高一數學考試總結 篇1
數學期中考試已結束了。從考試的結果看與事前想法基本吻合。考試前讓學生做的一些事情從成績上看都或多或少有了一定的效果。現將考前考後的一些東西總結。
(1)考試的內容:
本次考試主要考查內容為高中數學必修5三角、不等式及數列部分,必修2立體幾何部分
從卷面上看,必修5中的部分占25%。立體幾何占75%,,總體偏重最近講的立體幾何。
(2)考試卷面題型分析。
卷面上只有選擇、填空和解答三種題型。
選擇題得分偏低,主要是對於學習過去時間比較長的三角數列不等式忘記的比較多,填空題有得分比較容易的兩題,剩餘兩題難度較大。解答題前四道是立體幾何講的幾個比較重要的知識點的考查,後兩道是三角和數列。
(3)考試成績分析與反思
從考試結果看,平時學習踏實的,數學基礎好些的學生基本上考出較好成績,平時學習不認真,基礎較差的成績都不太理想。針對本次考試結果,反思本人的教學行為更應該做好這幾項工作:
第一、必須每天都紮實在做好備課與輔導工作。努力提高課堂效率,課前將學生定時定量應知應會的東西整理好,在課堂上比較流暢的講解,適當控制好學生的學習行為。
第二、輔導工作要加強,在課後了解學生的學情,了解他們掌握知識的情況,個別輔導的工作要在課後做好。
第三、自己要獨立思考,哪些東西講,哪些東西不講,哪些先講,哪些後講要根據學情做到心中有數,在適當的時間提出適當的問題。
第四、引導學生學會學習我們所教的學生基礎比較差,不會學習,不會找問題,不會獨立地進行有質量的思考是常見的事。要讓他們首先掌握基本知識點,讓他們逐步學會獨立思考,提出有質量的問題,自己解決一些常見的基本問題,這樣有助於提高學生的成績。
高一數學考試總結 篇2
集合集合具有某種特定性質的事物的總體。這裡的“事物”可以是人,物品,也可以是數學元素。例如:1、分散的人或事物聚集到一起;使聚集:緊急~。2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G。F。P。,1845年—1918年,德國數學家先驅,是集合論的創始者,目前集合論的基本思想已經滲透到現代數學的所有領域。集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。集合與集合之間的關係某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作A B。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作A屬於B。中學教材課本里將符號下加了一個不等於符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)
高一數學考試總結 篇3
一、直線與方程
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0180
(2)直線的斜率
①定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
(3)直線方程
①點斜式:直線斜率k,且過點
注意:當直線的斜率為0時,k=0,直線的方程是y=y1。當直線的斜率為90時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等於x1,所以它的方程是x=x1。
②斜截式:,直線斜率為k,直線在y軸上的截距為b
③兩點式:直線兩點,
④截矩式:其中直線與軸交於點,與軸交於點,即與軸、軸的截距分別為。
⑤一般式:(A,B不全為0)
⑤一般式:(A,B不全為0)
注意:○1各式的適用範圍
○2特殊的方程如:平行於x軸的直線:(b為常數);平行於y軸的直線:(a為常數);
(4)直線系方程:即具有某一共同性質的直線
(一)平行直線系
平行於已知直線(是不全為0的常數)的直線系:(C為常數)
(二)過定點的直線系
(ⅰ)斜率為k的直線系:直線過定點;
(ⅱ)過兩條直線,的交點的直線系方程為(為參數),其中直線不在直線系中。
(5)兩直線平行與垂直;
注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否。
(6)兩條直線的交點
相交:交點坐標即方程組的一組解。方程組無解;方程組有無數解與重合
(7)兩點間距離公式:設是平面直角坐標系中的兩個點,則
(8)點到直線距離公式:一點到直線的距離
(9)兩平行直線距離公式:在任一直線上任取一點,再轉化為點到直線的距離進行求解。
高一數學考試總結 篇4
為了豐富校園文化生活,激發學生學習數學的興趣,培養學生學習數學、套用數學知識點的能力,展示學生在數學學科學習中的成果,特舉行20xx年上學期高一數學知識競賽活動,本次數學競賽是在教務處、年級組的領導下,數學組的組織下開展的一項活動。
競賽時間:20xx年4月17日17:30——19:00
競賽知識範圍:數學必修一集合、函式,數學必修二立體幾何初步,數學必修三統計、算法初步、機率,數學必修四三角函式的定義。
競賽規則:競賽採用閉卷考試的`形式,參賽考生獨立完成試卷。試卷總分100分,考試時間90分鐘。
監考老師及閱卷老師:高一全體數學教師。
獎項設立:本次競賽下設一等獎、二等獎、三等獎。
活動總結:教務處、年級組、數學備課組本著豐富校園文化生活,激發學生學習數學的興趣,培養學生學習數學、套用數學知識點的能力,展示學生學習數學成果的目的,組織開展了我校高一年級20xx年度上學期第一次數學知識競賽活動。
本次活動得到了學校領導的大力支持,上下同心,教師們通力合作,學生縝密思考,認真作答,在競賽中無違紀現象。縱觀學生答卷也呈現出學生學習上的一些問題,如基礎知識不紮實,審題不仔細,書寫不規範。對於這些問題,在今後教學中我們會加強要求,多監督,讓學生打好基礎並養成良好的學習習慣。我們更會本著一切為學生,更加努力工作,使我們學生的素質更好地得到提高!
高一數學考試總結 篇5
立體幾何初步
柱、錐、台、球的結構特徵
稜柱
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
稜錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等
表示:用各頂點字母,如五稜錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
稜台
定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等
表示:用各頂點字母,如五稜台
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點
圓柱
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
圓錐
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
圓台
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
球體
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
NO.2空間幾何體的三視圖
定義三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;
俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。
NO.3空間幾何體的直觀圖——斜二測畫法
斜二測畫法
斜二測畫法特點
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
直線與方程
直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α0,則a可以是任意實數;
排除了為0這種可能,即對於x0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
高一數學考試總結 篇6
集合具有某種特定性質的事物的總體。這裡的事物可以是人,物品,也可以是數學元素。
例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。
3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G、F、P、,1845年1918年,德國數學家先驅,是集合論的,目前集合論的基本思想已經滲透到現代數學的所有領域。
集合,在數學上是一個基礎概念。
什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。
集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
集合與集合之間的關係
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。
(說明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等於B,則A稱作是B的真子集,一般寫作AB。中學教材課本里將符號下加了一個符號,不要混淆,考試時還是要以課本為準。所有男人的集合是所有人的集合的真子集。)
高一數學考試總結 篇7
1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a<0),則當x=-b/2a時,y最小(大)值=(4ac-b^2)/4a.
