的是什麼圖形?

生甲:三角形。

生乙:直角三角形。

師:你能計算出它的面積嗎?

生:能。

教師挑一名學生:你是怎樣算的呢?

生:AB的長是5—2=3,BC的長是1—(—3)=4,所以三角形ABC的面積是×3×4=6。

師:很好!

教師邊操作邊講解:

大家再描出四個點:A(—1,2),B(—2,—1),C(2,—1),D(3,2),並將它們依次連線起來看看形成的是什麼

圖形?

學生完成操作後回答:平行四邊形。

師:你能計算它的面積嗎?

生:能。

教師挑一名學生:你是怎么計算的呢?

生:以BC為底,A到BC的垂線段AE為高,BC的長為4,AE的長為3,平行四邊形的面積就是4×3=12。師:很好!剛才是已知點,我們將它們順次連線形成圖形,下面我們來看這樣一個連線成的圖形:

教師多媒體出示下圖:

八年級數學教案集錦 篇6

八年級下數學教案-變數與函式(2)

一、教學目的

1.使學生理解自變數的取值範圍和函式值的意義。

2.使學生理解求自變數的取值範圍的兩個依據。

3.使學生掌握關於解析式為只含有一個自變數的簡單的整式、分式、二次根式的函式的自變數取值範圍的求法,並會求其函式值。

4.通過求函式中自變數的取值範圍使學生進一步理解函式概念。

二、教學重點、難點

重點:函式自變數取值的求法。

難點:函靈敏處變數取值的確定。

三、教學過程

複習提問

1.函式的定義是什麼?函式概念包含哪三個方面的內容?

2.什麼叫分式?當x取什麼數時,分式x+2/2x+3有意義?

(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)

3.什麼叫二次根式?使二次根式成立的條件是什麼?

(答:根指數是2的根式叫二次根式,使二次根式成立的條件是被開方數≥0。)

4.舉出一個函式的實例,並指出式中的變數與常量、自變數與函式。

新課

1.結契約學舉出的實例說明解析法的意義:用教學式子表示函式方法叫解析法。並指出,函式表示法除了解析法外,還有圖象法和列表法。

2.結契約學舉出的實例,說明函式的自變數取值範圍有時要受到限制這就可以引出自變數取值範圍的意義,並說明求自變數的取值範圍的兩個依據是:

(1)自變數取值範圍是使函式解析式(即是函式表達式)有意義。

(2)自變數取值範圍要使實際問題有意義。

3.講解P93中例2。並指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變數的整式;(3)題給出的是只含有一個自變數的分式;(4)題給出的是只含有一個自變數的二次根式。

推廣與聯想:請同學按上述三類題型自編3個題,並寫出解答,同桌互對答案,老師評講。

4.講解P93中例3。結合例3引出函式值的意義。並指出兩點:

(1)例3中的4個小題歸納起來仍是三類題型。

(2)求函式值的問題實際是求代數式值的問題。

補充例題

求下列函式當x=3時的函式值:

(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。

(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)

小結

1.解析法的意義:用數學式子表示函式的方法叫解析法。

2.求函式自變數取值範圍的兩個方法(依據):

(1)要使函式的解析式有意義。

①函式的解析式是整式時,自變數可取全體實數;

②函式的解析式是分式時,自變數的取值應使分母≠0;

③函式的解析式是二次根式時,自變數的取值應使被開方數≥0。

(2)對於反映實際問題的函式關係,應使實際問題有意義。

3.求函式值的方法:把所給出的自變數的值代入函式解析式中,即可求出相慶原函式值。

練習:P94中1,2,3。

作業:P95~P96中A組3,4,5,6,7。B組1,2。

四、教學注意問題

1.注意滲透與訓練學生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對於例2、例3這兩道例題,雖然要求各異,但題目結構仍是三類題型:整式、分式、二次根式。

2.注意訓練與培養學生的優質聯想能力。要求學生仿照例題自編題目是有效手段。

3.注意培養學生對於“具體問題要具體分析”的良好學習方法。比如對於有實際意義來確定,由於實際問題千差萬別,所以我們就要具體分析,靈活處置。

八年級數學教案集錦 篇7

一、內容和內容解析

1.內容

三角形中相關元素的概念、按邊分類及三角形的三邊關係.

