高二數學工作總結

高二數學工作總結 篇1

上個學期,根據需要,學校安排我上高二數學文科,在這一學期里我從各方面嚴格要求自己,在教學上虛心向老教師請教,結合本校和班級學生的實際情況,針對性的開展教學工作,使工作有計畫,有組織,有步驟。經過了一學期,我對教學工作有了如下感想:

一、認真備課,做到既備學生又備教材與備教法。

上學期我根據教材內容及學生的實際情況設計課程教學,擬定教學方法,並對教學過程中遇到的問題儘可能的預先考慮到,認真寫好教案。每一課都做到有備而去,每堂課都在課前做好充分的準備,課後及時對該課作出小結,並認真整理每一章節的知識要點,幫助學生進行歸納總結。

二、增強上課技能,提高教學質量。

增強上課技能,提高教學質量是我們每一名新教師不斷努力的目標。因為面對的是文科生,基礎普遍比較差,所以我主要是立足於基礎,讓學生學得輕鬆,學得愉快。注意精講精練,在課堂上講得儘量少些,而讓學生自己動口動手動腦儘量多些;同時在每一堂課上都充分考慮每一個層次的學生學習需求和接受能力,讓各個層次的學生都得到提高。

三、虛心向其他老師學習,在教學上做到有疑必問。

在每個章節的學習上都積極徵求其他有經驗老師的意見,學習他們的方法。同時多聽老教師的課,做到邊聽邊學,給自己不斷充電,彌補自己在教學上的不足,徵求他們的'意見,改進教學工作。

四、認真批改作業、布置作業有針對性,有層次性。

作業是學生對所學知識鞏固的過程。為了做到布置作業有針對性,有層次性,我常常多方面的蒐集資料,對各種輔導資料進行篩選,力求每一次練習都能讓學生起到最大的效果。同時對學生的作業批改及時、認真,並分析學生的作業情況,將他們在作業過程出現的問題及時評講,並針對反映出的情況及時改進自己的教學方法,做到有的放矢。

然而,在肯定成績、總結經驗的同時,我清楚地認識到我所獲得的教學經驗還是膚淺的,在教學中存在的問題也不容忽視,也有一些困惑有待解決今後我將努力工作,積極向老老師學習以提高自己的教學水平。

高二數學工作總結 篇2

高二數學教師工作總結時間過得真快,轉眼又過了一學期。這是忙碌的一學期,也是充實的一學期,收穫的一學期。這一學期我負責高二(6)、(10)兩個班的教學工作。我結合學生的實際情況,有針對性地制訂了教學計畫,使教學工作有計畫,有組織,有步驟地開展,較好地完成了教學任務。現將本學期教學工作總結如下:

一、充分的課前備課

上好新課的前提是備好課,根據教材內容及學生的實際,精心設計教學過程和擬定教學方法尤為重要,因此,我把備課當作關鍵的關鍵。本學期,我加強了理論學習,特別是學習了中國小常用的教學方法,包括講授法,討論法,直觀演示法,練習法,讀書指導法;而課堂教學常用方法包括講授式的教學方法,問題探究式教學方法,訓練與實踐式教學方法,基於現代信息技術的教學方法。通過學習,這也為我增加了不少自信。我本著「幹什麼、學什麼,缺什麼,補什麼」的原則,在學期初上新課前,認真研究教材、教參、教案,試題,吃透知識,力求每一課都備的完美。課後,我

二、高效率的課堂教學

上好課就要抓好每一次課堂教學。在教學中,我注重理清知識的條理和邏輯,堅持每個知識點講清楚,分析透,通過多種方式將課本知識化難為易,不給學生吃夾生飯,增加情景教學,努力增強課堂教學的效果。學習了課堂教學常用方法包括講授式的教學方法,問題探究式教學方法,訓練與實踐式教學方法,基於現代信息技術的教學方法後,在課堂上我有意識選擇去實踐些教學方法。

根據數學課程的特點,實施較多的是講授式的教學方法和問題探究式教學方法,比如概念性課題,一般採用問題探究式教學方法。我在上選修2-1《導數的概念》這一課時,就採用了問題探究式教學方法。新課引入通過提出問題1:上一節課我們的學習跳水問題時知道,平均速度能描述運動員某一時刻的運動狀態嗎?學生作答,得出能描述的是瞬時速度。問題2:如何求運動員的瞬時速度?你能舉例嗎?比如,t=2時的瞬時速度是多少?引導學生閱讀教材p74表格。問題3:t越來越小,當t趨於0時,平均速度v有什麼樣的變化趨勢?學生得出當t趨於0時,平均速度都趨近於一個確定的值13.1,所以,運動員在t=2時的瞬時速度是13.1m/s。問題4:以上求得瞬時速度的過程體現了一個什麼思想?逼近的思想。問題5:你能得出一個什麼結論嗎?學生小結:局部以勻速代替變速,以平均速度代替瞬時速度,然後通過取極限,從瞬時速度的近似值過渡到瞬時速度的精確值。問題6:函式f(x)在x=xo處的瞬時變化率怎麼樣表示?學生閱讀教材得出函式yy=f(x)在x=xo的導數。知識點講授完後對昨天作業進行講評,同時增加了一問:求它的導數;最後完成了一道練習題。而例題課、練習課則常常採用講授式的教學方法,以教師講,學生練習為主。=f(x)在x=x0處的瞬時變化率是:

三、完善的課後反思

看過一句這樣的話「思之則活,思活則深,思深則透,思透則新,思新則進」。學期初我在中山教師部落格和搜狐部落格開通了教師部落格,把自己的教學反思放到部落格上。堅持一學期下來,日誌總數為58篇,這都是自己反思的成果,每一篇都反思自己的教學行為,總結教學的得失與成敗,對整個教學過程進行回顧、分析和審視,才能形成自我反思的意識和自我監控的能力,才能不斷豐富自我素養,提升自我發展能力,逐步完善教學藝術,以期實現教師自身的教學水平提升。

一學期來,我的教學工作中取得了一定的成績,個人的教學也有了一點提高,但是與現代教學質量的要求還有不小的距離,自身尚存在一定的不足,如:在教學工作中課堂語言不夠生動等問題,這些問題尚需在今後的教學工作中不斷改進和完善。

編輯提醒:請注意查看「高二數學教師工作總結」一文是否有分頁內容。原文地址

高二數學工作總結 篇3

物理實驗是中學物理教學的重要內容,通過實驗教學,幫助學生理解、掌握物理知識,學會實驗技能、儀器的使用和操作,學習物理學研究問題的方法。物理實驗的內容,也是物理課程標準中的重要組成部分。物理實驗能力也是要考查的一項重要能力。

為了提高學生的實驗操作能力,深入理解物理理論知識、物理原理、物理研究方法。我校非常重視實驗教學,通過幾年的努力,我校已經具有先進的現代化的實驗室。本期我校充分發揮了實驗優勢,加強實驗教學工作。培養了學生的實驗能力。

本期中高中二年級按排了六個學生分組實驗:《探究決定電荷間的相互作用的因素》、《認識和練習使用示波器》、《多用表的使用》、《探究電阻定律》、《測量電源的電動勢和內阻》、《描給小燈泡伏安特性曲線》。

使學生在實驗中做到了「一能三會」:能在理解的基礎上獨立完成實驗,明確實驗目的,理解和控制實驗條件;會用在實驗中學過的實驗方法;會正確使用在這些實驗中用過的儀器會觀察,分析實驗現象,處理實驗數據,並得出結論。學好物理基礎知識,物理不是一門以實驗為基礎的自然科學。本期有驗證性實驗:《驗證動量守恆定律》,實驗中要求學生在理解掌握規律的'基礎上去做實驗,在實驗的過程中加深和鞏固動量守恆定律,學習實驗的方法,儀器的使用和操作。物理知識的學習和物理實驗是相互補充、相輔相成、密不可分的兩種學習方式。要求學生要克服只重視物理理論的學習,輕視實驗操作的傾向,這是導致學生實驗能力不高的一個重要因素。對實驗方法的學習和掌握,應該在實驗教學中突出出來。

在實驗教學過程中重視了對基本儀器的使用和基本實驗方法。重視了實際操作能力的培養。重視了實驗數據的處理:對實驗數據進行正確處理,從面得出正確的實驗結果,是實驗全過程的一個重要環節。

深刻理解、熟練掌握實驗原理:實驗原理是實驗的核心。實驗方法、實驗步驟、儀器的選擇、數據的處理等一切和實驗的有關問題都是從實驗原理中派生出來的。實驗原理和方法貫穿於實驗的全過程,只有深刻理解了它,才能正確選擇實驗器材、安排實驗步驟、進行操作和觀測、處理實驗數據並得出結論,也才能具備遷移實驗方法進行實驗設計的能力。只要緊緊抓住實驗原理,用許多問題會迎刃而解。

