國小六年級下冊數學《圓柱的體積》教案

國小六年級下冊數學《圓柱的體積》教案 篇1

一、教學內容:人教版教材六年級下冊19—20頁例5例6及相關的練習題。

二、教學目標:

1、結合具體情境和實踐活動,了解圓柱體積(包括容積)的含義,進一步理解體積和容積的含義。

2、經歷“類比猜想——驗證說明”的探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積。並會解決一些簡單的實際問題。

3、注意滲透類比、轉化思想。

三、教學重點:理解、掌握圓柱體積計算的公式,能運用公式正確地計算圓柱的體積。

四、教學難點:推導圓柱的體積計算公式。

五、教法要素:

1、已有的知識和經驗:體積、體積單位,學習長方體正方體的體積公式的經驗。

2、原型:圓柱模型。

3、探究的問題:

(1)圓柱的體積和什麼有關?圓柱能否轉化成已學過的立體圖形來計算體積?

(2)把圓柱拼成一個近似的長方體後,長方體的長、寬、高是圓柱的哪個

部分?

(3)怎樣計算圓柱的體積?

六、教學過程:

(一)喚起與生成。

1、什麼叫物體的體積?我們學過哪些立體圖形的體積計算?

2、長方體和正方體的體積怎樣計算?它們可以用一個公式表示出來嗎?

切入教學:怎樣計算圓柱的體積?圓柱的體積計算會和什麼有關?

(二)探究與解決。

探究:圓柱的體積

1、 提出問題,啟發思考:如何計算圓柱的體積?

2、 類比猜測,提出假設:結合長方體和正方體體積計算的知識,即長方

體和正方體的體積都等於底面積×高,據此分析並猜測圓柱的體積與誰有關,有什麼關係;提出假設,圓柱的體積可能等於底面積×高。

3、 轉化物體,分析推理:

怎樣來驗證我們的猜想?我們在學圓的面積時是把圓平均分成若干份,然後拼成一個近似的長方形,推導出圓的面積計算公式。我們能不能也把圓柱轉化為我們學過的立體圖形呢?應該怎樣轉化?結合圓的面積計算小組討論。學生匯報交流。

(拿出平均分好的圓柱模型,圓柱的底面用一種顏色,圓柱的側面用另一種顏色,以便學生觀察。)現在利用這個圓柱模型小組合作把它轉化為我們學過的立體圖形。學生在小組合作後匯報交流。

4、全班交流,公式歸納:

交流時,要學生說明拼成的長方體與原來的圓柱有什麼關係?圓柱的底面積和拼成的長方體的底面積有什麼關係?拼成的長方體的高和圓柱的高有什麼關係?引導學生推導出圓柱的體積計算方法。圓柱的`體積=底面積×高。(在這一過程中,使學生認識到:把圓柱平均分成若干份切開,可以拼成近似的長方體,這樣“化曲為直”,圓柱的體積就轉化為長方體的體積,分的份數越多,拼起來就越接近長方體,滲透“極限”思想。)教師板書計算公式,並用字母表示。

回想一下,剛才我們是怎樣推導出圓柱的體積計算公式的?

5、舉一反三,套用規律:

(1)你能用這個公式解決實際問題嗎?20頁做一做,學生獨立完成,全班訂正。

如果我們只知道圓柱的半徑和高,你能不能求出圓柱的體積?引導學生推導出V=∏r2h

(2)教學例6

學生審題之後,引導學生思考:解決這個問題就是要計算什麼?然後指出求杯子的容積就是求這個圓柱形杯子可容納東西的體積,計算方法跟圓柱體積的計算方法一樣,再讓學生獨立解決。反饋時,要引導學生交流自己的解題步驟,著重說明杯子內部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。

(三)訓練與強化。

1、基本練習。

練習三第1題,學生獨立完成,這兩個都可以直接用V=sh來計算。全班訂正,注意培養學生良好的計算習慣。

2、變式練習。

第2題,這題中給的條件不同,不管是知道半徑還是直徑,我們都要先求出底面積,再求體積。學生獨立完成,在交流時,注意計算方法的指導。

第3題。求裝多少水,實際是求這個水桶的容積。學生獨立完成,全班交流。水是液體,單位套用毫升或升。

3、綜合練習。

第5題。這題中知道了圓柱的體積和底面積求高,引導學生推出h=V÷s,如果有困難,也可列方程解答。學生獨立完成,有困難的小組交流。

4、提高性練習。22頁第10題,學生先小組討論,再全班交流。

(四)總結與提高。

這節課我們是怎樣推導出圓柱體積的計算方法的?圓柱和長方體、正方體在形體上有什麼相同的地方?像這樣上下兩個底面一樣,粗細不變的立體圖形叫做直柱體,直柱體的體積都可以用底面積×高計算。出示幾個直柱體(例:三稜柱、鋼管等),讓學生計算出他們的體積。

國小六年級下冊數學《圓柱的體積》教案 篇2

教學過程

一、複習導入

1.回顧上節課內容,提問:圓柱的特徵,圓柱的表面積計算方法。

導入:這節課我們學習圓柱的體積。

2.想一想,提問:什麼叫做體積?我們學過哪些物體的體積計算公式?

(物體所占空間的大小叫做體積。學過長方體正方體的。)

它們的計算公式是什麼?可以歸納為:

長(正)方體的體積===底面積*高

3.想一想:圓面積計算公式的推導過程。

(把圓面積轉化為一個近似的長方形的面積,從而推導出圓面積的計算公式)

那么,能不能把圓柱轉化為我們已學過的圖形來計算它的體積?

二、新授:

敘:以上研究圓面積計算公式的方法叫做割補法,這種方法也適用於推導圓柱體積的計算公式。下面請同學們打開課本看書自學。

演示並提問:

(1)拼成的長方體的體積與圓柱的體積有什麼關係?

(2)拼成的長方體的底面積與圓柱的哪部分有關係?有什麼關係?

(3)拼成的長方體的高與圓柱的哪部分有關係?有什麼關係?

總結:長方體的體積與圓柱的體積相等,長方體的底面積與圓柱的底面積相等,長方體的高與圓柱的高相等。

因為:圓柱的體積===長方體的體積

長方體的體積===底面積*高

↓↓↓

所以:圓柱的體積===底面積*高

用字母表示為:v==sh

運用以上公式,完成練習題。

(注意:單位要統一,要認真審題,認真計算。)

動腦筋,思考以下幾個問題:

已知如下條件,如何求圓柱的體積?

(1)底面積s、高h→→體積v==

(2)底面半徑r、高h→→體積v==

(3)底面直徑d、高h→→體積v==

(4)底面周長c、高h→→體積v==

強調:圓柱的體積v=sh=r²h,在沒有告訴底面積和高時,要先找底面半徑和高,套用v=r²h去計算。

三、鞏固練習.(填表)

hvs=20平方分米

4分米

r=5厘米

10厘米

d=8分米

6分米

c=12.56米

2米

四、課堂小結.

同學們,通過這堂課的學習你知道了些什麼?誰來說一下。

回答得非常好,下去以後可以套用所學知識去解答一些實際問題。

板書設計:

圓柱的體積

圓柱的體積===底面積*高

↓↓↓

長方體的體積===底面積*高v==sh

作業設計:完成習題.