2.內容解析

三角形是一種最基本的幾何圖形,是認識其他圖形的基礎,在本章中,學好了三角形的有關概念和性質,為進一步學習多邊形的相關內容打好基礎,本節主要介紹與三角形的的概念、按邊分類和三角形三邊關係,使學生對三角形的有關知識有更為深刻的理解.

本節課的教學重點:三角形中的相關概念和三角形三邊關係.

本節課的教學難點:三角形的三邊關係.

二、目標和目標解析

1.教學目標

(1)了解三角形中的相關概念,學會用符號語言表示三角形中的對應元素.

(2)理解並且靈活套用三角形三邊關係.

2.教學目標解析

(1)結合具體圖形,識三角形的概念及其基本元素.

(2)會用符號、字母表示三角形中的相關元素,並會按邊對三角形進行分類.

(3)理解三角形兩邊之和大於第三邊這一性質,並會運用這一性質來解決問題.

三、教學問題診斷分析

在探索三角形三邊關係的過程中,讓學生經歷觀察、探究、推理、交流等活動過程,培養學生的和推理能力和合作學習的精神.

四、教學過程設計

1.創設情境,提出問題

問題回憶生活中的三角形實例,結合你以前對三角形的了解,請你給三角形下一個定義.

師生活動:先讓學生分組討論,然後各小組派代表發言,針對學生下的定義,給出各種圖形反例,如下圖,指出其不完整性,加深學生對三角形概念的理解.

【設計意圖】三角形概念的獲得,要讓學生經歷其描述的過程,藉此培養學生的語言表述能力,加深學生對三角形概念的理解.

2.抽象概括,形成概念

動態演示“首尾順次相接”這個的動畫,歸納出三角形的定義.

師生活動:

三角形的定義:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形.

【設計意圖】讓學生體會由抽象到具體的過程,培養學生的語言表述能力.

補充說明:要求學生學會三角形、三角形的頂點、邊、角的概念以及幾何表達方法.

師生活動:結合具體圖形,教師引導學生分析,讓學生學會由文字語言向幾何語言的過渡.

【設計意圖】進一步加深學生對三角形中相關元素的認知,並進一步熟悉幾何語言在學習中的套用.

3.概念辨析,套用鞏固

如圖,不重複,且不遺漏地識別所有三角形,並用符號語言表示出來.

1.以AB為一邊的三角形有哪些?

2.以∠D為一個內角的三角形有哪些?

3.以E為一個頂點的三角形有哪些?

4.說出ΔBCD的三個角.

師生活動:引導學生從概念出發進行思考,加深學生對三角形中相關元素概念的理解.

4.拓廣延伸,探究分類

我們知道,按照三個內角的大小,可以將三角形分為銳角三角形、直角三角形和鈍角三角形,如果要按照邊的大小關係對三角形進行分類,又應該如何分呢?小組之間同學進行交流並說說你們的想法.

師生活動:通過討論,學生類比按角的分類方法按邊對三角形進行分類,接著引出等腰三角形及等邊三角形的概念,引導學生了解等腰三角形與等邊三角形的聯繫,強化學生對三角形按邊分類的理解.

八年級數學教案集錦 篇8

第三十四學時:14.2.1平方差公式

一、學習目標:

1.經歷探索平方差公式的過程。

2.會推導平方差公式,並能運用公式進行簡單的運算。

二、重點難點

重點:平方差公式的推導和套用;

難點:理解平方差公式的結構特徵,靈活套用平方差公式。

三、合作學習

你能用簡便方法計算下列各題嗎?

(1)20xx×1999(2)998×1002

導入新課:計算下列多項式的積.

(1)(x+1)(x—1);

(2)(m+2)(m—2)

(3)(2x+1)(2x—1);

(4)(x+5y)(x—5y)。

結論:兩個數的和與這兩個數的差的積,等於這兩個數的平方差。

即:(a+b)(a—b)=a2—b2

四、精講精練

例1:運用平方差公式計算:

(1)(3x+2)(3x—2);

(2)(b+2a)(2a—b);

(3)(—x+2y)(—x—2y)。

例2:計算:

(1)102×98;

(2)(y+2)(y—2)—(y—1)(y+5)。

隨堂練習

計算:

(1)(a+b)(—b+a);

(2)(—a—b)(a—b);

(3)(3a+2b)(3a—2b);

(4)(a5—b2)(a5+b2);

(5)(a+2b+2c)(a+2b—2c);

(6)(a—b)(a+b)(a2+b2)。

五、小結

(a+b)(a—b)=a2—b2

八年級數學教案集錦 篇9

教學目標

1.在探索平行四邊形的判別條件中,理解並掌握用邊、對角線來判定平行四邊形的方法.