高二數學工作總結 篇4

時光荏苒,轉眼一學期又已經結束,這學期以來,我努力改進教育教學思路和方法,切實抓好教育教學的各個環節,認真引導學生理解和鞏固基礎知識和基本技能,無論從學習態度還是學習方法上都有了明顯的進步,取得了應有的成績。現將本學期的教學工作總結如下:

一、工作態度

一學期以來,本人認真備課、上課、聽課、評課,及時批改作業、講評作業,做好課後輔導工作,廣泛涉獵各種知識,形成完整的知識結構,並嚴格要求學生,尊重學生,發揚教學民主,使學生學有所得,從而不斷提高自己的教學水平和思想覺悟,並順利完成教育教學任務。

二、加強理論學習,積極學習新課程

理論是行動的先導。自實行新課程以來,我是帶新課程的新授課,為了加強對新課程的認識和了解,我積極學習新課程改革的相關要求理論,仔細研究新的課程標準,及時更新自己的大腦,以適應新課程改革的需要。同時為了和教學一線的同行們交流,積極利用好網際網路,開通了教育教學部落格,養成了及時寫教學反思的好習慣。作為一位年輕的數學教師,我發現在教學前後,進行教學反思尤為重要,在課堂教學過程中,學生是學習的主體,學生總會獨特的見解,教學前後,都要進行反思,對以後上課積累了經驗,奠定了基矗同時,這些見解也是對課堂教學非常重要的一部分,積累經驗,教後反思,是上好一堂精彩而又有效課的第一手材料。

三、關心愛護學生,積極研究學情

所謂親其師,信其道,愛是最好的教育,作為教師不僅僅要擔任回響的教學,同時還肩負著育人的責任。如何育人?我認為,愛學生是根本。愛學生,就需要我們尊重學生的人格、興趣、愛好,了解學生習慣以及為人處世的態度、方式等,然後對症下藥,幫助學生樹立健全、完善的人格。只有這樣,了解了學生,才能了解到學情,在教學中才能做到有的放矢,增強了教學的針對性和有效性。多與學生交流,加強與學生的思想溝通,做學生的朋友,才能及時發現學生學習中存在的問題,以及班級中學生的學習情況,從而為自己的備課提供第一手的資料,還可以為班主任的班級管理提高一些有價值的建議

四、充分備課,精心鑽研教材及考題

分備教材和備學生兩部分,二者相輔相成,互相影響。備教材就是根據所學內容設計課堂教學情景,力爭做到深入淺出,生動活潑,方法靈活,講練結合,真正體現學生的主體作用和教師的主導作用;備學生指的是全面掌握學生學習數學的現狀,依據學生的學習態度、水平設計合理恰當的.教學氛圍,充分考慮學生的智力發展水平,擴展學生的認知領域,為學生提供思維訓練的平台,創設熟悉易懂的學習情景,為學生的心理發展和知識積累提供可能。備課中一定要注意從學生的實際出發,從教材的實際內容出發,這樣二者兼顧才能提高備課的針對性、有效性。一節課的好壞,關鍵在於備課,備課是教師教學中的一個重要環節,備課的質量直接影響到學生學習的效果。

在教學過程過,特別重視學生對數學概念的理解,數學概念是數學基礎知識,是考生必須牢固而又熟練掌握的內容之一。它也是高考數學科所重點考查的重點內容。對於重要的數學概念,考生尤其需要正確理解和熟練掌握,達到運用自如的程度。從這幾年的高考來看,有相當多的考生對掌握不牢,對一些概念內容的理解只浮於表面,甚至殘缺不全,因而在解題中往往無從下手或者導致各種錯誤。還特別重視學生對公式掌握的熟練程度和基本運算的訓練,重點抓解答題的解題規範訓練.

五、落實常規,確保教學質量

上課是教學活動的主要環節,也是教學工作的關鍵階段。上課要堅持以學生活動為中心,面向全體學生授課,以啟發式為主,兼顧個別學生,從聽講、筆記、練習、反饋等環節入手,引導學生積極參與學習活動,理解和掌握基本概念和基本技能,使學生在學習活動過程中不僅獲得知識還要提高解決問題的能力,不光獲得應有的智慧,也應掌握思考問題的思想方法。對概念課採用啟發引導式,引導學生理解和掌握新概念產生的背景,發生髮展的過程,展示新舊知識之間的內在聯繫,加深對概念的理解和掌握;對鞏固課堅持精講多練,精選典型例題,引導學生仔細分析問題的特點,尋求解決問題的思路和方法,提出合理的解決方案,力爭使講解通俗易懂,使方法融會貫通,並讓學生在練習中加以消化,真正提高學生分析問題解決問題的能力。

六、更新觀念,積極進行新課改

首先,轉變觀念要充分認識新課改是教育教學的必然,教師要更新觀念,要認真領會新課改的理念,了解課改革的目的這樣才不會在改革當中迷失方向。

其次,教師要不斷學習不斷積累,要掌握豐厚的專業知識,所謂給人一杯水,自己要有一桶水,要注意本學科與其它學科的聯繫,拓寬自身的知識占有。要多渠道採取不同手段獲取知識,教師除了看專業書籍,也要藉助於網路媒體這一先進的手段進行學習.要多和其它教師交流、溝通,提高合作意識,取長補短.

同時,教師是教育、教學的組織者,要充分理解學生,了解學生的實際情況,了解他們的興趣和愛好,了解不同學生的智力差別,做到因材施教.教師要給學生充分的思維空間、活動空間,給他們展示自我的空間和舞台,活躍學生的思維,變被動的學習為主動的學習,全面提高學生的各方面能力.

七、積極參與聽課、評課,虛心向同行學習教學方法,博採眾長,提高教學水平。

八、培養多種興趣愛好,到圖書館博覽群書,不斷擴寬知識面,為教學內容注入新鮮血液。

走進21世紀,社會對教師的素質要求更高,在今後的教育教學工作中,我將更嚴格要求自己,努力工作,發揚優點,改正缺點,開拓前進,為美好的明天貢獻自己的力量。

總之,教學工作不僅僅要落實常規,還要因地制宜,與時俱進,針對學生的具體情況採取相應的措施與辦法,有計畫有落實有檢查,關注每一個學生,關注每一個課堂,關注每一個環節,從小處著眼,從細處著手。只有這樣才有利於教學質量的提高,有利於學生身心的健康發展。

高二數學工作總結 篇5

這學期我任高二兩個班的數學課,下面我對這學期的工作進行一下總結。

(一)在備課方面,我認真鑽研教材,注意了解學生,潛心研究教法。

這學期的教學內容包括,排列、組合、二項式定理,機率,導數。針對學生實際情況,我採取了低起點,小步子的教學方法,根據教材的內容設計課的類型,並對教學過程的程式及時安排,認真寫好每一篇教案。每一節課都做到有備而來,每堂課都在課前做好充分準備,課後及時對課上出現的情況進行總結,並認真蒐集每節課的知識要點,歸納在一起。一年以來,我注重和他們的溝通,多和他們談心,了解他們的學習情況,幫助學生取得了不同程度的進步。

(二)增強上課的技能,提高教學質量。

在講課時,儘量使講解清晰化,使課堂教學的內容條理化,做到課堂結構清晰,重點、難點突出。在課堂上,特別注意調動學生的主觀能動性,加強師生交流,充分體現學生的主體作用和老師的主導作用。儘量讓學生學得容易,學得輕鬆愉快;注意習題的數量和質量,精講精練,在課堂上老師儘量講的少,學生思考和練習的`多。同時在每一堂課上都充分考慮每個層次的學生的學習需求和學習能力,讓每個層次的學生都得到提高。組織好課堂教學,關注全體學生,注意信息反饋,調動學生的有意注意,使其保持相對穩定性,同時,激發學生的情感,使他們產生愉悅的心境,創造良好的課堂氣氛,課堂語言簡潔明了,克服了以前重複的毛病,課堂提問面向全體學生,注意引發學生學數學的興趣,課堂上講練結合,布置適量的課下作業。