頂點的橫坐標,是取得最值時的自變數值,頂點的縱坐標,是最值的取值.
6.用待定係數法求二次函式的解析式
(1)當題給條件為已知圖象經過三個已知點或已知x、y的三對對應值時,可設解析式為一般形式:
y=ax^2+bx+c(a≠0).
(2)當題給條件為已知圖象的頂點坐標或對稱軸時,可設解析式為頂點式:y=a(x-h)^2+k(a≠0).
(3)當題給條件為已知圖象與x軸的兩個交點坐標時,可設解析式為兩根式:y=a(x-x?)(x-x?)(a≠0).
7.二次函式知識很容易與其它知識綜合套用,而形成較為複雜的綜合題目。因此,以二次函式知識為主的綜合性題目是中考的熱點考題,往往以大題形式出現.
高一數學考試總結 篇8
立體幾何初步
柱、錐、台、球的結構特徵
稜柱
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
稜錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等
表示:用各頂點字母,如五稜錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
稜台
定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等
表示:用各頂點字母,如五稜台
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點
圓柱
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
圓錐
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
圓台
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
球體
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
NO.2空間幾何體的三視圖
定義三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:正視圖反映了物體上下、左右的位置關係,即反映了物體的'高度和長度;
俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。
NO.3空間幾何體的直觀圖——斜二測畫法
斜二測畫法
斜二測畫法特點
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
直線與方程
直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°
直線的斜率
定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。
過兩點的直線的斜率公式:
(注意下面四點)
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
冪函式
定義
形如y=x^a(a為常數)的函式,即以底數為自變數冪為因變數,指數為常量的函式稱為冪函式。
定義域和值域
當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根[據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。當x為不同的數值時,冪函式的值域的不同情況如下:在x大於0時,函式的值域總是大於0的實數。在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。而只有a為正數,0才進入函式的值域
性質
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=—k,則x=1/(x^k),顯然x≠0,函式的定義域是(—∞,0)∪(0,+∞)。因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x<0和x>0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
高一數學考試總結 篇9
(1)兩個平面互相平行的定義:空間兩平面沒有公共點
(2)兩個平面的位置關係:
兩個平面平行——沒有公共點;兩個平面相交——有一條公共直線。
a、平行
兩個平面平行的判定定理:如果一個平面內有兩條相交直線都平行於另一個平面,那么這兩個平面平行。
兩個平面平行的性質定理:如果兩個平行平面同時和第三個平面相交,那么交線平行。
b、相交
二面角
(1)半平面:平面內的'一條直線把這個平面分成兩個部分,其中每一個部分叫做半平面。
(2)二面角:從一條直線出發的兩個半平面所組成的圖形叫做二面角。二面角的取值範圍為[0°,180°]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點為端點,在兩個面內分別作垂直於棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
兩平面垂直
兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個平面互相垂直。記為⊥
兩平面垂直的判定定理:如果一個平面經過另一個平面的一條垂線,那么這兩個平面互相垂直
兩個平面垂直的性質定理:如果兩個平面互相垂直,那么在一個平面內垂直於交線的直線垂直於另一個平面。
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補關係)
稜錐
稜錐的定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做稜錐。
稜錐的性質:
(1)側棱交於一點。側面都是三角形
(2)平行於底面的截面與底面是相似的多邊形。且其面積比等於截得的稜錐的高與遠稜錐高的比的平方
正稜錐
正稜錐的定義:如果一個稜錐底面是正多邊形,並且頂點在底面內的射影是底面的中心,這樣的稜錐叫做正稜錐。
正稜錐的性質:
(1)各側棱交於一點且相等,各側面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正稜錐的斜高。
(3)多個特殊的直角三角形
a、相鄰兩側棱互相垂直的正三稜錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。
b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。
集合
集合具有某種特定性質的事物的總體。這裡的“事物”可以是人,物品,也可以是數學元素。例如:
1、分散的人或事物聚集到一起;使聚集:緊急~。
2、數學名詞。一組具有某種共同性質的數學元素:有理數的~。
3、口號等等。集合在數學概念中有好多概念,如集合論:集合是現代數學的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G、F、P、,1845年—1918年,德國數學家先驅,是集合論的創始者,目前集合論的基本思想已經滲透到現代數學的所有領域。
集合,在數學上是一個基礎概念。什麼叫基礎概念?基礎概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下“定義”。集合
集合是把人們的直觀的或思維中的某些確定的能夠區分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。
集合與集合之間的關係
某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。
高一數學考試總結 篇10
【立體幾何初步】
1、柱、錐、台、球的結構特徵
(1)稜柱:
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)稜錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等
表示:用各頂點字母,如五稜錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等
表示:用各頂點字母,如五稜台
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;
俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
高一數學考試總結 篇11
集合間的基本關係
1、“包含”關係—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關係:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2—1=0}B={—1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。AA
②真子集:如果AB,且AB那就說集合A是集合B的真子集,記作AB(或BA)
③如果AB,BC,那么AC
④如果AB同時BA那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n—1個真子集
集合的運算
運算類型交集並集補集
定義由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集。記作AB(讀作‘A交B’),即AB={x|xA,且xB}。
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集。記作:AB(讀作‘A並B’),即AB={x|xA,或xB})。
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
高一數學考試總結 篇12
函式的奇偶性(整體性質)
(1)偶函式
一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函式.
(2).奇函式
一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函式.
(3)具有奇偶性的函式的圖象的特徵
偶函式的圖象關於y軸對稱;奇函式的圖象關於原點對稱.
利用定義判斷函式奇偶性的步驟:
○1首先確定函式的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關係;
○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函式;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函式.
(2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函式的圖象判定.