國小六年級下冊數學《圓柱的體積》教案 篇3

最近,本人在《國小教學設計》看到一則“圓柱的體積”教學實錄精彩片段,它以一種全新的視角詮釋了新課標所倡導的理念,給我留下了較為深刻的印象。現把它擷取下來與各位同行共賞。

……

師:圓柱有大有小,你覺得圓柱體積應該怎樣計算呢?

生:(絕大部分學生舉起了手)底面積乘高。

師:那你們是怎樣理解這個計算方法的呢?

生1:我是從書上看到的。

(舉起的手放下了一大半。很明顯,大部分同學都看到或聽到這個結論,並不理解實質的涵義。但仍有幾位學生的手高高舉起,躍躍欲試,臉上的神情告訴老師:他們有更高明的答案。老師便順水推舟,讓他們來講。)

生2:我是這樣思考的:長方體、正方體和圓柱體它們都是立體圖形,體積都是指它們所占空間的大小。而長方體、正方體的體積都可以用底面積乘高來計算,所以我想計算圓柱體的體積時也應該可以用底面積乘高吧!

師:你能迅速地把圓柱體與以前學過的長方體、正方體聯繫起來,進而聯想到圓柱體的體積計算方法。真行!當然這僅是你的猜測,要是再能證明就好了。

生3:我可以證明。推導長方體體積公式時,我們是採用擺體積單位的方法,用每層個數(底面積)×層數(高)現在求圓柱體積我們也可以沿襲這種思路,在圓柱體內部同樣擺上合適的體積單位,用每層個數×層數,每層的個數也就是它的底面積,擺的層數也就是高。那不就證明了圓柱體積的計算公式就是用底面積乘高嗎?

(教室里立刻響起了熱烈的掌聲,許多同學被他精彩的發言折服了,理性的思維散發出誘人的魅力。)

師:你真聰明,能用以前學過的知識解決今天的難題!(這時舉起的手更多了。)

生4:我有個想法不知是否可行、在推導圓面積計算方法時,我們是把圓轉化成了長方形,圓柱的底面就是一個圓,所以我就想是否可以把圓柱體轉化成長方體呢?

師:(翹起了大拇指)你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉化成近似的長方體。

生5:我還有一種想法:我們可以把圓柱體看成是無數個同樣大小的圓片疊加而成的。那么圓柱體的體積就應該用每個圓片的面積×圓的個數。圓的個數也就相當於圓柱的高。所以我認為圓柱體的體積可以用每個圓的面積(底面積)×高。

師:了不起的一種想法!(師情不自禁的鼓起了掌。)

生6:我看過爸爸媽媽“扎筷子”。把十雙同樣的筷子扎在一起就變成了一個近似的圓柱體。我們可以把每根筷子看成一個長方體,那么紮成的近似圓柱體的體積應該是這二十個小長方體的體積之和。又因為它們具有同樣的高度,運用乘法分配律,就變成了這二十個小長方體的底面積之和×高。

師:你真會思考問題!

生7:我還有一種想法:學習圓的面積時我們知道,當圓的半徑和一個正方形的邊長相等時,圓的面積約是這個正方形的3.14倍。把疊成這個圓柱體的這無數個圓都這樣分割,那么圓柱體的體積不也大約是這個長方體的體積的3.14倍嗎?長方體的體積用它的底面積×高,圓柱體的體積就在這基礎上再乘3.14,也就是用圓柱體的底面積×高。

生8:把圓柱體形狀的橡皮泥捏成等高長方體形狀的橡皮泥,長方體體積用底面積乘高來計算,所以計算圓柱體的體積也是用底面積乘高吧!

師:沒想到一塊橡皮泥還有這樣的作用,你們可真是不簡單!

……

整節課不時響起孩子們、聽課老師們熱烈的掌聲。

過去的數學課堂教學,忠誠於學科,卻背棄了學生,體現著權利,卻忘記了民主,追求著效率,卻忘記了意義。而這個片斷折射出,新課標理念下的不再是教師一廂情願的“獨白”,而是學生、數學材料、教師之間進行的一次次真情的“對話”。

現從“對話”的視角來賞析這則精彩的片段。

一、“對話”喚發出學習熱情。

《新課程標準》指出:有意義的數學學習必須建立在學生的主觀願望和知識經驗的基礎上,在這樣的氛圍中,學生的思考才能積極。在當今數位化、信息化非常發達的社會中,學生接受信息獲取知識的途徑非常多,圓柱體的體積計算方法對學生來說並不陌生,如果教師再按傳統的教學程式(創設情境——研究探討——獲得結論)展開,學生易造成這樣的錯誤認識:認為自己已經掌握了這部分知識而失去對學習過程的熱情。而本課,教學伊始,教師提問“圓柱體的體積如何計算”,讓學生先行呈現已有的知識結論,在通過問題“你是怎樣理解這個公式的呢?”把學生的注意引向對公式意義的理解,學生積極主動的投入思維活動,喚發學習熱情。

二、“對話”迸發出智慧的火花

“水本無華,相盪而生漣漪;石本無火,相擊始發靈光。”思維的激活、靈性的噴發源於對話的啟迪和碰撞。本課如果按照教材的設計:通過把圓柱體轉化為長方體,研究圓柱體和長方體間的關係,得出計算公式:底面積×高,經歷這樣的學習過程學生的思維是千篇一律的,獲得的發展也是有限的。而這位教師對教材進行相應的拓展,先呈現公式,後提問“你是怎樣理解這個公式的呢?”,使學生的思維沿著各自獨特的理解“決堤而出”。

三、“對話”贏得心靈的敞亮和溝通

“真行!當然這僅是你的猜測,要是再能證明就好了。”“你真聰明!能用以前學過的知識解決今天的難題!”“你這種想法很有意思!等會你可以試一試,想想怎樣分割能把一個圓柱體轉化成近似的長方體。”……教師不斷地肯定著學生的每一種觀點,引燃學生的每一絲髮現的火花;同時象一位節目主持人一樣,平和、真誠,傾聽、接納著學生的聲音,在課堂上,學生真是神了、奇了,說出一種又一種的方法,連聽課老師也情不自禁的鼓起掌來。此情此景,我們不難看出,老師能注意蹲下身來與學生交流,注意尋求學生的聲音,讓學生在一種“零距離”的、活躍的心理狀態下敞亮心扉,放飛思想,進行著師生“視界融合”的真情對話,贏得心靈的敞亮和溝通。

數學教學在對話中進行,展示著民主與平等,凸現著創造與生成。有效的對話中不僅有信息的傳輸,更有思維的升華;不僅能增進學生的理解,更能促進教師的反思;不僅有繼承的喜悅,更有創造的激情。這則教學片斷,有很多的精彩值得我們欣賞與讚嘆。我想說:我的內心很受鼓舞,我會向這位老師學習,讓自己的課堂也能成就精彩的時刻!