(三)批改作業、輔導學生與考試評價方面

我知道「批改作業、輔導學生與考試評價方面」是我平時教學工作的重點。多年來,我一直很注重這幾方面的工作。這學期我按著學校的要求每星期讓學生做一次作業。在教學中,我要求學生把在做作業中,犯下的錯誤一一記錄下來,然後再一個個整理在錯題本上,我很明白地告訴學生,如果你要抄襲作業的話,請你不要上交。因為我們讓學生作業的目的是讓學生把學習中的問題暴露無遺,否則你的教學輔導就沒有了針對性。在布置課下練習方面,我一直堅持要求學生每天做一頁練習,並且不定時檢查,因為我發現我們的學生太不注重課後的複習和鞏固,這樣強制性的要求會使中等的學生有所提高,效果很好。尤其在後進生的轉化上,對後進生努力做到從友善開始,比如,多和他們交流,課下找他們了解學習情況等。從鼓勵著手,所有的人都渴望得到別人的理解和尊重,在複習備考這段時間內,利用有限的時間,給學生準備了大量的複習題,並且精講精練,使學生有很大的提高,在複習課上學生學習熱情很高,學習氛圍很濃,很多學生都有所提高。

(四)虛心向有經驗的教師請教。

這學期我按著學校的要求,積極的向有經驗的老師學習,向他們請教,使得我的教學工作有了新的提高,在此要向給予幫助的老師表示感謝,在今後的工作中繼續這樣做,使我的教學工作再上新台階。(五)在工作中存在的不足。

在工作中存在著一些不盡如人意的地方,如對教材中的重點和難點把握的不好,對於學生也不夠有耐性,在輔導中還缺乏經驗。

一年的工作即將過去,我會一如既往的努力工作,在今後的教育教學工作中,我將更嚴格要求自己,努力工作,發揚優點,改正缺點,開拓前進。

高二數學工作總結 篇6

一、直線與圓:

1、直線的傾斜角 的範圍是

在平面直角坐標系中,對於一條與 軸相交的直線 ,如果把 軸繞著交點按逆時針方向轉到和直線 重合時所轉的最小正角記為, 就叫做直線的傾斜角。當直線 與 軸重合或平行時,規定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

3、直線方程:⑴點斜式:直線過點 斜率為 ,則直線方程為 ,

⑵斜截式:直線在 軸上的截距為 和斜率,則直線方程為

4、 , ,① ∥ , ; ② .

直線 與直線 的位置關係:

(1)平行 A1/A2=B1/B2 注意檢驗(2)垂直 A1A2+B1B2=0

5、點 到直線 的距離公式 ;

兩條平行線 與 的距離是

6、圓的標準方程: .⑵圓的一般方程:

注意能將標準方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那麼另外一條就是與軸垂直的直線.

8、直線與圓的位置關係,通常轉化為圓心距與半徑的關係,或者利用垂徑定理,構造直角三角形解決弦長問題.① 相離 ② 相切 ③ 相交

9、解決直線與圓的關係問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形) 直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓: ①方程 (a>b>0)注意還有一個;②定義: PF1+PF2=2a>2c; ③ e= ④長軸長為2a,短軸長為2b,焦距為2c; a2=b2+c2 ;

2、雙曲線:①方程 (a,b>0) 注意還有一個;②定義: PF1-PF2=2a<2c; ③e= ;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線 或 c2=a2+b2

3、拋物線 :①方程y2=2px注意還有三個,能區別開口方向; ②定義:PF=d焦點F( ,0),準線x=- ;③焦半徑 ; 焦點弦=x1+x2+p;

4、直線被圓錐曲線截得的弦長公式:

5、注意解析幾何與向量結合問題:1、 , . (1) ;(2) .

2、數量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數量abcosθ叫做a與b的數量積,記作a·b,即

3、模的計算:a= . 算模可以先算向量的平方

4、向量的運算過程中完全平方公式等照樣適用:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸 o'x'、o'y'、使∠x'o'y'=45°(或135° ); (2)平行於x軸的線段長不變,平行於y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

⑴柱體:①表面積:S=S側+2S底;②側面積:S側= ;③體積:V=S底h

⑵錐體:①表面積:S=S側+S底;②側面積:S側= ;③體積:V= S底h:

⑶台體①表面積:S=S側+S上底S下底②側面積:S側=

⑷球體:①表面積:S= ;②體積:V=

4、位置關係的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行 線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直 線面垂直 面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導數:

1、導數的定義: 在點 處的導數記作 .

2. 導數的幾何物理意義:曲線 在點 處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t) 表示即時速度。a=v/(t) 表示加速度。

3.常見函式的導數公式: ① ;② ;③ ;

4.導數的四則運算法則:

5.導數的套用:

(1)利用導數判斷函式的單調性:設函式 在某個區間內可導,如果 ,那麼 為增函式;如果 ,那麼為減函式;

注意:如果已知 為減函式求字母取值範圍,那麼不等式 恆成立。

(2)求極值的步驟:

①求導數 ;

②求方程 的根;

③列表:檢驗 在方程 根的左右的符號,如果左正右負,那麼函式 在這個根處取得極大值;如果左負右正,那麼函式 在這個根處取得極小值;

(3)求可導函式最大值與最小值的步驟:

?求 的根; ?把根與區間端點函式值比較,最大的為最大值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p

註:

1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

2、注意命題的否定與否命題的區別:命題否定形式是 ;否命題是 .命題「 或 」的否定是「 且 」;「 且 」的否定是「 或 」.

3、邏輯聯結詞:

⑴且(and) :命題形式 p q; p q p q p q p

⑵或(or):命題形式 p q; 真 真 真 真 假

⑶非(not):命題形式 p . 真 假 假 真 假

假 真 假 真 真

假 假 假 假 真

「或命題」的真假特點是「一真即真,要假全假」;

「且命題」的真假特點是「一假即假,要真全真」;

「非命題」的真假特點是「一真一假」

4、充要條件

由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:

短語「所有」在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,並用符號表示。含有全體量詞的命題,叫做全稱命題。

短語「有一個」或「有些」或「至少有一個」在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,並用符號 表示,含有存在量詞的命題,叫做存在性命題。

全稱命題p: ; 全稱命題p的否定 p:。

特稱命題p: ; 特稱命題p的否定 p:

高二數學工作總結 篇7

1、在中學我們只研直圓柱、直圓錐和直圓台。所以對圓柱、圓錐、圓台的旋轉定義、實際上是直圓柱、直圓錐、直圓台的定義。

這樣定義直觀形象,便於理解,而且對它們的性質也易推導。

對於球的定義中,要注意區分球和球面的概念,球是實心的。

等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區分。

2、圓柱、圓錐、圓和球的性質

(1)圓柱的性質,要強調兩點:一是連心線垂直圓柱的底面;二是三個截面的性質——平行於底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行於軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。

(2)圓錐的性質,要強調三點

①平行於底面的截面圓的性質:

截面圓面積和底面圓面積的比等於從頂點到截面和從頂點到底面距離的平方比。

②過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:

易知,截面三角形的頂角不大於軸截面的頂角(如圖10-20),事實上,由BC≥AB,VC=VB=VA可得∠B≤BVC、

由於截面三角形的頂角不大於軸截面的頂角。

所以,當軸截面的頂角θ≤90°,有0°90°時,軸截面的面積卻不是的,這是因為,若90°≤αsinθ>0、

③圓錐的母線l,高h和底面圓的半徑組成一個直徑三角形,圓錐的有關計算問題,一般都要歸結為解這個直角三角形,特別是關係式

l2=h2+R2

(3)圓台的性質,都是從「圓台為截頭圓錐」這個事實推得的,高考,但仍要強調下面幾點:

①圓台的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

②平行於底面的截面若將圓台的高分成距上、下兩底為兩段的截面面積為S,則

其中S1和S2分別為上、下底面面積。

的截面性質的推廣。

③圓台的母線l,高h和上、下兩底圓的半徑r、R,組成一個直角梯形,且有

l2=h2+(R-r)2

圓台的有關計算問題,常歸結為解這個直角梯形。

(4)球的性質,著重掌握其截面的性質。

①用任意平面截球所得的截面是一個圓面,球心和截面圓圓心的連線與這個截面垂直。

②如果用R和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則

R2=r2+d2

即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個直角三角形,有關球的計算問題,常歸結為解這個直角三角形。

3、圓柱、圓錐、圓台和球的表面積

(1)圓柱、圓錐、圓台和多面體一樣都是可以平面展開的。

①圓柱、圓錐、圓台的側面展開圖,是求其側面積的基本依據。

圓柱的側面展開圖,是由底面圖的周長和母線長組成的一個矩形。

②圓錐和側面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為

③圓台的側面展開圖是一個由兩條母線長和上、下底面周長組成的扇環,其扇環的圓心角為

這個公式有利於空間幾何體和其側面展開圖的互化

顯然,當r=0時,這個公式就是圓錐側面展開圖扇形的圓心角公式,所以,圓錐側面展開圖扇形的圓心角公式是圓台相關角的特例。

(2)圓柱、圓錐和圓台的側面公式為

S側=π(r+R)l

當r=R時,S側=2πRl,即圓柱的側面積公式。

當r=0時,S側=rRl,即圓錐的面積公式。

要重視,側面積間的這種關係。

(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、台的方法完全不同。

推導出來,要用「微積分」等高等數學的知識,課本上不能算是一種證明。

求不規則圓形的度量屬性的常用方法是「細分——求和——取極限」,這種方法,在學完「微積分」的相關內容後,不證自明,這裡從略。

4、畫圓柱、圓錐、圓台和球的直觀圖的方法——正等測

(1)正等測畫直觀圖的要求:

①畫正等測的X、Y、Z三個軸時,z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。

②在投影圖上取線段長度的方法是:在三軸上或平行於三軸的線段都取實長。

這裡與斜二測畫直觀圖的方法不同,要注意它們的區別。

(2)正等測圓柱、圓錐、圓台的直觀圖的區別主要是水平放置的平面圖形。

用正等測畫水平放置的平面圓形時,將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實長。

5、關於幾何體表面內兩點間的最短距離問題

柱、錐、台的表面都可以平面展開,這些幾何體表面內兩點間最短距離,就是其平面內展開圖內兩點間的線段長。

由於球面不能平面展開,所以求球面內兩點間的球面距離是一個全新的方法,這個最短距離是過這兩點大圓的劣弧長。

高二數學工作總結 篇8

直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應軸o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行於x軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

⑶台體①表面積:S=S側+S上底S下底②側面積:S側=

⑷球體:①表面積:S=;②體積:V=

4、位置關係的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角

高二數學工作總結 篇9

平面向量

戴氏航天學校老師總結加法與減法的代數運算:

(1)若a=(x1,y1 ),b=(x2,y2 )則a b=(x1+x2,y1+y2 ).

向量加法與減法的幾何表示:平行四邊形法則、三角形法則。

戴氏航天學校老師總結向量加法有如下規律:+= +(交換律); +( +c)=( + )+c (結合律);

兩個向量共線的充要條件:

(1) 向量b與非零向量共線的充要條件是有且僅有一個實數,使得b= .

(2) 若=,b=則‖b .

平面向量基本定理:

若e1、e2是同一平面內的兩個不共線向量,那麼對於這一平面內的任一向量,戴氏航天學校老師提醒有且只 有一對實數,,使得= e1+ e2

高二數學工作總結 篇10

在中國古代把數學叫算術,又稱算學,最後才改為數學。

1.任意角

(1)角的分類:

①按旋轉方向不同分為正角、負角、零角。

②按終邊位置不同分為象限角和軸線角。

(2)終邊相同的角:

終邊與角相同的角可寫成+k360(kZ)。

(3)弧度制:

①1弧度的角:把長度等於半徑長的弧所對的圓心角叫做1弧度的角。

②規定:正角的弧度數為正數,負角的弧度數為負數,零角的弧度數為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑。

③用弧度做單位來度量角的制度叫做弧度制。比值與所取的r的大小無關,僅與角的大小有關。

④弧度與角度的換算:360弧度;180弧度。

⑤弧長公式:l=||r,扇形面積公式:S扇形=lr=||r2.

2.任意角的三角函式

(1)任意角的三角函式定義:

設是一個任意角,角的終邊與單位圓交於點P(x,y),那麼角的正弦、餘弦、正切分別是:sin =y,cos =x,tan =,它們都是以角為自變數,以單位圓上點的坐標或坐標的比值為函式值的函式。

(2)三角函式在各象限內的符號口訣是:一全正、二正弦、三正切、四餘弦。

3.三角函式線

設角的頂點在坐標原點,始邊與x軸非負半軸重合,終邊與單位圓相交於點P,過P作PM垂直於x軸於M。由三角函式的定義知,點P的坐標為(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,單位圓與x軸的正半軸交於點A,單位圓在A點的切線與的終邊或其反向延長線相交於點T,則tan =AT。我們把有向線段OM、MP、AT叫做的餘弦線、正弦線、正切線。

高二數學工作總結 篇11

一、直線與圓:

1、直線的傾斜角的範圍是在平面直角坐標系中,對於一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

3、直線方程:

(1)點斜式:直線過點斜率為,則直線方程為

(2)斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關係:

(1)平行A1/A2=B1/B2注意檢驗

(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標準方程:圓的一般方程:注意能將標準方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那麼另外一條就是與軸垂直的直線.

8、直線與圓的位置關係,通常轉化為圓心距與半徑的關係,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交

9、解決直線與圓的關係問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a0時,λa與a同方向;

當λ1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)·b=λ(a·b)=(a·λb)。

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。

4、向量的的數量積

定義:兩個非零向量的夾角記為〈a,b〉,且〈a,b〉∈[0,π]。

定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數量積的坐標表示:a·b=x·x'+y·y'。

向量的數量積的運算率

a·b=b·a(交換率);

(a+b)·c=a·c+b·c(分配率);

向量的數量積的性質

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

高二數學工作總結 篇12

1、圓的定義

平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(x-a)^2+(y-b)^2=r^2

(1)標準方程,圓心(a,b),半徑為r;

(2)求圓方程的方法:

一般都採用待定係數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

3、直線與圓的位置關係

直線與圓的位置關係有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有;;

(2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

練習題:

2.若圓(x-a)2+(y-b)2=r2過原點,則

A.a2-b2=0B.a2+b2=r2

C.a2+b2+r2=0D.a=0,b=0

【解析】選B.因為圓過原點,所以(0,0)滿足方程,

即(0-a)2+(0-b)2=r2,

所以a2+b2=r2.

高二數學工作總結 篇13

一、直線與圓:

1、直線的傾斜角的範圍是

在平面直角坐標系中,對於一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(_1,y1),(_2,y2)的直線的斜率k=(y2-y1)/(_2-_1),另外切線的斜率用求導的.方法。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關係:

(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標準方程:.⑵圓的一般方程:

注意能將標準方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那麼另外一條就是與軸垂直的直線.

8、直線與圓的位置關係,通常轉化為圓心距與半徑的關係,或者利用垂徑定理,構造直角三角形解決弦長問題.①相離②相切③相交

9、解決直線與圓的關係問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進線或c2=a2+b2

3、拋物線:①方程y2=2p_注意還有三個,能區別開口方向;②定義:|PF|=d焦點F(,0),準線_=-;③焦半徑;焦點弦=_1+_2+p;

4、直線被圓錐曲線截得的弦長公式:

三、直線、平面、簡單幾何體:

1、學會三視圖的分析:

2、斜二測畫法應注意的地方:

(1)在已知圖形中取互相垂直的軸O_、Oy。畫直觀圖時,把它畫成對應軸o'_'、o'y'、使∠_'o'y'=45°(或135°);

(2)平行於_軸的線段長不變,平行於y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側)面積與體積公式:

⑴柱體:①表面積:S=S側+2S底;②側面積:S側=;③體積:V=S底h

⑵錐體:①表面積:S=S側+S底;②側面積:S側=;③體積:V=S底h:

⑶台體①表面積:S=S側+S上底S下底②側面積:S側=

⑷球體:①表面積:S=;②體積:V=

4、位置關係的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內的兩條相交直線

5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導數:導數的意義-導數公式-導數套用(極值最值問題、曲線切線問題)

1、導數的定義:在點處的導數記作.

2.導數的幾何物理意義:曲線在點處切線的斜率

①k=f/(_0)表示過曲線y=f(_)上P(_0,f(_0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函式的導數公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導數的四則運算法則:

5.導數的套用:

(1)利用導數判斷函式的單調性:設函式在某個區間內可導,如果,那麼為增函式;如果,那麼為減函式;

注意:如果已知為減函式求字母取值範圍,那麼不等式恆成立。

(2)求極值的步驟:

①求導數;

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那麼函式在這個根處取得極大值;如果左負右正,那麼函式在這個根處取得極小值;

(3)求可導函式值與最小值的步驟:

ⅰ求的根;ⅱ把根與區間端點函式值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉化。

2、注意命題的否定與否命題的區別:命題否定形式是;否命題是.命題「或」的否定是「且」;「且」的否定是「或」.