9、函式的解析表達式
(1).函式的解析式是函式的一種表示方法,要求兩個變數之間的函式關係時,一是要求出它們之間的對應法則,二是要求出函式的定義域.
(2)求函式的解析式的主要方法有:
1)湊配法
2)待定係數法
3)換元法
4)消參法
10.函式(小)值(定義見課本p36頁)
○1利用二次函式的性質(配方法)求函式的(小)值
○2利用圖象求函式的(小)值
○3利用函式單調性的判斷函式的(小)值:
如果函式y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函式y=f(x)在x=b處有值f(b);
如果函式y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函式y=f(x)在x=b處有最小值f(b);
高一數學考試總結 篇13
一:函式模型及其套用
本節主要包括函式的模型、函式的套用等知識點。主要是理解函式解套用題的一般步驟靈活利用函式解答實際套用題。
1、常見的函式模型有一次函式模型、二次函式模型、指數函式模型、對數函式模型、分段函式模型等。
2、用函式解套用題的基本步驟是:
(1)閱讀並且理解題意。(關鍵是數據、字母的實際意義);
(2)設量建模;
(3)求解函式模型;
(4)簡要回答實際問題。
常見考法:
本節知識在段考和高考中考查的形式多樣,頻率較高,選擇題、填空題和解答題都有。多考查分段函式和較複雜的函式的最值等問題,屬於拔高題,難度較大。
誤區提醒:
1、求解套用性問題時,不僅要考慮函式本身的定義域,還要結合實際問題理解自變數的取值範圍。
2、求解套用性問題時,首先要弄清題意,分清條件和結論,抓住關鍵字和量,理順數量關係,然後將文字語言轉化成數學語言,建立相應的數學模型。
【典型例題】
例1:
(1)某種儲蓄的月利率是0。36%,今存入本金100元,求本金與利息的和(即本息和)y(元)與所存月數x之間的函式關係式,並計算5個月後的本息和(不計複利)。
(2)按複利計算利息的一種儲蓄,本金為a元,每期利率為r,設本利和為y,存期為x,寫出本利和y隨存期x變化的函式式。如果存入本金1000元,每期利率2。25%,試計算5期後的本利和是多少?解:(1)利息=本金×月利率×月數。y=100+100×0。36%·x=100+0。36x,當x=5時,y=101。8,∴5個月後的本息和為101。8元。
例2:
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關係如圖1,B產品的利潤與投資的算術平方根成正比,其關係如圖2(註:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函式,並寫出它們的函式關係式。
(2)該企業已籌集到10萬元資金,並全部投入A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能是企業獲得利潤,其利潤約為多少萬元。(精確到1萬元)。
高一數學考試總結 篇14
(1)指數函式的定義域為所有實數的集合,這裡的前提是a大於0,對於a不大於0的情況,則必然使得函式的定義域不存在連續的區間,因此我們不予考慮。
(2)指數函式的值域為大於0的實數集合。
(3)函式圖形都是下凹的。
(4)a大於1,則指數函式單調遞增;a小於1大於0,則為單調遞減的。
(5)可以看到一個顯然的規律,就是當a從0趨向於無窮大的過程中(當然不能等於0),函式的曲線從分別接近於Y軸與X軸的正半軸的單調遞減函式的位置,趨向分別接近於Y軸的正半軸與X軸的負半軸的單調遞增函式的位置。其中水平直線y=1是從遞減到遞增的一個過渡位置。
(6)函式總是在某一個方向上無限趨向於X軸,永不相交。
(7)函式總是通過(0,1)這點。
(8)顯然指數函式無界。
奇偶性
定義
一般地,對於函式f(x)
(1)如果對於函式定義域內的任意一個x,都有f(-x)=-f(x),那么函式f(x)就叫做奇函式。
(2)如果對於函式定義域內的任意一個x,都有f(-x)=f(x),那么函式f(x)就叫做偶函式。
(3)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)同時成立,那么函式f(x)既是奇函式又是偶函式,稱為既奇又偶函式。
(4)如果對於函式定義域內的任意一個x,f(-x)=-f(x)與f(-x)=f(x)都不能成立,那么函式f(x)既不是奇函式又不是偶函式,稱為非奇非偶函式。
對於a的取值為非零有理數,有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數,則x^(p/q)=q次根號(x的p次方),如果q是奇數,函式的定義域是R,如果q是偶數,函式的定義域是[0,+∞)。當指數n是負整數時,設a=-k,則x=1/(x^k),顯然x≠0,函式的定義域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制來源於兩點,一是有可能作為分母而不能是0,一是有可能在偶數次的根號下而不能為負數,那么我們就可以知道:
排除了為0與負數兩種可能,即對於x>0,則a可以是任意實數;
排除了為0這種可能,即對於x0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。
在x大於0時,函式的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。
而只有a為正數,0才進入函式的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況.