2.會綜合運用平行四邊形的判定方法和性質來解決問題

教學重點:平行四邊形的判定方法及套用

教學難點:平行四邊形的判定定理與性質定理的靈活套用

一.引

小明的父親手中有一些木條,他想通過適當的測量、割剪,釘制一個平行四邊形框架,你能幫他想出一些辦法來嗎?

二.探

閱讀教材P44至P45

利用手中的學具——硬紙板條,通過觀察、測量、猜想、驗證、探索構成平行四邊形的條件,思考並探討:

(1)你能適當選擇手中的硬紙板條搭建一個平行四邊形嗎?

(2)你怎樣驗證你搭建的四邊形一定是平行四邊形?

(3)你能說出你的做法及其道理嗎?

(4)能否將你的探索結論作為平行四邊形的一種判別方法?你能用文字語言表述出來嗎?

(5)你還能找出其他方法嗎?

從探究中得到:

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

平行四邊形判定方法2對角線互相平分的四邊形是平行四邊形。

證一證

平行四邊形判定方法1兩組對邊分別相等的四邊形是平行四邊形。

證明:(畫出圖形)

平行四邊形判定方法2一組對邊平行且相等的四邊形是平行四邊形。

八年級數學教案集錦 篇10

【教學目標】

知識與技能

能確定多項式各項的公因式,會用提公因式法把多項式分解因式.

過程與方法

使學生經歷探索多項式各項公因式的過程,依據數學化歸思想方法進行因式分解.

情感、態度與價值觀

培養學生分析、類比以及化歸的思想,增進學生的合作交流意識,主動積極地積累確定公因式的初步經驗,體會其套用價值.

【教學重難點】

重點:掌握用提公因式法把多項式分解因式.

難點:正確地確定多項式的最大公因式.

關鍵:提公因式法關鍵是如何找公因式.方法是:一看係數、二看字母.公因式的係數取各項係數的最大公約數;字母取各項相同的字母,並且各字母的指數取最低次冪.

【教學過程】

一、回顧交流,導入新知

【複習交流】

下列從左到右的變形是否是因式分解,為什麼?

(1)2x2+4=2(x2+2);

(2)2t2-3t+1=(2t3-3t2+t);

(3)x2+4xy-y2=x(x+4y)-y2;

(4)m(x+y)=mx+my;

(5)x2-2xy+y2=(x-y)2.

問題:

1.多項式mn+mb中各項含有相同因式嗎?

2.多項式4x2-x和xy2-yz-y呢?

請將上述多項式分別寫成兩個因式的乘積的形式,並說明理由.

【教師歸納】我們把多項式中各項都有的公共的因式叫做這個多項式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y.

概念:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積形式,這種分解因式的方法叫做提公因式法.

二、小組合作,探究方法

教師提問:多項式4x2-8x6,16a3b2-4a3b2-8ab4各項的公因式是什麼?

【師生共識】提公因式的方法是先確定各項的公因式再將多項式除以這個公因式得到另一個因式,找公因式一看係數、二看字母,公因式的係數取各項係數的最大公約數;字母取各項相同的字母,並且各字母的指數取最低次冪.

三、範例學習,套用所學

例1:把-4x2yz-12xy2z+4xyz分解因式.

解:-4x2yz-12xy2z+4xyz

=-(4x2yz+12xy2z-4xyz)

=-4xyz(x+3y-1)

例2:分解因式:3a2(x-y)3-4b2(y-x)2

【分析】觀察所給多項式可以找出公因式(y-x)2或(x-y)2,於是有兩種變形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,從而得到下面兩種分解方法.

解法1:3a2(x-y)3-4b2(y-x)2

=-3a2(y-x)3-4b2(y-x)2

=-[(y-x)2·3a2(y-x)+4b2(y-x)2]

=-(y-x)2[3a2(y-x)+4b2]

=-(y-x)2(3a2y-3a2x+4b2)

解法2:3a2(x-y)3-4b2(y-x)2

=(x-y)2·3a2(x-y)-4b2(x-y)2

=(x-y)2[3a2(x-y)-4b2]

=(x-y)2(3a2x-3a2y-4b2)

例3:用簡便的方法計算:

0.84×12+12×0.6-0.44×12.