3、邏輯聯結詞:

⑴且(and):命題形式pq;pqpqpqp

⑵或(or):命題形式pq;真真真真假

⑶非(not):命題形式p.真假假真假

假真假真真

假假假假真

「或命題」的真假特點是「一真即真,要假全假」;

「且命題」的真假特點是「一假即假,要真全真」;

「非命題」的真假特點是「一真一假」

4、充要條件

由條件可推出結論,條件是結論成立的充分條件;由結論可推出條件,則條件是結論成立的必要條件。

5、全稱命題與特稱命題:

短語「所有」在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,並用符號表示。含有全體量詞的命題,叫做全稱命題。

短語「有一個」或「有些」或「至少有一個」在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,並用符號表示,含有存在量詞的命題,叫做存在性命題。

高二數學工作總結 篇14

1、圓的定義:

平面內到一定點的距離等於定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

2、圓的方程

(1)標準方程,圓心,半徑為r;

(2)一般方程

當時,方程表示圓,此時圓心為,半徑為

當時,表示一個點;當時,方程不表示任何圖形。

(3)求圓方程的方法:

一般都採用待定係數法:先設後求。確定一個圓需要三個獨立條件,若利用圓的標準方程,

需求出a,b,r;若利用一般方程,需要求出D,E,F;

另外要注意多利用圓的幾何性質:如弦的中垂線必經過原點,以此來確定圓心的位置。

3、直線與圓的位置關係:

直線與圓的位置關係有相離,相切,相交三種情況:

(1)設直線,圓,圓心到l的距離為,則有

(2)過圓外一點的切線:

①k不存在,驗證是否成立②k存在,設點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程

(3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

4、圓與圓的位置關係:

通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設圓,

兩圓的位置關係常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當時兩圓外離,此時有公切線四條;

當時兩圓外切,連心線過切點,有外公切線兩條,內公切線一條;

當時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當時,兩圓內切,連心線經過切點,只有一條公切線;

當時,兩圓內含;當時,為同心圓。

注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

圓的輔助線一般為連圓心與切線或者連圓心與弦中點

高二數學工作總結 篇15

一、直線與圓:

1、直線的傾斜角的範圍是

在平面直角坐標系中,對於一條與軸相交的直線,如果把軸繞著交點按逆時針方向轉到和直線重合時所轉的最小正角記為,就叫做直線的傾斜角。當直線與軸重合或平行時,規定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα。

過兩點(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率用求導的方法。

3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、,①∥,;②。

直線與直線的位置關係:

(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0

5、點到直線的距離公式;

兩條平行線與的距離是

6、圓的標準方程:。⑵圓的一般方程:

注意能將標準方程化為一般方程

7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那麼另外一條就是與軸垂直的直線。

8、直線與圓的位置關係,通常轉化為圓心距與半徑的關係,或者利用垂徑定理,構造直角三角形解決弦長問題。①相離②相切③相交

9、解決直線與圓的關係問題時,要充分發揮圓的平面幾何性質的作用(如半徑、半弦長、弦心距構成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a0)的圖象與零點的關係

三二分法

對於在區間[a,b]上連續不斷且f(a)·f(b)<0的函式y=f(x),通過不斷地把函式f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

1、函式的零點不是點:

函式y=f(x)的零點就是方程f(x)=0的實數根,也就是函式y=f(x)的圖象與x軸交點的橫坐標,所以函式的零點是一個數,而不是一個點.在寫函式零點時,所寫的一定是一個數字,而不是一個坐標。

2、對函式零點存在的判斷中,必須強調:

(1)、f(x)在[a,b]上連續;

(2)、f(a)·f(b)<0;

(3)、在(a,b)記憶體在零點。

這是零點存在的一個充分條件,但不必要。

3、對於定義域內連續不斷的函式,其相鄰兩個零點之間的所有函式值保持同號。

利用函式零點的存在性定理判斷零點所在的區間時,首先看函式y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函式y=f(x)在區間(a,b)內必有零點。

四判斷函式零點個數的常用方法

1、解方程法:

令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

2、零點存在性定理法:

利用定理不僅要判斷函式在區間[a,b]上是連續不斷的曲線,且f(a)·f(b)<0,還必須結合函式的圖象與性質(如單調性、奇偶性、周期性、對稱性)才能確定函式有多少個零點。

3、數形結合法:

轉化為兩個函式的圖象的交點個數問題.先畫出兩個函式的圖象,看其交點的個數,其中交點的個數,就是函式零點的個數。

已知函式有零點(方程有根)求參數取值常用的方法

1、直接法:

直接根據題設條件構建關於參數的不等式,再通過解不等式確定參數範圍。

2、分離參數法:

先將參數分離,轉化成求函式值域問題加以解決。

3、數形結合法:

先對解析式變形,在同一平面直角坐標系中,畫出函式的圖象,然後數形結合求解。

高二數學工作總結 篇16

導數:導數的意義-導數公式-導數套用(極值最值問題、曲線切線問題)

1、導數的定義:在點處的導數記作.

2.導數的幾何物理意義:曲線在點處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函式的導數公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導數的四則運算法則:

5.導數的套用:

(1)利用導數判斷函式的單調性:設函式在某個區間內可導,如果,那麼為增函式;如果,那麼為減函式;

注意:如果已知為減函式求字母取值範圍,那麼不等式恆成立。

(2)求極值的步驟:

①求導數;

②求方程的根;

③列表:檢驗在方程根的左右的符號,如果左正右負,那麼函式在這個根處取得極大值;如果左負右正,那麼函式在這個根處取得極小值;

(3)求可導函式值與最小值的步驟:

ⅰ求的根;ⅱ把根與區間端點函式值比較,的為值,最小的是最小值。

高二數學工作總結 篇17

1.1柱、錐、台、球的結構特徵

1.2空間幾何體的三視圖和直觀圖

11三視圖:

正視圖:從前往後

側視圖:從左往右

俯視圖:從上往下

22畫三視圖的原則:

長對齊、高對齊、寬相等

33直觀圖:斜二測畫法

44斜二測畫法的步驟:

(1).平行於坐標軸的線依然平行於坐標軸;

(2).平行於y軸的線長度變半,平行於x,z軸的線長度不變;

(3).畫法要寫好。

5用斜二測畫法畫出長方體的步驟:

(1)畫軸

(2)畫底面

(3)畫側棱

(4)成圖

1.3空間幾何體的表面積與體積

(一)空間幾何體的表面積

1、稜柱、稜錐的表面積:各個面面積之和

2、圓柱的表面積

3、圓錐的表面積

4、圓台的表面積

5、球的表面積

(二)空間幾何體的體積

1、柱體的體積

2、錐體的體積

3、台體的體積

4、球體的體積

高二數學必修二知識點:直線與平面的位置關係

2.1空間點、直線、平面之間的位置關係

2.1.1

1平面含義:平面是無限延展的

2平面的畫法及表示

(1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)

(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。

3三個公理:

(1)公理1:如果一條直線上的兩點在一個平面內,那麼這條直線在此平面內

符號表示為

A∈L

B∈L=>Lα

A∈α

B∈α

公理1作用:判斷直線是否在平面內

(2)公理2:過不在一條直線上的三點,有且只有一個平面。

符號表示為:A、B、C三點不共線=>有且只有一個平面α,

使A∈α、B∈α、C∈α。

公理2作用:確定一個平面的依據。

(3)公理3:如果兩個不重合的平面有一個公共點,那麼它們有且只有一條過該點的公共直線。

符號表示為:P∈α∩β=>α∩β=L,且P∈L

公理3作用:判定兩個平面是否相交的依據

2.1.2空間中直線與直線之間的位置關係

1、空間的兩條直線有如下三種關係:

共面直線

相交直線:同一平面內,有且只有一個公共點;

平行直線:同一平面內,沒有公共點;

異面直線:不同在任何一個平面內,沒有公共點。

2、公理4:平行於同一條直線的兩條直線互相平行。

符號表示為:設a、b、c是三條直線

a∥b

c∥b

強調:公理4實質上是說平行具有傳遞性,在平面、空間這個性質都適用。

公理4作用:判斷空間兩條直線平行的依據。

3、等角定理:空間中如果兩個角的兩邊分別對應平行,那麼這兩個角相等或互補

4、注意點:

①a'與b'所成的角的大小隻由a、b的相互位置來確定,與O的選擇無關,為了簡便,點O一般取在兩直線中的一條上;

②兩條異面直線所成的角θ∈(0,);

③當兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;

④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;

⑤計算中,通常把兩條異面直線所成的角轉化為兩條相交直線所成的角。

2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關係

1、直線與平面有三種位置關係:

(1)直線在平面內——有無數個公共點

(2)直線與平面相交——有且只有一個公共點

(3)直線在平面平行——沒有公共點

指出:直線與平面相交或平行的情況統稱為直線在平面外,可用aα來表示

aαa∩α=Aa∥α

2.2.直線、平面平行的判定及其性質

2.2.1直線與平面平行的判定

1、直線與平面平行的判定定理:平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行。

簡記為:線線平行,則線面平行。

符號表示:

bβ=>a∥α

a∥b

2.2.2平面與平面平行的判定

1、兩個平面平行的判定定理:一個平面內的兩條交直線與另一個平面平行,則這兩個平面平行。

符號表示:

a∩b=Pβ∥α

a∥α

b∥α

2、判斷兩平面平行的方法有三種:

(1)用定義;

(2)判定定理;

(3)垂直於同一條直線的兩個平面平行。

2.2.3—2.2.4直線與平面、平面與平面平行的性質

1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

簡記為:線面平行則線線平行。

符號表示:

a∥α

aβa∥b

α∩β=b

作用:利用該定理可解決直線間的平行問題。

2、定理:如果兩個平面同時與第三個平面相交,那麼它們的交線平行。

符號表示:

α∥β

α∩γ=aa∥b

β∩γ=b

作用:可以由平面與平面平行得出直線與直線平行

2.3直線、平面垂直的判定及其性質

2.3.1直線與平面垂直的判定

1、定義

如果直線L與平面α內的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時,它們公共點P叫做垂足。

2、判定定理:一條直線與一個平面內的兩條相交直線都垂直,則該直線與此平面垂直。

注意點:a)定理中的「兩條相交直線」這一條件不可忽視;

b)定理體現了「直線與平面垂直」與「直線與直線垂直」互相轉化的數學思想。

2.3.2平面與平面垂直的判定

1、二面角的概念:表示從空間一直線出發的兩個半平面所組成的圖形

2、二面角的記法:二面角α-l-β或α-AB-β

3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。

2.3.3—2.3.4直線與平面、平面與平面垂直的性質

1、定理:垂直於同一個平面的兩條直線平行。

2性質定理:兩個平面垂直,則一個平面內垂直於交線的直線與另一個平面垂直。

高二數學工作總結 篇18

導數: 導數的意義-導數公式-導數套用(極值最值問題、曲線切線問題)

1、導數的定義: 在點 處的導數記作 .

2. 導數的幾何物理意義:曲線 在點 處切線的斜率

①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t) 表示即時速度。a=v/(t) 表示加速度。

3.常見函式的導數公式: ① ;② ;③ ;

⑤ ;⑥ ;⑦ ;⑧ 。

4.導數的四則運算法則:

5.導數的套用:

(1)利用導數判斷函式的單調性:設函式 在某個區間內可導,如果 ,那麼 為增函式;如果 ,那麼為減函式;

注意:如果已知 為減函式求字母取值範圍,那麼不等式 恆成立。

(2)求極值的步驟:

①求導數 ;

②求方程 的根;

③列表:檢驗 在方程 根的'左右的符號,如果左正右負,那麼函式 在這個根處取得極大值;如果左負右正,那麼函式 在這個根處取得極小值;

(3)求可導函式最大值與最小值的步驟:

ⅰ求 的根; ⅱ把根與區間端點函式值比較,最大的為最大值,最小的是最小值。

高二數學工作總結 篇19

等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

面積公式

若假設等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

S=ab/2。

且由等腰直角三角形性質可知:底邊c上的高h=c/2,則三角面積可表示為:

S=ch/2=c2/4。

等腰直角三角形是一種特殊的三角形,具有所有三角形的性質:穩定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

反正弦函式的導數:正弦函式y=sinx在[-π/2,π/2]上的反函式,叫做反正弦函式。記作arcsinx,表示一個正弦值為x的角,該角的範圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。

反函式求導方法

若F(X),G(X)互為反函式,

則:F'(X)_'(X)=1

E.G.:y=arcsin_siny

y'_'=1(arcsinx)'_siny)'=1

y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)

其餘依此類推

高二數學工作總結 篇20

用樣本的數字特徵估計總體的數字特徵

1、本均值:

2、樣本標準差:

3.用樣本估計總體時,如果抽樣的方法比較合理,那麼樣本可以反映總體的信息,但從樣本得到的信息會有偏差。在隨機抽樣中,這種偏差是不可避免的。

雖然我們用樣本數據得到的分布、均值和標準差並不是總體的真正的分布、均值和標準差,而只是一個估計,但這種估計是合理的,特別是當樣本量很大時,它們確實反映了總體的信息。

4.(1)如果把一組數據中的每一個數據都加上或減去同一個共同的常數,標準差不變

(2)如果把一組數據中的每一個數據乘以一個共同的常數k,標準差變為原來的k倍

(3)一組數據中的值和最小值對標準差的影響,區間的套用;

「去掉一個分,去掉一個最低分」中的科學道理

高二數學工作總結 篇21

圓柱、圓錐、圓台和球的表面積

(1)圓柱、圓錐、圓台和多面體一樣都是可以平面展開的。

①圓柱、圓錐、圓台的側面展開圖,是求其側面積的基本依據。

圓柱的側面展開圖,是由底面圖的周長和母線長組成的一個矩形。

②圓錐和側面展開圖是一個由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為

③圓台的側面展開圖是一個由兩條母線長和上、下底面周長組成的扇環,其扇環的圓心角為

這個公式有利於空間幾何體和其側面展開圖的互化

顯然,當r=0時,這個公式就是圓錐側面展開圖扇形的圓心角公式,所以,圓錐側面展開圖扇形的圓心角公式是圓台相關角的特例。

(2)圓柱、圓錐和圓台的側面公式為

S側=π(r+R)l

當r=R時,S側=2πRl,即圓柱的側面積公式。

當r=0時,S側=rRl,即圓錐的面積公式。

要重視,側面積間的這種關係。

(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、台的方法完全不同。

推導出來,要用「微積分」等高等數學的知識,課本上不能算是一種證明。

求不規則圓形的度量屬性的常用方法是「細分——求和——取極限」,這種方法,在學完「微積分」的相關內容後,不證自明,這裡從略。

畫圓柱、圓錐、圓台和球的直觀圖的方法——正等測

(1)正等測畫直觀圖的要求:

①畫正等測的X、Y、Z三個軸時,z軸畫成鉛直方向,X軸和Y軸各與Z軸成120°。

②在投影圖上取線段長度的方法是:在三軸上或平行於三軸的線段都取實長。

這裡與斜二測畫直觀圖的方法不同,要注意它們的區別。

(2)正等測圓柱、圓錐、圓台的直觀圖的區別主要是水平放置的平面圖形。

用正等測畫水平放置的平面圓形時,將X軸畫成水平位置,Y軸畫成與X軸成120°,在投影圖上,X軸和Y軸上,或與X軸、Y軸平行的線段都取實長,在Z軸上或與Z軸平行的線段的畫法與斜二測相同,也都取實長。

關於幾何體表面內兩點間的最短距離問題

柱、錐、台的表面都可以平面展開,這些幾何體表面內兩點間最短距離,就是其平面內展開圖內兩點間的線段長。

由於球面不能平面展開,所以求球面內兩點間的球面距離是一個全新的方法,這個最短距離是過這兩點大圓的劣弧長。

高二數學工作總結 篇22

1.不等式證明的依據

(2)不等式的性質(略)

(3)重要不等式:①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,若且唯若a=b時取「=」號)

2.不等式的證明方法

(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法.

用比較法證明不等式的步驟是:作差——變形——判斷符號.

(2)綜合法:從已知條件出發,依據不等式的性質和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法.

(3)分析法:從欲證的不等式出發,逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法.

證明不等式除以上三種基本方法外,還有反證法、數學歸納法等.

高二數學工作總結 篇23

圓與圓的位置關係

1、利用平面直角坐標系解決直線與圓的位置關係;

2、過程與方法

用坐標法解決幾何問題的步驟:

第一步:建立適當的平面直角坐標系,用坐標和方程表示問題中的幾何元素,將平面幾何問題轉化為代數問題;

第二步:通過代數運算,解決代數問題;

第三步:將代數運算結果「翻譯」成幾何結論。

高二數學工作總結 篇24

一、不等式的性質

1.兩個實數a與b之間的大小關係。

2.不等式的性質。

(4)(乘法單調性)

3.絕對值不等式的性質

(2)如果a>0,那麼

(3)|ab|=|a||b|。

(5)|a|-|b|≤|a±b|≤|a|+|b|。

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|。

二、不等式的證明

1.不等式證明的依據

(2)不等式的性質(略)

(3)重要不等式:

①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,若且唯若a=b時取「=」號)

2.不等式的證明方法

(1)比較法:要證明a>b(a0(a-b<0),這種證明不等式的方法叫做比較法。

用比較法證明不等式的步驟是:作差——變形——判斷符號。

(2)綜合法:從已知條件出發,依據不等式的性質和已證明過的不等式,推導出所要證明的不等式成立,這種證明不等式的方法叫做綜合法。

(3)分析法:從欲證的不等式出發,逐步分析使這不等式成立的充分條件,直到所需條件已判斷為正確時,從而斷定原不等式成立,這種證明不等式的方法叫做分析法。

證明不等式除以上三種基本方法外,還有反證法、數學歸納法等。

三、解不等式

1.解不等式問題的分類

(1)解一元一次不等式。

(2)解一元二次不等式。

(3)可以化為一元一次或一元二次不等式的不等式。

①解一元高次不等式;

②解分式不等式;

③解無理不等式;

④解指數不等式;

⑤解對數不等式;

⑥解帶絕對值的不等式;

⑦解不等式組.