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。
(3)當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函式過(0,0);a小於0,函式不過(0,0)點。
(6)顯然冪函式無界。
定義:
x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。
範圍:
傾斜角的取值範圍是0°≤α0時α∈(0°,90°)
k2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數學考試總結 篇15
1、柱、錐、台、球的結構特徵
(1)稜柱:
定義:有兩個面互相平行,其餘各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜柱、四稜柱、五稜柱等。
表示:用各頂點字母,如五稜柱或用對角線的端點字母,如五稜柱。
幾何特徵:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行於底面的截面是與底面全等的多邊形。
(2)稜錐
定義:有一個面是多邊形,其餘各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數作為分類的標準分為三稜錐、四稜錐、五稜錐等
表示:用各頂點字母,如五稜錐
幾何特徵:側面、對角面都是三角形;平行於底面的截面與底面相似,其相似比等於頂點到截面距離與高的比的平方。
(3)稜台:
定義:用一個平行於稜錐底面的平面去截稜錐,截面和底面之間的部分。
分類:以底面多邊形的邊數作為分類的標準分為三棱態、四稜台、五稜台等
表示:用各頂點字母,如五稜台
幾何特徵:①上下底面是相似的平行多邊形②側面是梯形③側棱交於原稜錐的頂點
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉,其餘三邊旋轉所成的曲面所圍成的幾何體。
幾何特徵:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體。
幾何特徵:①底面是一個圓;②母線交於圓錐的頂點;③側面展開圖是一個扇形。
(6)圓台:
定義:用一個平行於圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特徵:①上下底面是兩個圓;②側面母線交於原圓錐的頂點;③側面展開圖是一個弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體
幾何特徵:①球的截面是圓;②球面上任意一點到球心的距離等於半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向後面正投影);側視圖(從左向右)、俯視圖(從上向下)
註:正視圖反映了物體上下、左右的位置關係,即反映了物體的高度和長度;
俯視圖反映了物體左右、前後的位置關係,即反映了物體的長度和寬度;
側視圖反映了物體上下、前後的位置關係,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點:
①原來與x軸平行的線段仍然與x平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
高一數學考試總結 篇16
1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數學考試總結 篇17
高一數學集合有關概念
集合的含義
集合的中元素的三個特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集N_N+整數集Z有理數集Q實數集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數學考試總結 篇18
I.定義與定義表達式
一般地,自變數_和因變數y之間存在如下關係:y=a_^2+b_+c則稱y為_的二次函式。
二次函式表達式的右邊通常為二次三項式。
II.二次函式的三種表達式
一般式:y=a_^2+b_+c(a,b,c為常數,a≠0)
頂點式:y=a(_-h)^2+k[拋物線的頂點P(h,k)]
交點式:y=a(_-_?)(_-_?)[僅限於與_軸有交點A(_?,0)和B(_?,0)的拋物線]
註:在3種形式的互相轉化中,有如下關係:
h=-b/2a k=(4ac-b^2)/4a _?,_?=(-b±√b^2-4ac)/2a
III.二次函式的圖像
在平面直角坐標系中作出二次函式y=_^2的圖像,可以看出,二次函式的圖像是一條拋物線。
IV.拋物線的性質
1.拋物線是軸對稱圖形。對稱軸為直線_=-b/2a。
對稱軸與拋物線的交點為拋物線的頂點P。特別地,當b=0時,拋物線的對稱軸是y軸(即直線_=0)
2.拋物線有一個頂點P,坐標為:P(-b/2a,(4ac-b^2)/4a)當-b/2a=0時,P在y軸上;當Δ=b^2-4ac=0時,P在_軸上。
3.二次項係數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項係數b和二次項係數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;
當a與b異號時(即ab<0),對稱軸在y軸右。
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交於(0,c)
6.拋物線與_軸交點個數
Δ=b^2-4ac>0時,拋物線與_軸有2個交點。
Δ=b^2-4ac=0時,拋物線與_軸有1個交點。
Δ=b^2-4ac<0時,拋物線與_軸沒有交點。
_的取值是虛數(_=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
V.二次函式與一元二次方程
特別地,二次函式(以下稱函式)y=a_^2+b_+c,
當y=0時,二次函式為關於_的一元二次方程(以下稱方程),即a_^2+b_+c=0
此時,函式圖像與_軸有無交點即方程有無實數根。函式與_軸交點的橫坐標即為方程的根。
高一數學考試總結 篇19
集合的含義
集合的中元素的三個特性:
元素的確定性如:世界上的山
元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3。集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:
非負整數集(即自然數集)記作:N
正整數集NN+整數集Z有理數集Q實數集R
列舉法:{a,b,c……}
描述法:將集合中的元素的公共屬性描述出來,寫在大括弧內表示集合的方法。{x(R|x—3>2},{x|x—3>2}
語言描述法:例:{不是直角三角形的三角形}
Venn圖:
4、集合的分類:
有限集含有有限個元素的集合
無限集含有無限個元素的集合
空集不含任何元素的集合例:{x|x2=—5}
高一數學考試總結 篇20
1.二次函式y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同,它們的頂點坐標及對稱軸如下表:
解析式
頂點坐標
對稱軸
y=ax^2
(0,0)
x=0
y=a(x-h)^2
(h,0)
x=h
y=a(x-h)^2+k
(h,k)
x=h
y=ax^2+bx+c
(-b/2a,[4ac-b^2]/4a)
x=-b/2a
當h>0時,y=a(x-h)^2的圖象可由拋物線y=ax^2向右平行移動h個單位得到,
當h0,k>0時,將拋物線y=ax^2向右平行移動h個單位,再向上移動k個單位,就可以得到y=a(x-h)^2+k的圖象;
當h>0,k0時,將拋物線向左平行移動|h|個單位,再向上移動k個單位可得到y=a(x-h)^2+k的圖象;
當h0時,開口向上,當a0,當x≤-b/2a時,y隨x的增大而減小;當x≥-b/2a時,y隨x的增大而增大.若a0,圖象與x軸交於兩點A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的兩根.這兩點間的距離AB=|x?-x?|
當△=0.圖象與x軸只有一個交點;
當△0時,圖象落在x軸的上方,x為任何實數時,都有y>0;當a0(a2} ,{x| x-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) Venn圖:
4、集合的分類:
(1) 有限集 含有有限個元素的集合
(2) 無限集 含有無限個元素的集合
(3) 空集 不含任何元素的集合 例:{x|x2=-5}
二、集合間的基本關係
1.“包含”關係—子集
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含於集合B,或集合B不包含集合A,記作A B或B A
2.“相等”關係:A=B (5≥5,且5≤5,則5=5)
實例:設 A={x|x2-1=0} B={-1,1} “元素相同則兩集合相等”
即:① 任何一個集合是它本身的子集。A?A
②真子集:如果A?B,且A? B那就說集合A是集合B的真子集,記作A B(或B A)
③如果 A?B, B?C ,那么 A?C
④ 如果A?B 同時 B?A 那么A=B
3. 不含任何元素的集合叫做空集,記為Φ
規定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
? 有n個元素的集合,含有2n個子集,2n-1個真子集
三、集合的運算
運算類型 交 集 並 集 補 集
定 義 由所有屬於A且屬於B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={x|x A,且x B}.
由所有屬於集合A或屬於集合B的元素所組成的集合,叫做A,B的並集.記作:A B(讀作‘A並B’),即A B ={x|x A,或x B}).