國小六年級下冊數學《圓柱的體積》教案 篇4

教學目標

1、知識與技能:理解教材中形體轉化的過程,掌握圓柱體積的計算公式,會用公式計算圓柱的體積,解決有關簡單的實際問題。拓展教材內容,初步了解直柱體的相關知識。

2、過程與方法:利用教材空間,為學生搭建思維平台。讓學生經歷觀察、想像、思考、交流等教學活動過程,理解圓柱體積計算公式的推導過程,提高學生思維能力,同時體驗轉化和極限的思想。

3、情感與態度:挖掘教材內涵,把圖形的變換過程,轉變為學生思維能力的培養、提高的過程,並進一步發展其空間觀念,領悟學習數學的方法,激發學生學習興趣,滲透事物是普遍聯繫的唯物辯證思想。

教學重點:

理解圓柱體積計算公式的推導過程,運用圓柱體積計算公式準確解決實際問題。

教學難點:

正確理解圓柱體積計算公式的推導過程。

教學過程

一、情境導入:

老師手拿一個圓柱形橡皮泥(大小適宜)。

1、師:通過前面的學習,關於圓柱你已經知道什麼?還想了解它的哪些知識?

生1:(已學知識)。

生2:圓柱是一種立體圖形,那么它的體積怎么計算?

【學情分析:在學習圓柱的認識和表面積的基礎上,學生能夠順利回憶已學的知識,而且質疑提出即將學習的知識,明確學習目標,為本節課的學習找到思維與認知源泉。】

2、師:聯繫已經掌握的有關立體圖形的知識,你能想辦法求出這個圓柱體的體積嗎?

生1:圓柱體的體積計算沒有學過,無法計算。

生2:將這個圓柱放入一個盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。

生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。

【學情分析:學生在五年級學習長方體、正方體有關知識的基礎上,很容易想到運用“排水法”來解決問題,所以這一環節也充分給予學生展示自我的機會,培養思維中的自信心。】教師在學生中找出小助手,幫助測量有關數據,全體同學計算水的體積,並作記載。

師:運用轉化思想,聯繫已學知識,解決新生問題,同學們真了不起!

【設計意圖:學生的學習活動要建立在已有的知識和認知基礎上,通過水的變形把圓柱的體積轉化為長方體的體積來計算,使學生初步感知數學轉化思想在解決問題中的價值,同時提高學生解決問題能力和思維能力。】

4、師:如果要求壓路機前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計算嗎?(不能)那么求圓柱的體積時是否也有一個簡單、易算的體積計算公式呢?今天我們就一起來研究圓柱體積的計算方法。

【設計意圖:學生的學習應該是出於自身需要的,是主動的、有效的,已有的知識已經不能解決新生問題時,學生產生強烈的求知慾望,為主動參與知識的形成過程,探究圓柱的體積計算公式奠定積極的情感基礎。】

二、新舊過度:

教師引導學生觀察圓柱形實物。

1、

師:發揮你的想像,哪些平面圖形可以演變為圓柱體?生1:以長方形的一條長為軸,把長方形旋轉一周,就形成一個圓柱體。

(教師演示:大小不同的長方形旋轉形成圓柱體。)

生2:把一個圓形上下平移,移動過的軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)

師:通過剛才的演示過程你覺得圓柱的體積大小與什麼有關?(圓柱的底面積和高)

【設計意圖:其一,讓學生初步感知幾何圖形點———線———面———體的演變過程;其二,訓練學生的空間思維能力,進而提升學生的數學思維含量;其三,為進一步探究圓柱的體積計算公式明確探究方向。】

2、師:圓柱的底面大小就是圓柱底面圓形的面積,叫做圓柱的底面積。誰還記得圓面積計算公式的推導過程?

學生口述,同時課件演示圓形轉化為近似長方形的過程。

【設計意圖:回憶圓轉化為近似長方形的過程,使學生重溫化曲為直、化圓為方的數學思想,而且溝通新舊知識間的聯繫,同時為下一步對圓柱的轉化(等份切割)順利進行提供思維方法的幫助。】

3、教師小結:我們能把一個圓採用化曲為直,化圓為方的方法轉化成近似的長方形,現在能否採用類似的方法將圓柱切割拼合成一個學過的立體圖形呢?

三、自主探究

1、學生手拿圓柱實物,仔細觀察,獨立思考。

2、組織學生小組討論,把個人的想法在小組中交流,形成統一意見。

強調:在討論過程中,教師參與其中,傾聽學生想法,調整匯報次序,同時提醒學生觀察手中圓柱實物。

3、匯報交流,統一意見。

生1:把一個圓剪拼成一個近似的長方形,然後把圓形和近似長方形同時向上平移相同的高度,這時他們的軌跡一個是圓柱體,一個是近似長方體,而且它們的體積相等。

(師:一個圓柱和一個長方體只要底面積和高分別相等,它們的體積就相等嗎?一會兒我們來解決這個問題。)

生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個近似的長方體。

(師:為什麼是近似的長方體?———滲透數學極限思想)

【設計意圖:這個轉化的過程是本節課的難點,在前面知識鋪墊的基礎上,發揮學生集體智慧的結晶,為學生提供廣闊的思維和交流平台,真正使學生的思維與學習相輔相成,從而達到提高學生空間思維能力之目的。】

4、課件演示:

師:仔細觀察下面這組課件,和你想像的是否一樣?

演示兩次,第一次把圓柱平均分成16份,再剪拼成一個近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個近似的長方形。

師:如果再平均分成更多的份數,結果會怎樣呢?(平均分成的份數越多,轉化成的形體就越接近長方體——極限思想)【問題討論:課件中把圓柱平均分割後,其中的一塊又平均分成兩份,其中的一份移接到另一端,拼成一個更接近的長方體,而教材上的意圖並沒有這樣的過程,我認為教材的方法是很可取的,符合極限思想,並且可以給予學生充分的思考和想像空間,因為只要均分的份數無限多時,拼成的圖形就是一個長方體。然而實際教學中只是把圓柱平均分成16份或32份,那么在實際教學中如何更準確的詮釋實際與理論之間的這種矛盾,從而更好的服務於學生思維、服務於課堂教學呢?】

5、直觀演示,尋找聯繫師:為了強化剛才的轉化過程,我們再藉助實物教具演示一遍(教具一半為紅色,一半為綠色)。仔細觀察演示過程,你能發現什麼?

生:長方體的體積相當於圓柱的體積,長方體的底面積相當於圓柱的底面積,而且它們的高相等。

因為:長方體的體積=底面積×高

所以:圓柱的體積=底面積×高

V = S h 【學情分析:在小組討論、課件演示的基礎上,再有雙色教具(一個紅色教具,一個綠色教具,偶然發現雙色混合更容易輔助學生找出聯繫)的實物演示,使得尋找圓柱體與長方體之間的聯繫變得異常容易,並且自然而然得到圓柱體體積計算公式,同時使學生感受獲取知識的成功之喜悅、艱辛之感慨。】

四、實踐套用:

1、從公式中可以看出,只要知道哪些條件就能計算圓柱的體積?口算:一個圓柱的底面積是90平方分米,高20分米,它的體積時多少?

強調單位:90×20=1800(立方分米)

2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計算公式計算它的體積,你需要測量哪些數據?(底面直徑、高)

找學生實際測量,保留整厘米數,進行計算。將計算結果與用排水法求出的體積做一對比,可能存在誤差。師:為什麼會產生誤差呢?