【教師活動】引導學生觀察並分析怎樣計算更為簡便.

解:0.84×12+12×0.6-0.44×12

=12×(0.84+0.6-0.44)

=12×1=12.

【教師活動】在學生完成例3之後,指出例3是因式分解在計算中的套用,提出比較例1,例2,例3的公因式有什麼不同?

四、隨堂練習,鞏固深化

課本115頁練習第1、2、3題.

【探研時空】

利用提公因式法計算:

0.582×8.69+1.236×8.69+2.478×8.69+5.704×8.69

五、課堂總結,發展潛能

1.利用提公因式法因式分解,關鍵是找準最大公因式.在找最大公因式時應注意:(1)係數要找最大公約數;(2)字母要找各項都有的;(3)指數要找最低次冪.

2.因式分解應注意分解徹底,也就是說,分解到不能再分解為止.

六、布置作業,專題突破

課本119頁習題14.3第1、4(1)、6題.

八年級數學教案集錦 篇11

教學目標:

1. 掌握三角形內角和定理及其推論;

2. 弄清三角形按角的分類, 會按角的大小對三角形進行分類;

3.通過對三角形分類的學習,使學生了解數學分類的基本思想,並會用方程思想去解決一些圖形中求角的問題。

4.通過三角形內角和定理的證明,提高學生的邏輯思維能力,同時培養學生嚴謹的科學態

5. 通過對定理及推論的分析與討論,發展學生的求同和求異的思維能力,培養學生聯繫與轉化的辯證思想。

教學重點:

三角形內角和定理及其推論。

教學難點:

三角形內角和定理的證明

教學用具:

直尺、微機

教學方法:

互動式,談話法

教學過程:

1、創設情境,自然引入

把問題作為教學的出發點,創設問題情境,激發學生學習興趣和求知慾,為發現新知識創造一個最佳的心理和認知環境。

問題1 三角形三條邊的關係我們已經明確了,而且利用上述關係解決了一些幾何問題,那么三角形的三個內角有何關係呢?

問題2 你能用幾何推理來論證得到的關係嗎?

對於問題1絕大多數學生都能回答出來(國小學過的),問題2學生會感到困難,因為這個證明需添加輔助線,這是同學們第一次接觸的新知識―――“輔助線 ”。教師可以趁機告訴學生這節課將要學習的一個重要內容(板書課題)

新課引入的好壞在某種程度上關係到課堂教學的成敗,本節課從舊知識切入,特別是從知識體系考慮引入,“學習了三角形邊的關係,自然想到三角形角的關係怎樣呢?”使學生感覺本節課學習的內容自然合理。

2、設問質疑,探究嘗試

(1)求證:三角形三個內角的和等於

讓學生剪一個三角形,並把它的三個內角分別剪下來,再拼成一個平面圖形。這裡教師設計了電腦動畫顯示具體情景。然後,圍繞問題設計以下幾個問題讓學生思考,教師進行學法指導。

問題1 觀察:三個內角拼成了一個

什麼角?問題2 此實驗給我們一個什麼啟示?

(把三角形的三個內角之和轉化為一個平角)

問題3 由圖中AB與CD的關係,啟發我們畫一條什麼樣的線,作為解決問題的橋樑?

其中問題2是解決本題的關鍵,教師可引導學生分析。對於問題3學生經過思考會畫出此線的。這裡教師要重點講解“輔助線”的有關知識。比如:為什麼要畫這條線?畫這條線有什麼作用?要讓學生知道“輔助線”是以後解決幾何問題有力的工具。它的作用在於充分利用條件;恰當轉化條件;恰當轉化結論;充分提示題目中各元素間的一些不明顯的關係,達到化難為易解決問題的目的。

(2)通過類比“三角形按邊分類”,三角形按角怎樣分類呢?

學生回答後,電腦顯示圖表。

(3)三角形中三個內角之和為定值

,那么對三角形的其它角還有哪些特殊的關係呢?問題1 直角三角形中,直角與其它兩個銳角有何關係?

問題2 三角形一個外角與它不相鄰的兩個內角有何關係?

問題3 三角形一個外角與其中的一個不相鄰內角有何關係?