設S是一個集合,A是S的一個子集,由S中所有不屬於A的元素組成的集合,叫做S中子集A的補集(或余集)
二、函式的有關概念
1.函式的概念:設A、B是非空的數集,如果按照某個確定的對應關係f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那么就稱f:A→B為從集合A到集合B的一個函式.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值範圍A叫做函式的定義域;與x的值相對應的y值叫做函式值,函式值的集合{f(x)| x∈A }叫做函式的值域.
注意:
1.定義域:能使函式式有意義的實數x的集合稱為函式的定義域。
求函式的定義域時列不等式組的主要依據是:
(1)分式的分母不等於零;
(2)偶次方根的被開方數不小於零;
(3)對數式的真數必須大於零;
(4)指數、對數式的底必須大於零且不等於1.
(5)如果函式是由一些基本函式通過四則運算結合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合.
(6)指數為零底不可以等於零,
(7)實際問題中的函式的定義域還要保證實際問題有意義.
相同函式的判斷方法:①表達式相同(與表示自變數和函式值的字母無關);②定義域一致 (兩點必須同時具備)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函式圖象知識歸納
(1)定義:在平面直角坐標系中,以函式 y=f(x) , (x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的集合C,叫做函式 y=f(x),(x ∈A)的圖象.C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 .
(2) 畫法
A、 描點法:
B、 圖象變換法
常用變換方法有三種
1) 平移變換
2) 伸縮變換
3) 對稱變換
4.區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
(3)區間的數軸表示.
5.映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A B為從集合A到集合B的一個映射。記作f:A→B
6.分段函式
(1)在定義域的不同部分上有不同的解析表達式的函式。
(2)各部分的自變數的取值情況.
(3)分段函式的定義域是各段定義域的交集,值域是各段值域的並集.
補充:複合函式
如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的複合函式。
二.函式的性質
1.函式的單調性(局部性質)
(1)增函式
設函式y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1
如果對於區間D上的任意兩個自變數的值x1,x2,當x1f(x2),那么就說f(x)在這個區間上是減函式.區間D稱為y=f(x)的單調減區間.
注意:函式的單調性是函式的局部性質;
(2) 圖象的特點
如果函式y=f(x)在某個區間是增函式或減函式,那么說函式y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函式的圖象從左到右是上升的,減函式的圖象從左到右是下降的.
(3).函式單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1
○2 作差f(x1)-f(x2);
○3 變形(通常是因式分解和配方);
○4 定號(即判斷差f(x1)-f(x2)的正負);
○5 下結論(指出函式f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)
(C)複合函式的單調性
複合函式f[g(x)]的單調性與構成它的函式u=g(x),y=f(u)的單調性密切相關,其規律:“同增異減”
注意:函式的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集.
8.函式的奇偶性(整體性質)
(1)偶函式
一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=f(x),那么f(x)就叫做偶函式.
(2).奇函式
一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那么f(x)就叫做奇函式.
(3)具有奇偶性的函式的圖象的特徵
偶函式的圖象關於y軸對稱;奇函式的圖象關於原點對稱.
利用定義判斷函式奇偶性的步驟:
○1首先確定函式的定義域,並判斷其是否關於原點對稱;
○2確定f(-x)與f(x)的關係;
○3作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函式;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函式.
(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;
(3)利用定理,或藉助函式的圖象判定 .
9、函式的解析表達式
(1).函式的解析式是函式的一種表示方法,要求兩個變數之間的函式關係時,一是要求出它們之間的對應法則,二是要求出函式的定義域.
(2)求函式的解析式的主要方法有:
1) 湊配法
2) 待定係數法
3) 換元法
4) 消參法
10.函式最大(小)值(定義見課本p36頁)
○1 利用二次函式的性質(配方法)求函式的最大(小)值
○2 利用圖象求函式的最大(小)值
○3 利用函式單調性的判斷函式的最大(小)值:
如果函式y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函式y=f(x)在x=b處有最大值f(b);
如果函式y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函式y=f(x)在x=b處有最小值f(b);
高一數學考試總結 篇21
形如y=k/x(k為常數且k≠0)的函式,叫做反比例函式。
自變數x的取值範圍是不等於0的一切實數。
反比例函式圖像性質:
反比例函式的圖像為雙曲線。
由於反比例函式屬於奇函式,有f(-x)=-f(x),圖像關於原點對稱。
另外,從反比例函式的解析式可以得出,在反比例函式的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和-2)時的函式圖像。
當K>0時,反比例函式圖像經過一,三象限,是減函式
當K<0時,反比例函式圖像經過二,四象限,是增函式
反比例函式圖像只能無限趨向於坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函式圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
高一數學考試總結 篇22
集合的運算
運算類型交 集並 集補 集
定義域 R定義域 R
值域>0值域>0
在R上單調遞增在R上單調遞減
非奇非偶函式非奇非偶函式
函式圖象都過定點(0,1)函式圖象都過定點(0,1)
注意:利用函式的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數若且唯若 ;
(3)對於指數函式 ,總有 ;
二、對數函式
(一)對數
1.對數的概念:
一般地,如果 ,那么數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
指數式與對數式的互化
冪值 真數
= N = b
底數
指數 對數
(二)對數的運算性質
如果 ,且 , , ,那么:
○1 + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導下面的結論:(1) ;(2) .
(3)、重要的公式 ①、負數與零沒有對數; ②、 , ③、對數恆等式
(二)對數函式
1、對數函式的概念:函式 ,且 叫做對數函式,其中 是自變數,函式的定義域是(0,+∞).
注意:○1 對數函式的定義與指數函式類似,都是形式定義,注意辨別。如: , 都不是對數函式,而只能稱其為對數型函式.
○2 對數函式對底數的限制: ,且 .
2、對數函式的性質:
a>100時,開口方向向上,a0時,拋物線向上開口;當a1,且∈_.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這裡叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合併成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函式及其性質
1、指數函式的概念:一般地,函式叫做指數函式(exponential),其中x是自變數,函式的定義域為R.
注意:指數函式的底數的取值範圍,底數不能是負數、零和1.
2、指數函式的圖象和性質
【函式的套用】
1、函式零點的概念:對於函式,把使成立的實數叫做函式的零點。
2、函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標。即:
方程有實數根函式的圖象與軸有交點函式有零點.
3、函式零點的求法:
求函式的零點:
1(代數法)求方程的實數根;
2(幾何法)對於不能用求根公式的方程,可以將它與函式的圖象聯繫起來,並利用函式的性質找出零點.
