因式分解教案錦集

因式分解教案錦集 篇1

教學目標:

1.知識與技能:掌握運用提公因式法、公式法分解因式,培養學生套用因式分解解決問題的能力.

2.過程與方法:經歷探索因式分解方法的過程,培養學生研討問題的方法,通過猜測、推理、驗證、歸納等步驟,得出因式分解的方法.

3.情感態度與價值觀:通過因式分解的學習,使學生體會數學美,體會成功的自信和團結合作精神,並體會整體數學思想和轉化的數學思想.

教學重、難點:用提公因式法和公式法分解因式.

教具準備:多媒體課件(小黑板)

教學方法:活動探究法

教學過程:

引入:在整式的變形中,有時需要將一個多項式寫成幾個整式的乘積的形式,這種變形就是因式分解.什麼叫因式分解?

知識詳解

知識點1 因式分解的定義

把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式因式分解,也叫做把這個多項式分解因式.

【說明】 (1)因式分解與整式乘法是相反方向的變形.

例如:

(2)因式分解是恆等變形,因此可以用整式乘法來檢驗.

怎樣把一個多項式分解因式?

知識點2 提公因式法

多項式ma+mb+mc中的各項都有一個公共的因式m,我們把因式m叫做這個多項式的公因式.ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成兩個因式乘積的形式,其中一個因式是各項的公因式m,另一個因式(a+b+c)是ma+mb+mc除以m所得的商,像這種分解因式的方法叫做提公因式法.例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1).

探究交流

下列變形是否是因式分解?為什麼?

(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;

(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.

典例剖析 師生互動

例1 用提公因式法將下列各式因式分解.

(1) -x3z+x4y; (2) 3x(a-b)+2y(b-a);

分析:(1)題直接提取公因式分解即可,(2)題首先要適當的變形, 再把b-a化成-(a-b),然後再提取公因式.

小結 運用提公因式法分解因式時,要注意下列問題:

(1)因式分解的結果每個括弧內如有同類項要合併,而且每個括弧內不能再分解.

(2)如果出現像(2)小題需統一時,首先統一,儘可能使統一的個數少。這時注意到(a-b)n=(b-a)n(n為偶數).

(3)因式分解最後如果有同底數冪,要寫成冪的形式.

學生做一做 把下列各式分解因式.

(1) (2a+b)(2a-3b)+(2a+5b)(2a+b) ;(2) 4p(1-q)3+2(q-1)2

知識點3 公式法

(1)平方差公式:a2-b2=(a+b)(a-b).即兩個數的平方差,等於這兩個數的和與這個數的差的積.例如:4x2-9=(2x)2-32=(2x+3)(2x-3).

(2)完全平方公式:a2±2ab+b2=(a±b)2.其中,a2±2ab+b2叫做完全平方式.即兩個數的平方和加上(或減去)這兩個數的積的2倍,等於這兩個數的和(或差)的平方.例如:4x2-12xy+9y2=(2x)2-2·2x·3y+(3y)2=(2x-3y)2.

探究交流

下列變形是否正確?為什麼?

(1)x2-3y2=(x+3y)(x-3y);(2)4x2-6xy+9y2=(2x-3y)2;(3)x2-2x-1=(x-1)2.

例2 把下列各式分解因式.

(1) (a+b)2-4a2;(2)1-10x+25x2;(3)(m+n)2-6(m+n)+9.

分析:本題旨在考查用完全平方公式分解因式.

學生做一做 把下列各式分解因式.

(1)(x2+4)2-2(x2+4)+1; (2)(x+y)2-4(x+y-1).

綜合運用

例3 分解因式.

(1)x3-2x2+x; (2) x2(x-y)+y2(y-x);

分析:本題旨在考查綜合運用提公因式法和公式法分解因式.

小結 解因式分解題時,首先考慮是否有公因式,如果有,先提公因式;如果沒有公因式是兩項,則考慮能否用平方差公式分解因式. 是三項式考慮用完全平方式,最後,直到每一個因式都不能再分解為止.

探索與創新題

例4 若9x2+kxy+36y2是完全平方式,則k= .

分析:完全平方式是形如:a2±2ab+b2即兩數的平方和與這兩個數乘積的2倍的和(或差).

