北師大版八年級上冊數學第四章教案

北師大版八年級上冊數學第四章教案 篇1

教學建議

1、平行線等分線段定理

定理:如果一組平行線在一條直線上截得的線段相等,那么在其他需直線上截得的線段也相等。

注意事項:定理中的平行線組是指每相鄰的兩條距離都相等的特殊的平行線組;它是由三條或三條以上的平行線組成。

定理的作用:可以用來證明同一直線上的線段相等;可以等分線段。

2、平行線等分線段定理的推論

推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

推論2:經過三角形一邊的中點與另一邊平行的直線,必平分第三邊。

記憶方法:“中點”+“平行”得“中點”。

推論的用途:(1)平分已知線段;(2)證明線段的倍分。

重難點分析

本節的重點是平行線等分線段定理。因為它不僅是推證三角形、梯形中位線定理的基礎,而且是第五章中“平行線分線段成比例定理”的基礎。

本節的難點也是平行線等分線段定理。由於學生初次接觸到平行線等分線段定理,在認識和理解上有一定的難度,在加上平行線等分線段定理的兩個推論以及各種變式,學生難免會有應接不暇的感覺,往往會有感覺新鮮有趣但掌握不深的情況發生,教師在教學中要加以注意。

教法建議

平行線等分線段定理的引入

生活中有許多平行線等分線段定理的例子,並不陌生,平行線等分線段定理的引入可從下面幾個角度考慮:

①從生活實例引入,如刻度尺、作業本、柵欄、等等;

②可用問題式引入,開始時設計一系列與平行線等分線段定理概念相關的問題由學生進行思考、研究,然後給出平行線等分線段定理和推論。

教學設計示例

一、教學目標

1、使學生掌握平行線等分線段定理及推論。

2、能夠利用平行線等分線段定理任意等分一條已知線段,進一步培養學生的作圖能力。

3、通過定理的變式圖形,進一步提高學生分析問題和解決問題的能力。

4、通過本節學習,體會圖形語言和符號語言的和諧美

二、教法設計

學生觀察發現、討論研究,教師引導分析

三、重點、難點

1、教學重點:平行線等分線段定理

2、教學難點:平行線等分線段定理

四、課時安排

l課時

五、教具學具

計算機、投影儀、膠片、常用畫圖工具

六、師生互動活動設計

教師複習引入,學生畫圖探索;師生共同歸納結論;教師示範作圖,學生板演練習

七、教學步驟

【複習提問】

1、什麼叫平行線?平行線有什麼性質。

2、什麼叫平行四邊形?平行四邊形有什麼性質?

【引入新課】

由學生動手做一實驗:每個同學拿一張橫格紙,首先觀察橫線之間有什麼關係?(橫線是互相平等的,並且它們之間的距離是相等的),然後在橫格紙上畫一條垂直於橫線的直線,看看這條直線被相鄰橫線截成的各線段有什麼關係?(相等,為什麼?)這時在橫格紙上再任畫一條與橫線相交的直線,測量它被相鄰橫線截得的線段是否也相等?

(引導學生把做實驗的`條件和得到的結論寫成一個命題,教師總結,由此得到平行線等分線段定理)

平行線等分線段定理:如果一組平行線在一條直線上掛得的線段相等,那么在其他直線上截得的線段也相等。

注意:定理中的“一組平行線”指的是一組具有特殊條件的平行線,即每相鄰兩條平行線間的距離都相等的特殊平行線組,這一點必須使學生明確。

下面我們以三條平行線為例來證明這個定理(由學生口述已知,求證)。

已知:如圖,直線,。

求證:。

分析1:如圖把已知相等的線段平移,與要求證的兩條線段組成三角形(也可套用平行線間的平行線段相等得),通過全等三角形性質,即可得到要證的結論。

(引導學生找出另一種證法)