4、二次函式的零點:
二次函式.
1)△>0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點.
2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點.
3)△<0,方程無實根,二次函式的圖象與軸無交點,二次函式無零點.
高一數學考試總結 篇23
集合的有關概念
1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素
注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數集:N,Z,Q,R,N
子集、交集、並集、補集、空集、全集等概念
1)子集:若對x∈A都有x∈B,則AB(或AB);
2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)
3)交集:A∩B={x|x∈A且x∈B}
4)並集:A∪B={x|x∈A或x∈B}
5)補集:CUA={x|xA但x∈U}
注意:A,若A≠?,則?A;
若且,則A=B(等集)
集合與元素
掌握有關的術語和符號,特別要注意以下的符號:(1)與、?的區別;(2)與的區別;(3)與的區別。
子集的幾個等價關係
①A∩B=AAB;②A∪B=BAB;③ABCuACuB;
④A∩CuB=空集CuAB;⑤CuA∪B=IAB。
交、並集運算的性質
①A∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;
③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;
有限子集的個數:
設集合A的元素個數是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。
練習題:
已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關係
A)M=NPB)MN=PC)MNPD)NPM
分析一:從判斷元素的共性與區別入手。
解答一:對於集合M:{x|x=,m∈Z};對於集合N:{x|x=,n∈Z}
對於集合P:{x|x=,p∈Z},由於3(n-1)+1和3p+1都表示被3除餘1的數,而6m+1表示被6除餘1的數,所以MN=P,故選B。
高一數學考試總結 篇24
一、函式的概念與表示
1、映射
(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對於集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。
注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射
2、函式
構成函式概念的三要素
①定義域②對應法則③值域
兩個函式是同一個函式的條件:三要素有兩個相同
二、函式的解析式與定義域
1、求函式定義域的主要依據:
(1)分式的分母不為零;
(2)偶次方根的被開方數不小於零,零取零次方沒有意義;
(3)對數函式的真數必須大於零;
(4)指數函式和對數函式的底數必須大於零且不等於1;
三、函式的值域
1求函式值域的方法
①直接法:從自變數x的範圍出發,推出y=f(x)的取值範圍,適合於簡單的複合函式;
②換元法:利用換元法將函式轉化為二次函式求值域,適合根式內外皆為一次式;
③判別式法:運用方程思想,依據二次方程有根,求出y的取值範圍;適合分母為二次且∈R的分式;
④分離常數:適合分子分母皆為一次式(x有範圍限制時要畫圖);
⑤單調性法:利用函式的單調性求值域;
⑥圖象法:二次函式必畫草圖求其值域;
⑦利用對號函式
⑧幾何意義法:由數形結合,轉化距離等求值域。主要是含絕對值函式
四.函式的奇偶性
1.定義:設y=f(x),x∈A,如果對於任意∈A,都有,則稱y=f(x)為偶函式。
如果對於任意∈A,都有,則稱y=f(x)為奇
函式。
2.性質:
①y=f(x)是偶函式y=f(x)的圖象關於軸對稱,y=f(x)是奇函式y=f(x)的圖象關於原點對稱,
②若函式f(x)的定義域關於原點對稱,則f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函式的定義域D1,D2,D1∩D2要關於原點對稱]
3.奇偶性的判斷
①看定義域是否關於原點對稱②看f(x)與f(-x)的關係
五、函式的單調性
1、函式單調性的定義:
2設是定義在M上的函式,若f(x)與g(x)的單調性相反,則在M上是減函式;若f(x)與g(x)的單調性相同,則在M上是增函式。
高一數學考試總結 篇25
函式圖象知識歸納
(1)定義:在平面直角坐標系中,以函式y=f(x),(x∈A)中的x為橫坐標,函式值y為縱坐標的點P(x,y)的函式C,叫做函式y=f(x),(x∈A)的圖象.C上每一點的坐標(x,y)均滿足函式關係y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上.
(2)畫法
A、描點法:
B、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對稱變換
4.高中數學函式區間的概念
(1)函式區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
5.映射
一般地,設A、B是兩個非空的函式,如果按某一個確定的對應法則f,使對於函式A中的任意一個元素x,在函式B中都有確定的元素y與之對應,那么就稱對應f:AB為從函式A到函式B的一個映射。記作“f(對應關係):A(原象)B(象)”
對於映射f:A→B來說,則應滿足:
(1)函式A中的每一個元素,在函式B中都有象,並且象是的;
(2)函式A中不同的元素,在函式B中對應的象可以是同一個;
(3)不要求函式B中的每一個元素在函式A中都有原象。
6.高中數學函式之分段函式
(1)在定義域的不同部分上有不同的解析表達式的函式。
(2)各部分的自變數的取值情況.
(3)分段函式的定義域是各段定義域的交集,值域是各段值域的並集.