生1:可能測量有誤差,並且還要保留。

生2:測量水的長、寬時,容器的厚度忽略不計,也能產生誤差。教師說明:每一個科學結論都必須經過反覆的.實驗、計算,才能得到正確的結論,我們在學習上就要有這種不怕吃苦、勇於探索的精神。

3、出示一個圓柱形玻璃杯,出示一袋液態奶(225ml),問:通過計算你能知道這個杯子能裝下這袋奶嗎?除水杯的厚度忽略不計外,你還需要知道哪些條件?

(教師直接給出玻璃杯的底面直徑和高)

【設計意圖:層次性練習設計,第一層:基本練習,使學生更好的掌握本課重點,夯實基礎知識;第二層,變式練習,進一步加深學生對圓柱體積公式的理解和掌握,學會靈活運用公式,在提高學生動手操作能力的同時,培養學生的邏輯思維能力;第三層,密切聯繫生活,運用公式解決引入環節中的問題,使學生的思維處於積極的狀態,達到培養學生思維的靈活性和創造性解決問題能力的目的。】

五、看書質疑:看書P19—20,師:哪些知識是我們沒有講到的?(V=∏r2 h)結合本節課的探究過程,你有什麼疑問嗎?

若學生有困難就教師提出問題:長方體和圓柱體有什麼相同的地方,為什麼他們的體積都能用V=Sh來計算?

學生獨立思考後,教師解釋:我們現在所學的圓柱體是直圓柱,他與長方體都屬於直柱體,只要是直柱體,體積都可以用V=Sh來計算。如三稜鏡的體積=底面三角形的面積×高

【設計意圖:課本是最好的教學輔助工具,是學生學習最好的夥伴,讓學生再次重溫本節課的學習歷程,養成一種良好的學習習慣和學習品質。】

【問題討論:我個人認為,在每一節課每個知識點的教學過程中,都儘量站在“數學”的高度來教學,於是對教材內容進行了拓展。長方體與圓柱體的體積公式V=Sh正好說明直柱體體積=底面積×高,但因為長方體(平面圍成)與圓柱體(曲面圍成)之間的聯繫較難找出,無疑增加了學生的思維負擔,但從數學學習的角度來說,它卻為今後“幾何”學習奠定基礎,這一環節處理是否有利於六年級學生思維發展?】

六、全課小結:

師:通過本節課的學習,你有什麼收穫?

【設計意圖:收穫包括知識、能力、方法、情感等全方位的體會,在這裡採用體溫師小結,使學生暢談收穫,發現不足,既能訓練學生語言表達能力,又能培養學生的歸納概括能力,同時通過對本節所學知識的總結與回顧,還能使學生學到的知識系統化、完整化。】

啟發與思考

啟發

一、充實教材,為提高學生思維能力搭建平台

課堂教學中讓學生在教師的啟發指導下,獨立思考、積極主動的去探究知識是怎樣形成的,才能真正使學生成為學習的主體。在教材中已經提供了圖形轉化的過程,那么在沒有學具讓學生進行動手操作、親自感悟的情況下,怎樣讓學生的思維真正參與到知識的形成過程呢?作為教師,必須充實教材。課堂中讓學生動手測量計算所必需的數據,自己感悟學習圓柱體積計算公式的必要性,合作探究圓柱體的轉化方法和過程。所有這些環節的設計,都在潛移默化中引導學生主動思考,主動參與,在思考與參與中提高了學生的思維能力。

二、藉助教材,為提高學生思維能力尋找支點

數學知識具有一定的結構,知識間存在密切的聯繫,教學時要找出知識間的內在聯繫,幫助學生建立一個較完整的知識系統。教材中設計了引問“圓可以轉化成長方形計算面積,圓柱可以轉化成長方形計算體積嗎?”但我認為“面體過渡”在幾何領域中本身就是一個難點,而“面面互化”遷移到“體體互化”,就難上加難,所以設計中用較長時間溝通新舊知識間的聯繫:排水法的套用,平面圖形演變為立體圖形的過程,圓面積的推導過程。在複習當中,學生的綜合運用能力得到提高,更重要的是為下一步學生的思維活動確立支點,進而提高學生的思維能力。

三、理解教材,為提高學生思維能力提供保證數學思想的教學才是數學課堂教學中最本質的教學。從教材的編排,還有各知識點的呈現中可以看出,有一條不變的主線貫穿始終,那就是轉化思想中的化曲為直、化圓為方。那么,只要教師真正理解教材的這一編寫意圖,學生所收穫到的就不僅是圓柱體積的計算方法,而是真正感悟到數學轉化思想,學生必將運用這種思想影響今後的學習,為其思維能力得以持續發展提供保證。思考

思考

一、演示、觀察能否代替操作?

教材中提供了教具演示,但在本節教學前,始終沒有找到學生使用的操作學具,而自己也嘗試用土豆、橡皮泥等製作學具,都因為難度太大(粘接處)而告失敗,在無奈之餘,設計了“獨立思考———小組探究———課件演示———教具操作”四個環節來突破本節難點。就學生理解、接受方面來說效果不錯。但沒有讓學生親自操作,總感覺影響學生思維發展。類似教學如:圓錐高的認識。

二、研究中的失誤會不會造成學生認知的“失誤”?

課堂中為求真實,進行了兩次實際測量(第一次測長方體中水的長寬高;第二次測圓柱形橡皮泥的底面直徑和高)。兩次計算結果的對比,使學生思維與課堂結構都體現完整性。但由於種種誤差,計算結果很可能不會相等,這就可能會讓學生對結論產生懷疑(儘管教師已經說明),那么是否有必要讓學生經歷一個“失誤”的過程呢?類似教學如:圓周率的計算。

國小六年級下冊數學《圓柱的體積》教案 篇5

學習目標

1.使學生理解和掌握圓柱的體積計算公式,並能根據題里的條件正確地求出圓柱的體積。

2. 培養學生初步的空間觀念和思維能力;讓學生認識“轉化”的思考方法。

學習重點 理解和掌握圓柱的體積計算公式

學習難點 圓柱體積計算公式的推導。

一、溫故知新

1、什麼是體積?( )2.長方體的體積=(  )字母公式:

或長方體的體積=(  )字母公式:

3、圓的面積=(  )字母公式:

4. 圓是把圓面積轉化成近似的長方形面積進行計算的。圓的面積是怎樣推倒得來的?

圓分割成若干等分,拼成近似的長方形,它的長等於圓的(  ),長方形的等於圓的(  ),長方形的面積等於(  ),所以圓的面積等於( )。

二、自主學習 

1.計算圓的面積時,是把圓面積轉化成我們學過的長方形進行計算的,能不能把圓柱轉化成我們學過的立體圖形來計算它的體積?

2、把圓柱的底面分成許多相等的扇形(16等分),然後把圓柱沿高切開,可能會拼成怎樣的圖形?( )

3、思考: 1)通過實驗你發現了什麼?

*拼成的近似長方體(  )沒變,( )變了。

*拼成的近似長方體和圓柱相比,底面形狀變了,由圓變成了近似(  ),(  )的大小沒有改變。

*近似長方形的高就是圓柱的( ).

2)推導圓柱體積公式。怎樣計算圓柱的體積?