學生做一做 若x2+(k+3)x+9是完全平方式,則k= .

課堂小結

用提公因式法和公式法分解因式,會運用因式分解解決計算問題.

各項有"公"先提"公",首項有負常提負,某項提出莫漏"1",括弧裡面分到"底"。

自我評價 知識鞏固

1.若x2+2(m-3)x+16是完全平方式,則m的值等於( )

A.3 B.-5 C.7. D.7或-1

2.若(2x)n-81=(4x2+9)(2x+3)(2x-3),則n的值是( )

A.2 B.4 C.6 D.8

3.分解因式:4x2-9y2= .

4.已知x-y=1,xy=2,求x3y-2x2y2+xy3的值.

5.把多項式1-x2+2xy-y2分解因式

思考題 分解因式(x4+x2-4)(x4+x2+3)+10.

因式分解教案錦集 篇2

教學目標

教學知識點

使學生了解因式分解的好處,明白它與整式乘法在整式變形過程中的相反關係。

潛力訓練要求。

透過觀察,發現分解因式與整式乘法的關係,培養學生觀察潛力和語言概括潛力。

情感與價值觀要求。

透過觀察,推導分解因式與整式乘法的關係,讓學生了解事物間的因果聯繫。

教學重點

1、理解因式分解的好處。

2、識別分解因式與整式乘法的關係。

教學難點透過觀察,歸納分解因式與整式乘法的關係。

教學方法觀察討論法

教學過程

Ⅰ、創設問題情境,引入新課

導入:由(a+b)(a-b)=a2-b2逆推a2-b2=(a+b)(a-b)

Ⅱ、講授新課

1、討論993-99能被100整除嗎?你是怎樣想的?與同伴交流。

993-99=99×98×100

2、議一議

你能嘗試把a3-a化成n個整式的乘積的形式嗎?與同伴交流。

3、做一做

(1)計算下列各式:①(m+4)(m-4)=_________;②(y-3)2=__________;

③3x(x-1)=_______;④m(a+b+c)=_______;⑤a(a+1)(a-1)=________

(2)根據上面的算式填空:

①3x2-3x=;②m2-16=;③ma+mb+mc=;

④y2-6y+9=2。⑤a3-a=。

定義:把一個多項式化成幾個整式的積的形式,叫做把這個多項式分解因式。

4。想一想

由a(a+1)(a-1)得到a3-a的變形是什麼運算?由a3-a得到a(a+1)(a-1)的變形與這種運算有什麼不同?你還能舉一些類似的例子加以說明嗎?

下面我們一齊來總結一下。

如:m(a+b+c)=ma+mb+mc(1)

ma+mb+mc=m(a+b+c)(2)

5、整式乘法與分解因式的聯繫和區別

ma+mb+mcm(a+b+c)。因式分解與整式乘法是相反方向的變形。

6。例題下列各式從左到右的變形,哪些是因式分解?

(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);

(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2。

Ⅲ、課堂練習

P40隨堂練習

Ⅳ、課時小結

本節課學習了因式分解的好處,即把一個多項式化成幾個整式的積的形式;還學習了整式乘法與分解因式的關係是相反方向的變形。

因式分解教案錦集 篇3

課型 複習課 教法 講練結合

教學目標(知識、能力、教育)

1.了解分解因式的意義,會用提公因式法、 平方差公式和完全平方公式(直接用公式不超過兩次)分解因式(指數是正整數).

2.通過乘法公式 , 的逆向變形,進一步發展學生觀察、歸納、類比、概括等能力,發展有條理的思考及語言表達能力

教學重點 掌握用提取公因式法、公式法分解因式

教學難點 根據題目的形式和特徵 恰當選擇方法進行分解,以提高綜合解題能力。

教學媒體 學案

教學過程

一:【 課前預習】

(一):【知識梳理】

1.分解因式:把一個多項式化成 的形式,這種變形叫做把這個多項式分解因式.

2.分解困式的方法:

⑴提公團式法:如果一個多項式的各項含有公因式,那么就可以把這個公因式提出來,從而將多項式化成兩個因式乘積的形式,這種分解因式的方法叫做提公因式法.

