浙教版八年級數學上冊教案

浙教版八年級數學上冊教案 篇1

教學目的

1.使學生熟練地運用等腰三角形的性質求等腰三角形內角的角度。

2.熟識等邊三角形的性質及判定.

2.通過例題教學,幫助學生總結代數法求幾何角度,線段長度的方法。

教學重點:等腰三角形的性質及其套用。

教學難點:簡潔的邏輯推理。

教學過程

一、複習鞏固

1.敘述等腰三角形的性質,它是怎么得到的?

等腰三角形的兩個底角相等,也可以簡稱“等邊對等角”。把等腰三角形對摺,摺疊兩部分是互相重合的,即AB與AC重合,點B與點C重合,線段BD與CD也重合,所以∠B=∠C。

等腰三角形的頂角平分線,底邊上的中線和底邊上的高線互相重合,簡稱“三線合一”。由於AD為等腰三角形的對稱軸,所以BD=CD,AD為底邊上的中線;∠BAD=∠CAD,AD為頂角平分線,∠ADB=∠ADC=90°,AD又為底邊上的高,因此“三線合一”。

2.若等腰三角形的兩邊長為3和4,則其周長為多少?

二、新課

在等腰三角形中,有一種特殊的情況,就是底邊與腰相等,這時,三角形三邊都相等。我們把三條邊都相等的三角形叫做等邊三角形。

等邊三角形具有什麼性質呢?

1.請同學們畫一個等邊三角形,用量角器量出各個內角的度數,並提出猜想。

2.你能否用已知的知識,通過推理得到你的猜想是正確的?

等邊三角形是特殊的等腰三角形,由等腰三角形等邊對等角的性質得到∠A=∠B=C,又由∠A+∠B+∠C=180°,從而推出∠A=∠B=∠C=60°。

3.上面的條件和結論如何敘述?

等邊三角形的各角都相等,並且每一個角都等於60°。

等邊三角形是軸對稱圖形嗎?如果是,有幾條對稱軸?

等邊三角形也稱為正三角形。

例1.在△ABC中,AB=AC,D是BC邊上的中點,∠B=30°,求∠1和∠ADC的度數。

分析:由AB=AC,D為BC的中點,可知AB為BC底邊上的中線,由“三線合一”可知AD是△ABC的頂角平分線,底邊上的高,從而∠ADC=90°,∠l=∠BAC,由於∠C=∠B=30°,∠BAC可求,所以∠1可求。

問題1:本題若將D是BC邊上的中點這一條件改為AD為等腰三角形頂角平分線或底邊BC上的高線,其它條件不變,計算的結果是否一樣?

問題2:求∠1是否還有其它方法?

三、練習鞏固

1.判斷下列命題,對的打“√”,錯的打“×”。

a.等腰三角形的角平分線,中線和高互相重合( )

b.有一個角是60°的等腰三角形,其它兩個內角也為60°( )

2.如圖(2),在△ABC中,已知AB=AC,AD為∠BAC的平分線,且∠2=25°,求∠ADB和∠B的度數。

3.P54練習1、2。

四、小結

由等腰三角形的性質可以推出等邊三角形的各角相等,且都為60°。“三線合一”性質在實際套用中,只要推出其中一個結論成立,其他兩個結論一樣成立,所以關鍵是尋找其中一個結論成立的條件。

五、作業:

1.課本P57第7,9題。

2、補充:如圖(3),△ABC是等邊三角形,BD、CE是中線,求∠CBD,∠BOE,∠BOC,∠EOD的度數

浙教版八年級數學上冊教案 篇2

教學目標

1、理解並掌握等腰三角形的判定定理及推論

2、能利用其性質與判定證明線段或角的相等關係.

教學重點:等腰三角形的判定定理及推論的運用

教學難點:正確區分等腰三角形的判定與性質,能夠利用等腰三角形的判定定理證明線段的相等關係.

教學過程:

一、複習等腰三角形的性質

二、新授:

I提出問題,創設情境

出示投影片.某地質專家為估測一條東西流向河流的寬度,選擇河流北岸上一棵樹(B點)為B標,然後在這棵樹的正南方(南岸A點抽一小旗作標誌)沿南偏東60°方向走一段距離到C處時,測得∠ACB為30°,這時,地質專家測得AC的長度就可知河流寬度.

學生們很想知道,這樣估測河流寬度的根據是什麼?帶著這個問題,引導學生學習“等腰三角形的判定”.

II引入新課

1.由性質定理的題設和結論的變化,引出研究的內容——在△ABC中,苦∠B=∠C,則AB= AC嗎?

作一個兩個角相等的三角形,然後觀察兩等角所對的邊有什麼關係?

2.引導學生根據圖形,寫出已知、求證.

2、小結,通過論證,這個命題是真命題,即“等腰三角形的判定定理”(板書定理名稱).