2.解不等式時應特別注意下列幾點:

(1)正確套用不等式的基本性質。

(2)正確套用冪函式、指數函式和對數函式的增、減性。

(3)注意代數式中未知數的取值範圍。

3.不等式的同解性

高二數學工作總結 篇25

集合間的基本關係

1.「包含」關係—子集

注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

2.「相等」關係(5≥5,且5≤5,則5=5)

實例:設A={_2-1=0}B={-1,1}「元素相同」

結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

①任何一個集合是它本身的子集。AíA

②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

③如果AíB,BíC,那麼AíC

④如果AíB同時BíA那麼A=B

3.不含任何元素的集合叫做空集,記為Φ

規定:空集是任何集合的子集,空集是任何非空集合的真子集

高二數學工作總結 篇26

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0

AB-AC=CB. 即「共同起點,指向被減」

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

3、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當λ>0時,λa與a同方向;

當λ1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ0)或反方向(λ0)的圖象與零點的關係

三二分法

對於在區間[a,b]上連續不斷且f(a)·f(b)0時,an為單調遞增數列;d<0時,a

n為單調遞減數列。

n(n?1)2

③前n?na1?

d,

d?0時,Sn是關於n的不含常數項的一元二次函式,反之也成立。

④性質:ii。若?an?為等差數列,則am,am?k,am?2k,…仍為等差數列。 iii。若?an?為等差數列,則Sn,S2n?Sn,S3n?S2n,…仍為等差數列。 iv若A為a,b的等差中項,則有A?3。等比數列:

①定義:

an?1an

?q(常數),是證明數列是等比數列的重要工具。

a?b2

②通項時為常數列)。

③。前n項和

需特別注意,公比為字母時要討論。

高二數學工作總結 篇27

第一章:集合和函式的基本概念,錯誤基本都集中在空集這一概念上,而每次考試基本都會在選填題上涉及這一概念,一個不小心就是五分沒了。次一級的知識點就是集合的韋恩圖,會畫圖,集合的「並、補、交、非」也就解決了,還有函式的定義域和函式的單調性、增減性的概念,這些都是函式的基礎而且不難理解。在第一輪複習中一定要反覆去記這些概念,的方法是寫在筆記本上,每天至少看上一遍。

第二章:基本初等函式:指數、對數、冪函式三大函式的運算性質及圖像。函式的幾大要素和相關考點基本都在函式圖像上有所體現,單調性、增減性、極值、零點等等。關於這三大函式的運算公式,多記多用,多做一點練習基本就沒多大問題。函式圖像是這一章的重難點,而且圖像問題是不能靠記憶的,必須要理解,要會熟練的畫出函式圖像,定義域、值域、零點等等。對於冪函式還要搞清楚當指數冪大於一和小於一時圖像的不同及函式值的大小關係,這也是常考常錯點。另外指數函式和對數函式的對立關係及其相互之間要怎樣轉化問題也要了解清楚。

第三章:函式的套用。主要就是函式與方程的結合。其實就是的實根,即函式的零點,也就是函式圖像與X軸的交點。這三者之間的轉化關係是這一章的重點,要學會在這三者之間的靈活轉化,以求能最簡單的解決問題。關於證明零點的方法,直接計算加得必有零點,連續函式在x軸上方下方有定義則有零點等等,這是這一章的難點,這幾種證明方法都要記得,多練習強化。這二次函式的零點的Δ判別法,這個倒不算難。

高二數學工作總結 篇28

1.有向線段的定義

線段的端點A為始點,端點B為終點,這時線段AB具有射線AB的方向.像這樣,具有方向的線段叫做有向線段.記作:.

2.有向線段的三要素:有向線段包含三個要素:始點、方向和長度.

3.向量的定義:(1)具有大小和方向的量叫做向量.向量有兩個要素:大小和方向.

(2)向量的表示方法:①用兩個大寫的英文字母及前頭表示,有向線段來表示向量時,也稱其為向量.書寫時,則用帶箭頭的小寫字母,,,來表示.

4.向量的長度(模):如果向量=,那麼有向線段的長度表示向量的大小,叫做向量的長度(或模),記作||.

5.相等向量:如果兩個向量和的方向相同且長度相等,則稱和相等,記作:=.

6.相反向量:與向量等長且方向相反的向量叫做的相反向量,記作:-.

7.向量平行(共線):如果兩個向量方向相同或相反,則稱這兩個向量平行,向量平行也稱向量共線.向量平行於向量,記作//.規定: //.

8.零向量:長度等於零的向量叫做零向量,記作:.零向量的方向是不確定的,是任意的.由於零向量方向的特殊性,解答問題時,一定要看清題目中是零向量還是非零向量.

9.單位向量:長度等於1的向量叫做單位向量.

10.向量的加法運算:

(1)向量加法的三角形法則

11.向量的減法運算

12、兩向量的和差的模與兩向量模的和差之間的關係

對於任意兩個向量,,都有|||-|||||+||.

13.數乘向量的定義:

實數和向量的乘積是一個向量,這種運算叫做數乘向量,記作.

向量的長度與方向規定為:(1)||=|

(2)當0時,與方向相同;當0時,與方向相反.

(3)當=0時,當=時,=.

14.數乘向量的運算律:(1))= (結合律)

(2)(+) =+(第一分配律)(3)(+)=+.(第二分配律)

15.平行向量基本定理

如果向量,則//的充分必要條件是,存在唯一的實數,使得=.

如果與不共線,若m=n,則m=n=0.

16.非零向量的單位向量:非零向量的單位向量是指與同向的單位向量,通常記作.

=||,即==(,)

17.線段中點的向量表達式

點M是線段AB的中點,O是平面內任意一點,則=(+).

18.平面向量的直角坐標運算:如果=(a1,a2),=(b1,b2),則

+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).

19.利用兩點表示向量:如果A(x1,y1),B(x2,y2),則=(x2-x1,y2-y1).

20.兩向量相等和平行的條件:若=(a1,a2),=(b1,b2) ,則

=a1=b1且a2=b2.

//a1b2-a2b1=0.特別地,如果b10,b20,則// =.

21.向量的長度公式:若=(a1,a2),則||=.

22.平面上兩點間的距離公式:若A(x1,y1),B(x2,y2),則||=.

23.中點公式

若點A(x1,y1),點B(x2,y2),點M(x,y)是線段AB的中點,則x=,y= .

24.重心公式

在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心為G(x,y),則

x=,y=

25.(1)兩個向量夾角的取值範圍是[0,p],即0,p.

當=0時,與同向;當=p時,與反向

當= 時,與垂直,記作.

(3)向量的內積定義:=||||cos.

其中,||cos叫做向量在向量方向上的正射影的數量.規定=0.

(4)內積的幾何意義

與的內積的幾何意義是的模與在方向上的正射影的數量,或的模與在 方向上的正射影數量的乘積

當0,90時,0;=90時,

90時,0.

26.向量內積的運算律:

(1)交換率

(2)數乘結合律

(3)分配律

(4)不滿足組合律

27.向量內積滿足乘法公式

29.向量內積的套用:

高二數學工作總結 篇29

一、學習目標:

知識與技能:理解直線與平面、平面與平面平行的性質定理的含義,並會套用性質解決問題

過程與方法:能套用文字語言、符號語言、圖形語言準確地描述直線與平面、平面與平面的性質定理

情感態度與價值觀:通過自主學習、主動參與、積極探究的學習過程,激發學生學習數學的自信心和積極性,培養學生良好的思維習慣,滲透化歸與轉化的數學思想,體會事物之間相互轉化和理論聯繫實際的辯證唯物主義思想方法

二、學習重、難點

學習重點:直線與平面、平面與平面平行的性質及其套用

學習難點:將空間問題轉化為平面問題的方法,

三、學法指導及要求:

1、限定45分鐘完成,注意逐字逐句仔細審題,認真思考、獨立規範作答,不會的先繞過,做好記號。

2、把學案中自己易忘、易出錯的知識點和疑難問題以及解題方法規律,及時整理在解題本,多複習記憶。3、A:自主學習;B:合作探究;C:能力提升4、小班、重點班完成全部,平行班完成A.B類題

四、知識連結:

1.空間直線與直線的位置關係

2.直線與平面的位置關係

3.平面與平面的位置關係

4.直線與平面平行的判定定理的符號表示

5.平面與平面平行的判定定理的符號表示

五、學習過程:

A問題1:

1)如果一條直線與一個平面平行,那麼這條直線與這個平面內的直線有哪些位置關係?