⑵運用公式法:平方差公式: ;

完全平方公式: ;

3.分解因式的步驟:

(1)分解 因式時,首先考慮是否有公因式,如果有公因式,一定先提取公團式,然後再考慮是否能用公式法 分解.

(2)在用公式時,若是兩項,可考慮用平方差公式;若是三項,可考慮用完全平方公式;若是三項以上,可先進行適當的分組,然後分解因式。

4.分解因式時常見的思維誤區:

提公因式時,其公因式應找字母指數最低的,而不是以首項為準.若有一項被全部提出,括弧內的項 1易漏掉.分解不徹底,如保留中括弧形式,還能繼續分解等

(二):【課前練習】

1.下列各組多項式中沒有公因式的是( )

A.3x-2與 6x2-4x B.3(a-b)2與11(b-a)3

C.mxmy與 nynx D.aba c與 abbc

2. 下列各題中,分解因式錯誤的是( )

3. 列多項式能用平方差公式分解因式的是

4. 分解因式:x2+2xy+y2-4 =_____

5. 分解因式:(1) ;

(2) ;(3) ;

(4) ;(5)以上三題用了 公式

二:【經典考題剖析】

1. 分解因式:

(1) ;(2) ;(3) ;(4)

分析:①因式分解時,無論有幾項,首先考慮提取公因式。提公因式時,不僅注意數,也要 注意字母,字母可能是單項式也可能是多項式,一次提盡。

②當某項完全提出後,該項應為1

③注意 ,

④分解結果(1)不帶中括弧;(2)數字因數在前,字母因數在後;單項式在前,多項式在後;(3)相同因式寫成冪的形式;(4 )分解結果應在指定範圍內不能再分解為止;若無指定範圍,一般在有理數範圍內分解。

2. 分解因式:(1) ;(2) ;(3)

分析:對於二次三項齊次式,將其中一個字母看作末知數,另一個字母視為常數。首先考慮提公因式後,由余下因式的項數為3項,可考慮完全平方式或十字相乘法繼續分解;如果項數為2,可考慮平方差、立方差、立方和公式。(3)題無公因式,項數為2項,可考慮平方差公式先分解開,再由項數考慮選擇方法繼續分解。

3. 計算:(1)

(2)

分析:(1)此題先分解因式後約分,則餘下首尾兩數。

(2)分解後,便有規可循,再求1到20xx的和。

4. 分解因式:(1) ;(2)

分析:對於四項或四項以上的多項式的因式分解,一般採用分組分解法,

5. (1)在實數範圍內分解因式: ;

(2)已知 、 、 是△ABC的三邊,且滿足 ,

求證:△ABC為等邊三角形。

分析:此題給出的是三邊之間的關係,而要證等邊三角形,則須考慮證 ,

從已知給出的等式結構看出,應構造出三個完全平方式 ,

即可得證,將原式兩邊同乘以2即可。略證:

即△ABC為等邊三角形。

三:【課後訓練】

1. 若 是一個完全平方式,那么 的值是( )

A.24 B.12 C.12 D.24

2. 把多項式 因式分解的結果是( )

A. B. C. D.

3. 如果二次三項式 可分解為 ,則 的 值為( )

A .-1 B.1 C. -2 D.2

4. 已知 可以被在60~70之間的兩個整數整除,則這兩個數是( )

A.61、63 B.61、65 C.61、67 D.63、65

5. 計算:19982002= , = 。

6. 若 ,那么 = 。

7. 、 滿足 ,分解因式 = 。

8. 因式分解:

(1) ;(2)

(3) ;(4)

9. 觀察下列等式:

想一想,等式左邊各項冪的底數與右邊冪的底數有何關 系?猜一猜可引出什麼規律?用等式將其規律表示出來: 。

10. 已知 是△ABC的三邊,且滿足 ,試判斷△ABC的形狀。閱讀下面解題過程:

解:由 得:

即 ③

△ABC為Rt△。 ④

試問:以上解題過程是否正確: ;若不正確,請指出錯在哪一步?(填代號) ;錯誤原因是 ;本題結論應為 。

四:【課後小結】

布置作業 地綱