長方體的體積可以用底面積乘高來計算,而在推導過程中,長方體的底面積就是圓柱的( ),高就是圓柱的(  ),所以圓柱的體積也可以用( )乘(  )來計算。

用字母表示:(  )

4補充例題:一根圓柱形鋼材,底面積是50平方厘米,高是2.1米。它的體積是多少?

①已知( )求( )

② 能不能根據公式直接計算?(  )因為(  )

③ 計算之前要注意什麼?

計算時既要分析題目中的( ),還要注意先統一( )。

④解出此題,代公式計算。

3、完成第20頁的“做一做”。

4、思考:如果已知圓柱底面半徑r和高h,圓柱體積的計算公式是怎樣的?______________

5、自學p20例6,,

6、比較一下補充例題與例6有哪些相同的地方和不同的地方?

7、做書上21頁1題。

國小六年級下冊數學《圓柱的體積》教案 篇6

本節課教學內容為圓柱體積計算公式的推導和套用(教材第19頁,例5),圓柱的體積是在學生已經學習了長方體的體積、圓的面積,認識了圓柱並會計算圓柱的表面積的基礎上教學的。圓柱的體積計算套用廣泛,又是圓錐體積計算的基礎,並且立體圖形的截拼是首次見面,把圓柱截拼成近似的長方體需要一定的空間想像力,因此本節教學內容既是這個單元的重點也是難點。

新課標強調:教材是一種重要的資源,對於教師來說如何更好的“用教材”而不是“教教材”,在實際教學中我結合:“圓柱的體積”一課的教學談談自己一點點的實踐體會。

【教學片斷】

一、創設情景、感知圓柱體積的概念。

教師拿出一個裝了半杯水的燒杯,拿出一個圓柱形的物體,準備投入燒杯中。

師:同學們想一想會發生什麼情況?(教師將圓柱形的物體投入水中。)請仔細觀察後,說一說你有什麼發現?

生:水面上升一些。圓柱形的物體擠掉了原來水占有的空間。

師:我們通常把這個空間叫體積。

生:我發現上升的水的體積和圓柱的體積是相等的。

師:同學們發現得都很精彩,誰來說一說什麼叫圓柱的體積。

生:圓柱所占空間的大小就叫圓柱的體積。

二、比較大小、創設求圓柱體積的情景。

教師又拿出一個圓柱。(底面略小而高長一些,體積相差不多)

師:這兩個圓柱的體積,哪個比較大一些?

生:第一個比較大,因為它高一些。

生:第二個比較大,因為它粗一些。

生:他們都是猜的。第一個圓柱它雖然高一些,但底面積小一些;第二個圓柱雖然底面大一些,它是的高少了一些。無法準確地比較它們的大小。

師:有什麼辦法能比較它們的大小呢?(小組討論)

生:準備半杯水,將第一具圓柱浸沒水中,作好標誌,再把第二個圓柱浸沒水中,作個標誌,哪個水面上升的高一些,哪個圓柱的體積就比較大。

生:要學會計算圓柱的體積後就好解決了。

三、大膽猜想,感知圓柱體積公式。

師:你覺得圓柱體積的大小和什麼有關?

生:和圓柱的高有關,一個圓柱它的高增加,它的體積也會變大些。

生:和圓柱的底面大小有關,一個圓柱它的底面增加,它的體積也會變大些。

師:很好!大膽地推想一下圓柱的體積應如何計算?(小組討論)

生:我猜想用圓柱的底面積乘以它的高就可以求出體積。

師:你同意他的猜想嗎?說說你的理由。

三、小心求證,論證圓柱體積公式。

師:同學們都很會大膽猜想,但還要小心地論證猜想的科學性。

教師拿出一具圓柱體體積教具,把它藏在衣服里,只露出一具底面。

師:你看到了什麼?

生:圓形。

師:你還記得圓面積轉化什麼圖形的面積來求它的公式的嗎?

生:把圓的面積轉化成長方形的面積。

教師把整個圓柱拿出來,問:怎么求這個圓柱的體積呢?(小組討論)

生:可以把這個圓柱轉化成我們已經會求的長方體的體積來求體積。

師:說說你們小組是如何轉化的。

生上台操作展示。生:我們把圓柱平均分成16分,可以拼成一個近似的長方體,這個長方體的高就是圓柱的高,這個長方體的底面積和圓柱的底面積相等。所以,圓柱的體積可以用底面積乘高來求。

師:你同意嗎?照這樣做一遍,然後說一說如何求圓柱的體積。

最後學生自主得出圓柱的體積公式。

【片段分析】

本節課的設計過程是:"創設情景----發現問題----提出問題----猜想假設----實踐操作----解決問題",這一教學過程,充分體現了以學生為主體的教學思想,教師充分地相信尊重學生,鼓勵其積極主動地探究問題,讓學生體驗解決問題的過程,體驗解決問題的成功。

1、注重了課程資源的開發。由於學生生活背景和思考角度的不同,所使用的方法必然是多樣化的,教師應尊重每位學生個性化的想法,並認真傾聽。本節課中多處合理地開發了學生的課程資源:一是在感知體積的概念時,教師通過做圓柱放入水的實驗,實實在在地讓學生用生活經驗感知體積的存在;二是在猜想體積公式時,學生一般的經驗是如果一個圓柱高(底面)不變,底面(高)越大體積越大,學生自然地就會利用自己的經驗想到圓柱的體積的大小與底面和高有密切的聯繫;三是在體積公式猜想時。猜想方法的多樣化就體現了問題解決策略的多樣化。有的學生聯繫實踐生活聯想,把圓柱看作是有很多個相等的圓疊加起來的;有的學生聯繫舊知識來推想,因為長文體和正方體的體積公式都是底面積乘高。學生是學生真正的主人,只有調動學生的學習積極性和平時的各種知識積累,這種知識的積累可以是以前學過的知識和方法,也可以生活中的經驗或經歷,這些都是課程資源,教師只有充分利用了這些課程資源,學生的學習活動才有可能真正成為有意義的過程。

2、注重數學思想方法和學習能力的培養。能力的發展決不等同於知識與技能的獲得。能力的形成是一個緩慢的過程,有其自身的特點和規律,它不是學生“懂”了,也不是學生“會”了,而是學生自己“悟”出了道理、規律和思考方法等。本節課沿著“猜想-驗證”的學習流程進行,給學生提供較充分的探索交流的空間,組織、引導學生“經歷觀察、實驗、猜想、證明等數學活動過程”,並把數學推理能力有機地融合在這樣的“過程”之中,有力地促使了學習改善學習方式。本課中學生“以舊推新”-大膽地進行數學的猜想;“以新轉舊”-積極把新知識轉化為已能解決的舊問題;“新舊交融”-合理地把新知識納入到原有的認識結構中,教學活動成了學生自己建構數學知識的活動。