分析2:要證的兩條線段分別是梯形的腰,我們藉助於前面常用的輔助線,把梯形轉化為平行四邊形和三角形,然後再利用這些熟悉的知識即可證得。

證明:過點作分別交、於點、,得和,如圖。

∵,∴

又∵,,∴

為使學生對定理加深理解和掌握,把知識學活,可讓學生認識幾種定理的變式圖形,如圖(用計算機動態演示)。

引導學生觀察下圖,在梯形中,,,則可得到,由此得出推論1。

推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰。

再引導學生觀察下圖,在中,,,則可得到,由此得出推論2。

推論2:經過三角形一邊的中點與另一邊平行的直線必平分第三邊。

注意:推論1和推論2也都是很重要的定理,在今後的論證和計算中經常用到,因此,要求學生必須掌握好。

接下來講如何利用平行線等分線段定理來任意等分一條線段。

例已知:如圖,線段。

求作:線段的五等分點。

作法:①作射線。

②在射線上以任意長順次截取。

③連結。

④過點。 、 、分別作的平行線、 、 、,分別交於點、 、 、 。

、 、 、就是所求的五等分點。

(說明略,由學生口述即可)

【總結、擴展】

小結:

(l)平行線等分線段定理及推論。

(2)定理的證明只取三條平行線,是在較簡單的情況下證明的,對於多於三條的平行線的情況,也可用同樣方法證明。

(3)定理中的“平行線組”,是指每相鄰兩條平行線間的距離都相等的特殊平行線組。

(4)套用定理任意等分一條線段。

八、布置作業

教材P188中A組2、9

九、板書設計

十、隨堂練習

教材P182中1、2

北師大版八年級上冊數學第四章教案 篇2

教學目標:

1、掌握平均數、中位數、眾數的概念,會求一組數據的平均數、中位數、眾數。

2、在加權平均數中,知道權的差異對平均數的影響,並能用加權平均數解釋現實生活中一些簡單的現象。

3、了解平均數、中位數、眾數的差別,初步體會它們在不同情境中的套用。

4、能利和計算器求一組數據的算術平均數。

教學重點:體會平均數、中位數、眾數在具體情境中的意義和套用。

教學難點:對於平均數、中位數、眾數在不同情境中的套用。

教學方法:歸納教學法。

教學過程:

一、知識回顧與思考

1、平均數、中位數、眾數的概念及舉例。

一般地對於n個數X1,……Xn把(X1+X2+…Xn)叫做這n個數的算術平均數,簡稱平均數。

如某公司要招工,測試內容為數學、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計入總成績,這樣計算出的成績為數學,語文、外語成績的加權平均數,25%、25%、50%分別是數學、語文、外語三項測試成績的權。

中位數就是把一組數據按大小順序排列,處在最中間位置的數(或最中間兩個數據的平均數)叫這組數據的中位數。

眾數就是一組數據中出現次數最多的那個數據。

如3,2,3,5,3,4中3是眾數。

2、平均數、中位數和眾數的特徵:

(1)平均數、中位數、眾數都是表示一組數據“平均水平”的平均數。

(2)平均數能充分利用數據提供的信息,在生活中較為常用,但它容易受極端數字的影響,且計算較繁。

(3)中位數的優點是計算簡單,受極端數字影響較小,但不能充分利用所有數字的信息。

(4)眾數的可靠性較差,它不受極端數據的影響,求法簡便,當一組數據中個別數據變動較大時,適宜選擇眾數來表示這組數據的“集中趨勢”。

3、算術平均數和加權平均數有什麼區別和聯繫:

算術平均數是加權平均數的`一種特殊情況,加權平均數包含算術平均數,當加權平均數中的權相等時,就是算術平均數。

4、利用計算器求一組數據的平均數。

利用科學計算器求平均數的方法計算平均數。

二、例題講解:

例1,某公司銷售部有行銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:

每人銷售件數1800 510 250 210 150 120

人數113532

(1)求這15位行銷人員該月銷售量的平均數、中位數和眾數;

(2)假設銷售部負責人把每位行銷員的月銷售額定為平均數,你認為是否合理,為什麼?如不合理,請你制定一個較合理的銷售定額,並說明理由。

例2,某校規定:學生的平時作業、期中練習、期末考試三項成績分別按40%、20%、40%的比例計入學期總評成績,小亮的平時作業、期中練習、期末考試的數學成績依次為90分,92分,85分,小亮這學期的數學總評成績是多少?

三、課堂練習:複習題A組

四、小結:

1、掌握平均數、中位數與眾數的概念及計算。

2、理解算術平均數與加權平均數的聯繫與區別。

五、作業:複習題B組、C組(選做)