補充:複合函式
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的複合函式。
高一數學考試總結 篇26
歸納1
1、“包含”關係—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA
2、“相等”關係(5≥5,且5≤5,則5=5)
實例:設A={x|x2—1=0}B={—1,1}“元素相同”
結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B
①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同時BíA那么A=B
3、不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
歸納2
形如y=k/x(k為常數且k≠0)的函式,叫做反比例函式。
自變數x的取值範圍是不等於0的一切實數。
反比例函式圖像性質:
反比例函式的圖像為雙曲線。
由於反比例函式屬於奇函式,有f(—x)=—f(x),圖像關於原點對稱。
另外,從反比例函式的.解析式可以得出,在反比例函式的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
上面給出了k分別為正和負(2和—2)時的函式圖像。
當K>0時,反比例函式圖像經過一,三象限,是減函式
當K0,方程有兩不等實根,二次函式的圖象與軸有兩個交點,二次函式有兩個零點。
(2)△=0,方程有兩相等實根(二重根),二次函式的圖象與軸有一個交點,二次函式有一個二重零點或二階零點。
(3)△0時,反比例函式圖像經過一,三象限,是減函式
當K0,則a可以是任意實數;
排除了為0這種可能,即對於x0的所有實數,q不能是偶數;
排除了為負數這種可能,即對於x為大於且等於0的所有實數,a就不能是負數。
總結起來,就可以得到當a為不同的數值時,冪函式的定義域的不同情況如下:如果a為任意實數,則函式的定義域為大於0的所有實數;
如果a為負數,則x肯定不能為0,不過這時函式的定義域還必須根據q的奇偶性來確定,即如果同時q為偶數,則x不能小於0,這時函式的定義域為大於0的所有實數;如果同時q為奇數,則函式的定義域為不等於0的所有實數。
在x大於0時,函式的值域總是大於0的實數。
在x小於0時,則只有同時q為奇數,函式的值域為非零的實數。
而只有a為正數,0才進入函式的值域。
由於x大於0是對a的任意取值都有意義的,因此下面給出冪函式在第一象限的各自情況、
可以看到:
(1)所有的圖形都通過(1,1)這點。
(2)當a大於0時,冪函式為單調遞增的,而a小於0時,冪函式為單調遞減函式。
(3)當a大於1時,冪函式圖形下凹;當a小於1大於0時,冪函式圖形上凸。
(4)當a小於0時,a越小,圖形傾斜程度越大。
(5)a大於0,函式過(0,0);a小於0,函式不過(0,0)點。
(6)顯然冪函式無界。
解題方法:換元法
解數學題時,把某個式子看成一個整體,用一個變數去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質是轉化,關鍵是構造元和設元,理論依據是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標準型問題標準化、複雜問題簡單化,變得容易處理。
換元法又稱輔助元素法、變數代換法。通過引進新的變數,可以把分散的條件聯繫起來,隱含的條件顯露出來,或者把條件與結論聯繫起來。或者變為熟悉的形式,把複雜的計算和推證簡化。
它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數式,在研究方程、不等式、函式、數列、三角等問題中有廣泛的套用。
高一數學考試總結 篇27
1過兩點有且只有一條直線
2兩點之間線段最短
3同角或等角的補角相等
4同角或等角的餘角相等
5過一點有且只有一條直線和已知直線垂直
6直線外一點與直線上各點連線的所有線段中,垂線段最短
7平行公理經過直線外一點,有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內錯角相等,兩直線平行
11同旁內角互補,兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內錯角相等
14兩直線平行,同旁內角互補
15定理三角形兩邊的和大於第三邊
16推論三角形兩邊的差小於第三邊
17三角形內角和定理三角形三個內角的和等於180°
18推論1直角三角形的兩個銳角互余
19推論2三角形的一個外角等於和它不相鄰的兩個內角的和
20推論3三角形的一個外角大於任何一個和它不相鄰的內角
21全等三角形的對應邊、對應角相等
22邊角邊公理(sas)有兩邊和它們的夾角對應相等的兩個三角形全等
23角邊角公理(asa)有兩角和它們的夾邊對應相等的兩個三角形全等
24推論(aas)有兩角和其中一角的對邊對應相等的兩個三角形全等
25邊邊邊公理(sss)有三邊對應相等的兩個三角形全等
26斜邊、直角邊公理(hl)有斜邊和一條直角邊對應相等的兩個直角三角形全等
27定理1在角的平分線上的點到這個角的兩邊的距離相等
28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上
29角的平分線是到角的兩邊距離相等的所有點的集合
30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)
31推論1等腰三角形頂角的平分線平分底邊並且垂直於底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,並且每一個角都等於60°
34等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)
35推論1三個角都相等的三角形是等邊三角形
36推論2有一個角等於60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個銳角等於30°那么它所對的直角邊等於斜邊的一半
38直角三角形斜邊上的中線等於斜邊上的一半
39定理線段垂直平分線上的點和這條線段兩個端點的距離相等
40逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合
42定理1關於某條直線對稱的兩個圖形是全等形
43定理2如果兩個圖形關於某直線對稱,那么對稱軸是對應點連線的垂直平分線44定理3兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上
45逆定理如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關係a^2+b^2=c^2,那么這個三角形是直角三角形
48定理四邊形的內角和等於360°
49四邊形的外角和等於360°
50多邊形內角和定理n邊形的內角的和等於(n-2)×180°
51推論任意多邊的外角和等於360°
52平行四邊形性質定理1平行四邊形的對角相等
53平行四邊形性質定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質定理1矩形的四個角都是直角
61矩形性質定理2矩形的對角線相等
62矩形判定定理1有三個角是直角的四邊形是矩形
63矩形判定定理2對角線相等的平行四邊形是矩形
64菱形性質定理1菱形的四條邊都相等
65菱形性質定理2菱形的.對角線互相垂直,並且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即s=(a×b)÷2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質定理1正方形的四個角都是直角,四條邊都相等
70正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角
71定理1關於中心對稱的兩個圖形是全等的
72定理2關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分
73逆定理如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那么這兩個圖形關於這一點對稱
74等腰梯形性質定理等腰梯形在同一底上的兩個角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經過梯形一腰的中點與底平行的直線,必平分另一腰
80推論2經過三角形一邊的中點與另一邊平行的直線,必平分第三邊
81三角形中位線定理三角形的中位線平行於第三邊,並且等於它的一半
82梯形中位線定理梯形的中位線平行於兩底,並且等於兩底和的一半l=(a+b)÷2s=l×h
83(1)比例的基本性質如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84(2)合比性質如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應線段成比例
87推論平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行於三角形的第三邊
89平行於三角形的一邊,並且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成比例
90定理平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似
91相似三角形判定定理1兩角對應相等,兩三角形相似(asa)