其中問題1學生很容易得出,提出問題2之後,先給出三角形外角的定義,然後讓學生經過分析討論,得出結論並書寫證明過程。

這樣安排的目的有三點:第一,理解定理之後的延伸――推論,培養學生良好的學習習慣。第二,模仿定理的證明書寫格式,加強學生書寫能力。第三,提高學生靈活運用所學知識的能力。

3、三角形三個內角關係的定理及推論

引導學生分析並嚴格書寫解題過程

八年級數學教案集錦 篇12

學習目標

1、在同一直角坐標系中,感受圖形上點的坐標變化與圖形的變化(平移、軸對稱、伸長、壓縮)之間的關係並能找出變化規律。

2、由坐標的變化探索新舊圖形之間的變化。

重點

1、 作某一圖形關於對稱軸的對稱圖形,並能寫出所得圖形相應各點的坐標。

2、 根據軸對稱圖形的特點,已知軸一邊的圖形或坐標確定另一邊的圖形或坐標。

難點

體會極坐標和直角坐標思想,並能解決一些簡單的問題

學習過程(導入、探究新知、即時練習、小結、達標檢測、作業)

第一課時

學習過程:

一、舊知回顧:

1、平面直角坐標系定義:在平面內,兩條____________且有公共_________的數軸組成平面直角坐標系。

2、坐標平面內點的坐標的表示方法____________。

3、各象限點的坐標的特徵:

二、新知檢索:

1、在方格紙上描出下列各點(0,0),(5,4),(3,0),(5,1),(5,-1),

(3,0),(4,-2), (0,0)並用線段依次連線,觀察形成了什麼圖形

三、典例分析

例1、

(1) 將魚的頂點的縱坐標保持不變,橫坐標分別加5畫出圖形,分析所得圖形與原來圖形相比有什麼變化?如果縱坐標保持不變,橫坐標分別減2呢?

(2)將魚的頂點的橫坐標保持不變,縱坐標分別加3畫出圖形,分析所得圖形與原來圖形相比有什麼變化?如果橫坐標保持不變,縱坐標減2呢?

例2、(1)將魚的頂點的縱坐標保持不變,橫坐標分別變為原來的2倍畫出圖形,分析所得圖形與原來圖形相比有什麼變化?

(2)將魚的頂點的橫坐標保持不變,縱坐標分別變為原來的1/2畫出圖形,分析所得圖形與原來圖形相比有什麼變化?

四、題組訓練

1、在平面直角坐標系中,將坐標為(0,0),(2,4),(2,0),(4,4)的點用線段依次連線起來形成一個圖案。

(1)這四個點的縱坐標保持不變,橫坐標變成原來的1/2,將所得的四個點用線段依次連線起來,所得圖案與原來圖案相比有什麼變化?

(2)縱、橫分別加3呢?

(3)縱、橫分別變成原來的2倍呢?

歸納:圖形坐標變化規律

1、 平移規律:2、圖形伸長與壓縮:

第二課時

一、舊知回顧:

1、軸對稱圖形定義:如果一個圖形沿著 對摺後兩部分完全重合,這樣的圖形叫做軸對稱圖形。

中心對稱圖形定義:在同一平面內,如果把一個圖形繞某一點旋轉 ,旋轉後的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形

二、新知檢索:

1、如圖,左邊的魚與右邊的魚關於y軸對稱。

1、左邊的魚能由右邊的魚通過平移、壓縮或拉伸而得到嗎?

2、各個對應頂點的坐標有怎樣的關係?

3、如果將圖中右邊的魚沿x軸正方向平移1個單位長度,為保持整個圖形關於y軸對稱,那么左邊的魚各個頂點的坐標將發生怎樣的變化?

三、典例分析,如圖所示,

1、右圖的魚是通過什麼樣的變換得到 左圖的魚的。

2、如果將右邊的魚的橫坐標保持不變,縱坐標分別變為原來的1倍,畫出圖形,得到的魚與原來的魚有什麼樣的位置關係。

3、如果將右邊的魚的縱、橫坐標都分別變為原來的1倍,得到的魚與原來的魚有什麼樣的位置關係

四、題組練習

1、將坐標作如下變化時,圖形將怎樣變化?

① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

2、如圖,在第一象限里有一隻蝴蝶,在第二象限里作出一隻和它形狀、大小完全一樣的蝴蝶,並寫出第二象限中蝴蝶各個頂點的坐標。

3、 如圖,作字母M關於y軸的軸對稱圖形,並寫出所得圖形相應各端點的坐標。

4、 描出下圖中楓葉圖案關於x軸的軸對稱圖形的簡圖。

學習筆記