強調此定理是在一個三角形中把角的相等關係轉化成邊的相等關係的重要依據,類似於性質定理可簡稱“等角對等邊”.

4.引導學生說出引例中地質專家的測量方法的根據.

III例題與練習

1.如圖2

其中△ABC是等腰三角形的是[ ]

2.①如圖3,已知△ABC中,AB=AC.∠A=36°,則∠C(根據什麼?).

②如圖4,已知△ABC中,∠A=36°,∠C=72°,△ABC是三角形(根據什麼?).

③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC於D,判斷圖5中等腰三角形有.

④若已知AD=4cm,則BCXXXXXXcm.

3.以問題形式引出推論l.

4.以問題形式引出推論2.

例:如果三角形一個外角的平分線平行於三角形的一邊,求證這個三角形是等腰三角形.

分析:引導學生根據題意作出圖形,寫出已知、求證,並分析證明.

練習:5.(l)如圖6,在△ABC中,AB=AC,∠ABC、∠ACB的平分線相交於點F,過F作DE//BC,交AB於點D,交AC於E.問圖中哪些三角形是等腰三角形?

(2)上題中,若去掉條件AB=AC,其他條件不變,圖6中還有等腰三角形嗎?

練習:P53練習1、2、3。

IV課堂小結

1.判定一個三角形是等腰三角形有幾種方法?

2.判定一個三角形是等邊三角形有幾種方法?

3.等腰三角形的性質定理與判定定理有何關係?

4.現在證明線段相等問題,一般應從幾方面考慮?

V布置作業:P56頁習題12.3第5、6題

浙教版八年級數學上冊教案 篇3

一、學習目標及重、難點:

1、了解方差的'定義和計算公式。

2、理解方差概念的產生和形成的過程。

3、會用方差計算公式來比較兩組數據的波動大小。

重點:方差產生的必要性和套用方差公式解決實際問題。

難點:理解方差公式

二、自主學習:

(一)知識我先懂:

方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

我們用它們的平均數,表示這組數據的方差:即用

來表示。

給力小貼士:方差越小說明這組數據越 。波動性越 。

(二)自主檢測小練習:

1、已知一組數據為2、0、-1、3、-4,則這組數據的方差為 。

2、甲、乙兩組數據如下:

甲組:10 9 11 8 12 13 10 7;

乙組:7 8 9 10 11 12 11 12.

分別計算出這兩組數據的極差和方差,並說明哪一組數據波動較小.

三、新課講解:

引例:問題: 從甲、乙兩種農作物中各抽取10株苗,分別測得它的苗高如下:(單位:cm)

甲:9、10、 10、13、7、13、10、8、11、8;

乙:8、13、12、11、10、12、7、7、10、10;

問:(1)哪種農作物的苗長的比較高(我們可以計算它們的平均數: = )

(2)哪種農作物的苗長得比較整齊?(我們可以計算它們的極差,你發現了 )

歸納: 方差:設有n個數據 ,各數據與它們的平均數的差的平方分別是

我們用它們的平均數,表示這組數據的方差:即用 來表示。

(一)例題講解:

例1、 段巍和金志強兩人參加體育項目訓練,近期的5次測試成績如下表所示,誰的成績比較穩定?為什麼?、

測試次數 第1次 第2次 第3次 第4次 第5次

段巍 13 14 13 12 13

金志強 10 13 16 14 12

給力提示:先求平均數,在利用公式求解方差。

(二)小試身手

1、.甲、乙兩名學生在相同的條件下各射靶10次,命中的環數如下:

甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7

經過計算,兩人射擊環數的平均數是 ,但S = ,S = ,則S S ,所以確定

去參加比賽。

1、求下列數據的眾數:

(1)3, 2, 5, 3, 1, 2, 3 (2)5, 2, 1, 5, 3, 5, 2, 2

2、8年級一班46個同學中,13歲的有5人,14歲的有20人,15歲的15人,16歲的6人。8年級一班學生年齡的平均數,中位數,眾數分別是多少?

四、課堂小結

方差公式:

給力提示:方差越小說明這組數據越 。波動性越 。

每課一首詩:求方差,有公式;先平均,再求差;

求平方,再平均;所得數,是方差。

五、課堂檢測:

1、小爽和小兵在10次百米跑步練習中成績如表所示:(單位:秒)

小爽 10.8 10.9 11.0 10.7 11.1 11.1 10.8 11.0 10.7 10.9

小兵 10.9 10.9 10.8 10.8 11.0 10.9 10.8 11.1 10.9 10.8

如果根據這幾次成績選拔一人參加比賽,你會選誰呢?

六、課後作業

必做題:教材141頁 練習1、2 選做題:練習冊對應部分習題

七、學習小札記:

寫下你的收穫,交流你的經驗,分享你的成果,你會感到無比的快樂!