整個教學過程是在“猜想-驗證”的過程中進行的,是讓學生在和已有知識經驗中體驗和理解數學,學生學會了思考、學會了解決問題的策略,學出自信。

國小六年級下冊數學《圓柱的體積》教案 篇7

一、說教材

1.教學內容

本節課是人教版六年國小數學課本第十二冊第三單元第二小節第一課時。內容包括圓柱體的體積計算公式的推導和運用公式計算它的體積。

2.本節課在教材中所處的地位和作用

《圓柱和圓錐》這一單元是國小階段學習幾何形體知識的最後部分,是幾何知識的綜合運用。學好這部分知識,為今後學習複雜的形體知識打下紮實的基礎,是後繼學習的前提。

3.教材的重點和難點

由於圓柱體積計算是圓錐體積計算的基礎,因此圓柱體積和套用是本節課教學重點。其中,圓柱體積計算公社的推導過程比較複雜,需要用轉化的方法來考慮,推導過程要有一定的邏輯推理能力,因此,推導圓柱體積公式的過程是本節課的難點。

4.教學目標

(1)知道圓柱體積計算公式的推導過程,會套用該公式計算圓柱的體積。

(2)初步建立空間觀念和邏輯推理能力。

(3)知道知識間是可以互相轉化的。

二、說教法

從形式已有的知識水平和認識規律出發,為了更好地突出重點,化解難點,掃清學生認知上的思維障礙,在實施教學過程中,主要體現以下幾個特點:

1.直觀演示,操作發現

教師充分利用直觀教具演示,引導學生觀察比較,再讓學生動手操作討論,使學生在豐富感性認識的基礎上,在老師的指導下,推導出圓柱體積計算的公式。從而使學生從感性認識上升到理性認識,體會知識的由來,並通過已學知識解決實際問題,充分發揮了直觀教學在知識形成過程中的積極作用,同時也培養了學生學習數學的能力和學習習慣。

2.巧設疑問,體現兩“主”

教師通過設疑,指明觀察方向,營造探究新知識的氛圍,在引導學生歸納推理等方面充分發揮了其主導作用,有目的、有計畫、有層次地啟迪學生的思維,充分發揮了學生的主體作用。把學生當作教學活動的主體,成為學習活動的主人,使學生在觀察、比較、討論、研究等一系列活動中參與教學全過程,從而達到掌握新知識和發展能力的目的。

3.運用遷移,深化提高

運用知識的遷移規律,培養學生利用舊知學習新知的能力,從而使學生主動學習,掌握知識,形成技能。

三、說學法

課堂教學中,不是老師單純地傳授知識,而是在老師的指引下,讓學生自己學,任何人都不能替代學生學習。所以要把教法融於學法中,在學法中體現教法。

本節課的教學,使學生掌握一些基本的學習方法

1.學會通過觀察、比較、推理能概括出圓柱體積的推導過程。

2.學會利用舊知轉化成新知,解決新問題的能力。

3.學會利用知識的遷移規律,把知識轉化成相應的技能,從而提高靈活運用的能力。

四、說教學過程

對本節課的教學,我們設計了以下幾個環節。

(一)複習舊知識,為引入新知識作準備

1.求下面各圓的面積(口算),單位為厘米

(1)半徑為1厘米;(2)直徑為4厘米;(3)周長為62。8厘米。

2.什麼叫做體積?怎樣計算長方體的體積?

(二)導入新課,隱射教學目標

1.觀察比較:出示幾組圓柱體實物(同底等高、同底不等高、等高不等底),引導學生觀察比較,老師提出問題:通過觀察,你想知道些什麼?了解些什麼?引導學生產生疑問後,教師這時交待,我們今天要學習的新知識,就能很好地解決這個問題(揭示課題)。讓學生自行設疑,教師向學生交待學習任務,使學生對新知識產生強烈的求知慾望,從而進入的學習狀態。

2.展示學習目標,學生認讀目標

教師通過展示目標,學生認讀目標,這時學生就能清楚地知道了學習的主要任務和要求,從而把教師的教學目標,轉化成了學生的學習目標。使學生帶著目標,有目的、有準備地學習下一步的新知識,學生就真正能成為學習的主人,也使教學變得更加明確具體,可操作、可檢測。同時也能激發起全體學生的參與達標意識,學生的主體地位就充分地顯示出來了。

(三)導入新課,實施教學目標

1.設疑:要判斷圓柱體積的大小,究竟哪個大?哪個小?到底圓柱的體積與什麼有關呢?能不能把圓柱轉化成我們學過的立體圖形來計算它的體積?這裡老師引導學生回憶圓的面積公式的推導過程,教師出示投影,幫助學生思考。

2.演示操作,揭示新知。

引導學生觀察,沿著圓柱底面把圓柱切開,可以得到大小相等的16快。演示給學生看以後,在讓學生動手操作,啟發學生說出轉化成我們熟悉的形體。同時引導學生觀察轉化前後兩種幾何形體之間的內在聯繫,圓柱的底面與長方體的底面有什麼關係?圓柱的高與長方體的高又有什麼關係?從而推導出圓柱體體積計算的公式,最後讓學生說一說圓柱體計算公式的推動過程。並板書:圓柱體的體積=底面積•高

引導學生用字母表示出來,最後讓學生看書質疑。

這部分教學設計意圖:根據教材特點,學生的認知過程,充分調動學生的學習熱情,激發求知慾望,調動學生的各種感官,完成從演示——觀察——操作——比較——歸納——推理的認識過程,讓知識在觀察、操作、比較中內化,實現由感性到理性,由具體到抽象,這種教學方法符合學生的認知規律,有助於突破難點,化解難點。

關於難點的突破,我們主要從以下幾個方面著手:

(1)引導學生通過觀察比較,明確圓柱體的體積與它的底面積和高有關。

(2)運用知識遷移的規律,啟發引導,層層深入促進學生在積極的思維中獲得新知識。

(3)充分利用直觀教具,師生互動,通過演示操作,幫助學生找出兩種幾何形體轉化前後的關係。

(4)根據新舊知識的連線點,精心設計討論內容,分散難點,促進知識的形成。

3.運用。

出示例1:先由學生自己嘗試練習,請一位學生板演,集體講評時提問學生,在解題時要注意什麼?讓學生自己來概括總結,通過學生的語言說出:(1)單位要統一(2)求出的是體積要用體積單位。

在掌握了圓柱體積計算的方法之後,安排例1進行嘗試練習,這樣既可以調動學生的學習積極性和主動性,又可以培養學生學習新知識的能力,同時把所學知識轉化為相應的技能。

(四)鞏固練習,檢驗目標

1.填表:集體訂正後,教師提問,這道題已知圓柱的底面積和高,求它體積,如果不知道圓柱的底面積,那還必須知道什麼條件才能求出它的體積?該怎樣求?

2.完成練習六第2題。

通過練習,鞏固新知識,加深對新知識的理解,把所學知識進一步轉化為能力,在練習中發展智力,培養優良的思維品質和學習習慣。

3.變式練習:已知圓柱的體積、底面積,求圓柱的高。

這道題的安排是對所學內容的深化,在掌握基礎知識的前提下,培養思維的靈活性,同時深化教學內容,防止思維定勢。

4.動手實踐:讓學生測量自帶的圓柱體。

教師提問:如果要知道這個圓柱體積,該用什麼方法?讓學生說一說是怎樣測量的?又是如何計算的?