(觀察長方體)

2)如果一條直線和一個平面平行,如何在這個平面內做一條直線與已知直線平行?

(可觀察教室內燈管和地面)

A問題2:一條直線與平面平行,這條直線和這個平面內直線的位置關係有幾種可能?

A問題3:如果一條直線與平面α平行,在什麼條件下直線與平面α內的直線平行呢?

由於直線與平面α內的任何直線無公共點,所以過直線的某一平面,若與平面α相交,則直線就平行於這條交線

B自主探究1:已知:∥α,β,α∩β=b。求證:∥b。

直線與平面平行的性質定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行

符號語言:

線面平行性質定理作用:證明兩直線平行

思想:線面平行線線平行

高二數學工作總結 篇30

一、隨機事件

主要掌握好(三四五)

(1)事件的三種運算:並(和)、交(積)、差;注意差A-B可以表示成A與B的逆的積。

(2)四種運算律:交換律、結合律、分配律、德莫根律。

(3)事件的五種關係:包含、相等、互斥(互不相容)、對立、相互獨立。

二、機率定義

(1)統計定義:頻率穩定在一個數附近,這個數稱為事件的機率;(2)古典定義:要求樣本空間只有有限個基本事件,每個基本事件出現的可能性相等,則事件A所含基本事件個數與樣本空間所含基本事件個數的比稱為事件的古典機率;

(3)幾何機率:樣本空間中的元素有無窮多個,每個元素出現的可能性相等,則可以將樣本空間看成一個幾何圖形,事件A看成這個圖形的子集,它的機率通過子集圖形的大小與樣本空間圖形的大小的比來計算;

(4)公理化定義:滿足三條公理的任何從樣本空間的子集集合到[0,1]的映射。

三、機率性質與公式

(1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特別地,如果A與B互不相容,則P(A+B)=P(A)+P(B);

(2)差:P(A-B)=P(A)-P(AB),特別地,如果B包含於A,則P(A-B)=P(A)-P(B);

(3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特別地,如果A與B相互獨立,則P(AB)=P(A)P(B);

(4)全機率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果,

貝葉斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一個事件B可以在多種情形(原因)A1,A2,....,An下發生,則用全機率公式求B發生的機率;如果事件B已經發生,要求它是由Aj引起的機率,則用貝葉斯公式.

(5)二項機率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n.當一個問題可以看成n重貝努力試驗(三個條件:n次重複,每次只有A與A的逆可能發生,各次試驗結果相互獨立)時,要考慮二項機率公式.

高二數學工作總結 篇31

1.兩角和與差的正弦、餘弦和正切公式:

重點:通過探索和討論交流,導出兩角差與和的三角函式的十一個公式,並了解它們的內在聯繫。

難點:兩角差的餘弦公式的探索和證明。

2.簡單的三角恆等變換:

重點:掌握三角變換的內容、思路和方法,體會三角變換的特點。

難點:公式的靈活套用。

三角函式幾點說明:

1.對弧長公式只要求了解,會進行簡單套用,不必在套用方面加深。

2.用同角三角函式基本關係證明三角恆等式和求值計算,熟練配角和sin和cos的計算。

3.已知三角函式值求角問題,達到課本要求即可,不必拓展。

4.熟練掌握函式y=Asin(wx+j)圖象、單調區間、對稱軸、對稱點、特殊點和最值。

5.積化和差、和差化積、半角公式只作為練習,不要求記憶。

6.兩角和與差的.正弦、餘弦和正切公式。

高二數學工作總結 篇32

一、集合、簡易邏輯(14課時,8個)

1、集合;

2、子集;

3、補集;

4、交集;

5、併集;

6、邏輯連結詞;

7、四種命題;

8、充要條件。

二、函式(30課時,12個)

1、映射;

2、函式;

3、函式的單調性;

4、反函式;

5、互為反函式的函式圖象間的關係;

6、指數概念的擴充;

7、有理指數冪的運算;

8、指數函式;

9、對數;

10、對數的運算性質;

11、對數函式。

12、函式的套用舉例。

三、數列(12課時,5個)

1、數列;

2、等差數列及其通項公式;

3、等差數列前n項和公式;

4、等比數列及其通頂公式;

5、等比數列前n項和公式。

四、三角函式(46課時,17個)

1、角的概念的推廣;

2、弧度制;

3、任意角的三角函式;

4、單位圓中的三角函式線;

5、同角三角函式的基本關係式;

6、正弦、餘弦的誘導公式;

7、兩角和與差的正弦、餘弦、正切;

8、二倍角的正弦、餘弦、正切;

9、正弦函式、餘弦函式的圖象和性質;

10、周期函式;

11、函式的奇偶性;

12、函式的圖象;

13、正切函式的圖象和性質;

14、已知三角函式值求角;

15、正弦定理;

16、餘弦定理;

17、斜三角形解法舉例。

五、平面向量(12課時,8個)

1、向量;

2、向量的加法與減法;

3、實數與向量的積;

4、平面向量的坐標表示;

5、線段的定比分點;

6、平面向量的數量積;

7、平面兩點間的距離;

8、平移。

六、不等式(22課時,5個)

1、不等式;

2、不等式的基本性質;

3、不等式的證明;

4、不等式的解法;

5、含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1、直線的傾斜角和斜率;

2、直線方程的點斜式和兩點式;

3、直線方程的一般式;

4、兩條直線平行與垂直的條件;

5、兩條直線的交角;

6、點到直線的距離;

7、用二元一次不等式表示平面區域;

8、簡單線性規劃問題;

9、曲線與方程的概念;

10、由已知條件列出曲線方程;

11、圓的標準方程和一般方程;

12、圓的參數方程。

高二數學工作總結 篇33

第一章:解三角形。掌握正弦餘弦公式及其變式和推論和三角面積公式即可。

第二章:數列。考試必考。等差等比數列的通項公式、前n項和及一些性質。這一章屬於學起來很容易,但做題卻不會做的類型。考試題中,一般都是要求通項公式、前n項和,所以拿到題目之後要帶有目的的去推導。

第三章:不等式。這一章一般用線性規劃的形式來考察。這種題一般是和實際問題聯繫的,所以要會讀題,從題中找不等式,畫出線性規劃圖。然後再根據實際問題的限制要求求最值。

選修中的簡單邏輯用語、圓錐曲線和導數:邏輯用語只要弄懂充分條件和必要條件到底指的是前者還是後者,四種命題的真假性關係,邏輯連線詞,及否命題和命題的否定的區別,考試一般會用選擇題考這一知識點,難度不大;圓錐曲線一般作為考試的壓軸題出現。而且有多問,一般第一問較簡單,是求曲線方程,只要記住圓錐曲線的表達式難度就不大。後面兩到三問難打一般會很大,而且較費時間。所以不建議做。

這一章屬於學的比較難,考試也比較難,但是考試要求不高的內容;導數,導數公式、運算法則、用導數求極值和最值的方法。一般會考察用導數求最值,會用導數公式就難度不大。

高二數學工作總結 篇34

等差數列

對於一個數列{an},如果任意相鄰兩項之差為一個常數,那麼該數列為等差數列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。

那麼,通項公式為,其求法很重要,利用了「疊加原理」的思想:

將以上n—1個式子相加,便會接連消去很多相關的項,最終等式左邊餘下an,而右邊則餘下a1和n—1個d,如此便得到上述通項公式。

此外,數列前n項的和,其具體推導方式較簡單,可用以上類似的疊加的方法,也可以採取疊代的方法,在此,不再複述。

值得說明的是,前n項的和Sn除以n後,便得到一個以a1為首項,以d/2為公差的新數列,利用這一特點可以使很多涉及Sn的數列問題迎刃而解。

等比數列

對於一個數列{an},如果任意相鄰兩項之商(即二者的比)為一個常數,那麼該數列為等比數列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。

那麼,通項公式為(即a1乘以q的(n—1)次方,其推導為「連乘原理」的思想:

a2=a1Xq,

a3=a2Xq,

a4=a3Xq,

````````

an=an—1Xq,

將以上(n—1)項相乘,左右消去相應項後,左邊餘下an,右邊餘下a1和(n—1)個q的乘積,也即得到了所述通項公式。

此外,當q=1時該數列的前n項和Tn=a1Xn

當q≠1時該數列前n項的和Tn=a1X(1—q^(n))/(1—q)。