92直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似
93判定定理2兩邊對應成比例且夾角相等,兩三角形相似(sas)
94判定定理3三邊對應成比例,兩三角形相似(sss)
95定理如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似
96性質定理1相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比
97性質定理2相似三角形周長的比等於相似比
98性質定理3相似三角形面積的比等於相似比的平方
99任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等
於它的餘角的正弦值
100任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值
101圓是定點的距離等於定長的點的集合
102圓的內部可以看作是圓心的距離小於半徑的點的集合
103圓的外部可以看作是圓心的距離大於半徑的點的集合
104同圓或等圓的半徑相等
105到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓
106和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點的軌跡,是這個角的平分線
108到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理不在同一直線上的三點確定一個圓。
110垂徑定理垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧
②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧
112推論2圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等
116定理一條弧所對的圓周角等於它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形
120定理圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角
121①直線l和⊙o相交d
②直線l和⊙o相切d=r
③直線l和⊙o相離d>r
122切線的判定定理經過半徑的外端並且垂直於這條半徑的直線是圓的切線
123切線的性質定理圓的切線垂直於經過切點的半徑
124推論1經過圓心且垂直於切線的直線必經過切點
125推論2經過切點且垂直於切線的直線必經過圓心
126切線長定理從圓外一點引圓的兩條切線,它們的切線長相等,圓心和這一點的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等於它所夾的弧對的圓周角
129推論如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等
130相交弦定理圓內的兩條相交弦,被交點分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的
兩條線段的比例中項
132切割線定理從圓外一點引圓的切線和割線,切線長是這點到割
線與圓交點的兩條線段長的比例中項
133推論從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等
134如果兩個圓相切,那么切點一定在連心線上
135①兩圓外離d>r+r②兩圓外切d=r+r
③兩圓相交r-rr)
④兩圓內切d=r-r(r>r)⑤兩圓內含dr)
136定理相交兩圓的連心線垂直平分兩圓的公共弦
137定理把圓分成n(n≥3):
⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形
⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形
138定理任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓
139正n邊形的每個內角都等於(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形
141正n邊形的面積sn=pnrn/2p表示正n邊形的周長
142正三角形面積√3a/4a表示邊長
143如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計算公式:l=nπr/180
145扇形面積公式:s扇形=nπr2/360=lr/2
146內公切線長=d-(r-r)外公切線長=d-(r+r)
147等腰三角形的兩個底腳相等
148等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合
149如果一個三角形的兩個角相等,那么這兩個角所對的邊也相等
150三條邊都相等的三角形叫做等邊三角形
高一數學考試總結 篇28
【直線與方程】
(1)直線的傾斜角
定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。
②過兩點的直線的斜率公式:
注意下面四點:
(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與P1、P2的順序無關;
(3)以後求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;
(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。
高一數學考試總結 篇29
圓的方程定義:
圓的標準方程(x-a)2+(y-b)2=r2中,有三個參數a、b、r,即圓心坐標為(a,b),只要求出a、b、r,這時圓的方程就被確定,因此確定圓方程,須三個獨立條件,其中圓心坐標是圓的定位條件,半徑是圓的定形條件。
直線和圓的位置關係:
1.直線和圓位置關係的判定方法一是方程的觀點,即把圓的方程和直線的方程聯立成方程組,利用判別式Δ來討論位置關係.
①Δ>0,直線和圓相交.②Δ=0,直線和圓相切.③Δ<0,直線和圓相離.
方法二是幾何的觀點,即把圓心到直線的距離d和半徑R的大小加以比較.
①dR,直線和圓相離.
2.直線和圓相切,這類問題主要是求圓的切線方程.求圓的切線方程主要可分為已知斜率k或已知直線上一點兩種情況,而已知直線上一點又可分為已知圓上一點和圓外一點兩種情況.
3.直線和圓相交,這類問題主要是求弦長以及弦的中點問題.
切線的性質
⑴圓心到切線的距離等於圓的半徑;
⑵過切點的半徑垂直於切線;
⑶經過圓心,與切線垂直的`直線必經過切點;
⑷經過切點,與切線垂直的直線必經過圓心;
當一條直線滿足
(1)過圓心;
(2)過切點;
(3)垂直於切線三個性質中的兩個時,第三個性質也滿足.
切線的判定定理
經過半徑的外端點並且垂直於這條半徑的直線是圓的切線.
切線長定理
從圓外一點作圓的兩條切線,兩切線長相等,圓心與這一點的連線平分兩條切線的夾角.
圓錐曲線性質:
一、圓錐曲線的定義
1.橢圓:到兩個定點的距離之和等於定長(定長大於兩個定點間的距離)的動點的軌跡叫做橢圓.
2.雙曲線:到兩個定點的距離的差的絕對值為定值(定值小於兩個定點的距離)的動點軌跡叫做雙曲線.即.
3.圓錐曲線的統一定義:到定點的距離與到定直線的距離的比e是常數的點的軌跡叫做圓錐曲線.當01時為雙曲線.
高一數學考試總結 篇30
1.函式知識:基本初等函式性質的考查,以導數知識為背景的函式問題;以向量知識為背景的函式問題;從具體函式的考查轉向抽象函式考查;從重結果考查轉向重過程考查;從熟悉情景的考查轉向新穎情景的考查。
2.向量知識:向量具有數與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運算律;考查平面向量的坐標運算;考查平面向量與幾何、三角、代數等學科的綜合性問題。
3.不等式知識:突出工具性,淡化獨立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規劃問題為必考內容,不等式的性質與指數函式、對數函式、三角函式、二交函式等結合起來,考查不等式的性質、最值、函式的單調性等;證明不等式的試題,多以函式、數列、解析幾何等知識為背景,在知識網路的交匯處命題,綜合性強,能力要求高;解不等式的試題,往往與公式、根式和參數的討論聯繫在一起。考查學生的等價轉化能力和分類討論能力;以當前經濟、社會生產、生活為背景與不等式綜合的套用題仍將是高考的熱點,主要考查學生閱讀理解能力以及分析問題、解決問題的能力。
4.立體幾何知識:20__年已經變得簡單,20__年難度依然不大,基本的三視圖的考查難點不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關係的考查,已經線面角,面面角和幾何體的體積計算等問題,都是重點考查內容。
5.解析幾何知識:小題主要涉及圓錐曲線方程,和直線與圓的位置關係,以及圓錐曲線幾何性質的考查,極坐標下的解析幾何知識,解答題主要考查直線和圓的知識,直線與圓錐曲線的知識,涉及圓錐曲線方程,直線與圓錐曲線方程聯立,定點,定值,範圍的考查,考試的難度降低。
6.導數知識:導數的考查還是以理科19題,文科20題的形式給出,從常見函式入手,導數工具作用(切線和單調性)的考查,綜合性強,能力要求高;往往與公式、導數往往與參數的討論聯繫在一起,考查轉化與化歸能力,但今年的難點整體偏低。
7.開放型創新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點,理科13,文科14題。