這道題的設計,一方面培養了學生解決實際問題的能力,另一方面也加深了對圓柱體積計算公式的理解,同時數學知識也和學生的生活實際結合起來,使學生明白,我們所學的數學是身邊的數學,是有趣的、有用的數學,從而激發學生的學習興趣。

(五)總結全課,深化教學目標

結合板書,引導學生說出本課所學的內容,我們是這樣設計的:這節課我們學習了哪些內容?圓柱體積的計算公式是怎樣推導出來的?你有什麼收穫?然後教師歸納,通過本節課的學習,我們懂得了新知識的得來是通過已學的知識來解決的,以後希望同學們多動腦,勤思考,在我們的生活中還有好多問題需要利用所學知識來解決的,望同學們能學會運用,善於用轉化的思想來武裝自己的頭腦,思考問題。

國小六年級下冊數學《圓柱的體積》教案 篇8

4、教學例題

(1)出示例題:下面這個杯子能不能裝下這袋牛奶?

並讓學生思考:要知道杯子能不能裝下這袋牛奶,得先知道什麼?(應先知道杯子的容積)

(2)學生嘗試完成例題。

5、比較一下例題有哪些相同的地方和不同的地方?(相同的是都要用圓柱的體積計算公式進行計算;不同的是第一例題已給出底面積,可直接套用公式計算;第二例題只知道底面直徑,要先求底面積,再求體積.)

三、鞏固練習

1、做第21頁練習三的第1~2題.

這兩道題分別是已知底面半徑(或直徑)和高,求圓柱體積的習題.要求學生審題後,知道要先求出底面積,再求圓柱的體積。

四、布置作業

練習三第3、4題。

國小六年級下冊數學《圓柱的體積》教案 篇9

師:請同學們回憶,圓的面積公式是怎樣推導出來的?

生1:將圓分成好多等份,拼成一個近似的長方形……

生2:分成若干等份,分得的越多越接近於長方形。

師:補充得好,兩位同學握握手,你們的發言合起來就全面了。

評析:評價的指向性很明確,促進積極參與,積極合作。

多媒體顯示:把圓分成若干等份,拼成一個近似的長方形。

師:什麼叫體積,常用的體積單位有哪些?

生1:物體所占空間的大小叫做物體的體積,常用的體積單位有:立方米、立方分米、立方厘米。

師:說得滴水不漏,能比劃一下1立方分米、1立方厘米、1立方米的大小嗎?

評析:表揚的同時委婉地提出新的要求,學生會很願意做。

師:長方體(或正方體)的體積怎樣計算?

生:底面積乘高。(板書:長方體的體積=底面積×高。)

師:根據體積的含義,想一想,什麼叫圓柱的體積?

生1:這個圓柱所占空間的大小。

師:(出示任意圓柱)你能估計一下這個圓柱的體積大約是多少嗎?

生:10立方厘米。

師:你真勇敢,是第一個敢於估計的同學,可是你估計的數據太小,想再試一次嗎?

評析:評價時設法找到他的過人之處,給予激勵,促進其產生更高的需求。

(師指導:伸出手指比劃1立方厘米,1立方分米,幫助該生掌握估算的技巧。)

生:600立方厘米。

師:同學們認為是不是比較接近了?

眾生一致同意。

評析:動員全員參與估計,參與評價,此時的集體關注產生了強大的力量。

師:拿出你們帶來的圓柱,同桌的兩個同學各自估計一個數據並記錄下來。

師:如果想準確地計算出這個圓柱的體積,該怎樣算呢?猜測一下。

生1:兩個底面積的和乘2。

師:膽略過人,真佩服!

評析:評價滿足了孩子的內心需要:被老師佩服,那是何等自豪!內心獲得愉悅感。該評價語體現了促進學生髮展的課堂教學評價的基本原則:發展性原則,評價的作用在於教學而不是區分學生的優劣和簡單地判斷答案的對錯。促進學生髮展的課堂教學評價不能只對學生的學習情況作簡單的好壞之分,而在於強調其形成性作用,注重發展功能。一次評價不僅是對一段活動的總結,更是下一段活動的起點、導向和動力。

師:你同意這個猜測嗎?(大部分學生搖頭。)

生2:底面積乘高。

師:怎樣證明你的猜想是正確的呢?(等待……)

師:能轉化成我們學過的立體圖形嗎?

生:能。

師:想試試嗎?(各合作小組立即行動,組長作了分工,用學生課前準備好的圓柱體蘿蔔或山芋嘗試切拼。)

(老師儘可能地參與多組活動,並指導組與組之間的互評。)

師:自己認為你獲得成功的組請舉手,(有一半小組獲得成功)不管是成功還是失敗,我們都能從中受到一些啟發。發明家愛迪生經常要經過上千次實驗才能成功一項發明,失敗了,下次再來。下面請合作切拼成功的小組介紹一下你們是怎樣切拼的。

評析:評價沒有忽視失敗的同學,言外之意:只要認真參與做了,哪怕失敗了,也能獲得一些經驗,老師仍然欣賞你!人的一切活動,包括學習要受人的意識支配,所以教學評價就不能僅僅局限於關注知識的掌握,更要促進其興趣、愛好、意志等個性品質的形成和發展。根據課程標準和教育教學目標,對學生的學習態度、探究與實踐能力、合作、交流與分享等一個或幾個方面進行描述,判斷學生當前的學習狀態,真正體現評價的過程性。

生:因為圓柱的底面是一個圓,根據圓可以切拼成近似的長方形,再沿著高的方向切,就可以拼成長方體了。

師:說得真精彩(豎大拇指,鼓掌)。

評析:利用體態語,和學生共同享受成功的快樂!通過分享成功的喜悅,產生心靈的共鳴。

師:切拼前後,什麼變了,什麼沒有變?

(小組討論上面的思考題。)

生:體積沒有變,底面積沒有變,高也沒有變,只是形狀變了,由圓柱轉化成長方體了。

國小六年級下冊數學《圓柱的體積》教案 篇10

尊敬的各位領導、老師:

大家好!今天,我說課的內容是北師大版國小數學六年級下冊《圓柱的體積》。

一、把握教材,目標定位

《圓柱的體積》是在學生初步認識了圓柱體的基礎上,進一步研究圓柱體的特徵,讓學生比較深入地研究立體幾何圖形,是學生髮展空間觀念的又一次飛躍。圓柱體是基本的立體幾何圖形,通過學習,可以培養學生形成初步的空間觀念,為下一步學習“圓錐的體積”打下基礎。根據本節課的性質特點和六年級學生以形象思維為主、空間觀念還比較薄弱的特點,我確定本節課的教學目標為:

1、知識與能力:通過推導圓柱體積公式的過程,向學生滲透轉化思想,建立空間觀念,培養學生判斷、推理的能力和遷移能力。

2、過程與方法:結合具體情境和實踐活動,理解圓柱體積的含義。探索並掌握圓柱體積的計算方法,能正確計算圓柱的體積,並會解決一些簡單的實際問題。

3、情感、態度、價值觀:感悟數學知識的內在聯繫,增強學生套用數學的意識,激發學生的學習興趣。

教學的重點和難點:

由於圓柱體積計算是圓錐體積計算的基礎,因此圓柱體積和套用是本節課教學重點。其中,圓柱體積計算公式的推導過程比較複雜,需要用轉化的方法來推導,推導過程要有一定的邏輯推理能力,因此,推導圓柱體積公式的過程是本節課的難點。

二、把握學情,選擇教法

(一)學情分析

六年級的學生已經有了較豐富的生活經驗,這些感性經驗是他們進一步學習的基礎,本節課的學習過程正是讓學生的感性經驗上升到理性經驗的過程,符合學生的年齡特徵和認知規律,在這一過程中,能使學生體會到認識事物和歸納事物特徵的方法,學會運用數學的思維方式去認識世界。

(二)、選擇教法,實踐課題。

《新課程標準》指出:數學教學應聯繫現實生活,使學生從中獲得數學學習的積極情感體驗,感受數學的力量。同時我緊密結合自己的課題“培養學生自主合作學習能力與學生數學素養的策略研究”、“在數學課上如何激發學生的學習興趣”。通過教學實踐,使學生學會自主學習和小組合作,培養學生的創新精神和小組合作及套用數學意識。因此,在本節課中,我認為運用活動教學形態,多媒體演示形態,採取“引導-合作-自主—探究”的教學方法,使每個學生都能參與到學習中,感受到學習的樂趣,從而突破本課的難點。

三、教學策略的選擇。

現代教育心理學認為:小學生思維的發展是從具體形象思維向抽象思維過渡的。因此,按國小認知規律從“具體感知-形成表象-進行抽象”的過程,我打算主要採用觀察發現法、實驗法,以及分組討論、合作學習等形式,並運用多媒體輔助教學,讓學生在觀察、感知各種實物的基礎上,動手操作,分組討論、合作學習,教師恰當點撥,適時引導等方法及手段,激發學生的學習興趣,調動學生的學習積極性,讓學生通過動手操作、觀察、實驗得出結論,體現了以學生為主體、教師為主導的教學原則。

四、基於以上構想,我確定本節課的教學程式為:

教師活動:創設情境協作指導拓展延伸

學生活動:操作感悟自主探究實踐套用

具體為三個環節進行教學:

1.直觀演示,操作發現

讓學生充分利用直觀教具觀察、比較、動手操作、討論交流,使學生在豐富感性認識的基礎上,在老師的指導下,推導出圓柱體積計算的公式。從而使學生從感性認識上升到理性認識,體會知識的由來,並通過已學知識解決實際問題,充分發揮了直觀教學在知識形成過程中的積極作用,同時也培養了學生學習數學的能力和學習習慣。

2.巧設疑問,體現兩“主”

教師通過設疑,指明觀察方向,營造探究新知識的氛圍,在引導學生歸納推理等方面充分發揮了其主導作用,有目的、有計畫、有層次地啟迪學生的思維,充分發揮了學生的主體作用。把學生當作教學活動的主體,成為學習活動的主人,使學生在觀察、比較、討論、研究等一系列活動中參與教學全過程,從而達到掌握新知識和發展能力的目的。

3.運用遷移,深化提高

運用知識的遷移規律,培養學生利用舊知學習新知的能力,從而使學生主動學習,掌握知識,形成技能。

現代課堂教學中,不是老師單純地傳授知識,而是在老師的指引下,讓學生自己學,任何人都不能替代學生學習。所以要把教法融於學法中,在學法中體現教法。

本節課的教學,使學生掌握一些基本的學習方法

1.學會通過觀察、比較、推理能概括出圓柱體積的推導過程。

2.學會利用舊知轉化成新知,解決新問題的能力。

3.學會利用知識的遷移規律,把知識轉化成相應的技能,從而提高靈活運用的能力。

具體教學程式:

(一)、情景引入:

1、複習:

大家還記得長方體、正方體的體積怎樣求嗎?讓學生說出公式。出示圓柱形水杯。(1)老師在杯子裡面裝滿水,想一想,水杯里的水是什麼形狀的?

(2)你能想辦法計算出這些水的體積嗎?

(3)討論後匯報:把水倒入長方體容器中,量出數據後再計算。

2、創設問題情景。

如果要求壓路機圓柱形前輪的體積,或是求圓柱形柱子的體積,還能用剛才那樣的方法嗎?剛才的方法不是一種普遍的方法,那么在求圓柱體積的時候,有沒有像求長方體或正方體體積那樣的計算公式呢?今天,我們就來一起研究圓柱體積的計算方法。(板書課題:圓柱的體積)通過創設問題情景,可以引導學生運用已有的生活經驗和舊知,積極思考,去探索和解決實際問題,並能製造認知衝突,形成"任務驅動"的探究氛圍。

(二)、新課教學:

設疑揭題:同學們想一想,我們當初是如何推導出圓的面積計算公式的呢?演示推導圓的面積公式的轉化過程。我們能把一個圓採用化曲為直、化圓為方的方法推導出了圓面積的計算公式,現在能否採用類似的方法將圓柱切割拼合成一個學過的立體圖形來求它的體積呢?引導學生小組合作交流、觀察、既而動手操作。沿著圓柱底面把圓柱切開,可以得到大小相等的16塊或更多塊,啟發學生說出轉化成我們熟悉的長方體。同時引導學生觀察轉化前後兩種幾何形體之間的內在聯繫,圓柱的底面與長方體的底面有什麼關係?圓柱的高與長方體的高又有什麼關係?學生交流、進行驗證、自己推導出圓柱體體積計算的公式。教師再用多媒體演示驗證整個的具體操作過程,最後讓學生說一說圓柱體計算公式的整個推導過程。引導學生用字母表示出來。

根據教材特點,學生的認知過程,充分調動學生的學習熱情,激發求知慾望,調動學生的各種感官,親自完成從演示——觀察——操作——比較——歸納——推理的認識過程,讓知識在觀察、操作、比較中內化,實現由感性到理性,由具體到抽象,這種教學方法符合學生的認知規律,有助於突破難點,化解難點。

關於難點的突破,我主要從以下幾個方面著手:

(1)引導學生自己動手通過觀察比較,明確圓柱體的體積與它的底面積和高有關。

(2)運用知識遷移的規律,啟發引導,層層深入促進學生在積極的思維中獲得新知識。

(3)充分利用直觀教具,師生互動,小組合作,通過演示操作,幫助學生找出兩種幾何形體轉化前後的關係。

(4)根據新舊知識的連線點,精心設計討論內容,分散難點,促進知識的形成。

3.運用。出示例1:先由學生自己嘗試練習,請一位學生板演,集體講評時提問學生,在解題時要注意什麼?讓學生自己來概括總結,通過學生的語言說出:

(1)單位要統一

(2)求出的是體積要用體積單位。在掌握了圓柱體積計算的方法之後,安排例1進行嘗試練習,這樣既可以調動學生的學習積極性和主動性,又可以培養學生學習新知識的能力,同時把所學知識轉化為相應的技能。

(三)鞏固練習,檢驗目標

1.練一練1題:計算各圓柱的體積,目的是讓學生進一步理解鞏固圓柱的體積公式。

2.完成練習第2題。通過練習,鞏固新知識,加深對新知識的理解,把所學知識進一步轉化為能力,在練習中發展智力,培養優良的思維品質和學習習慣。

3.變式練習:已知圓柱的體積、底面積,求圓柱的高。

這道題的安排是對所學內容的深化,在掌握基礎知識的前提下,培養思維的靈活性,同時深化教學內容,防止思維定式。

4.動手實踐:讓學生測量自帶的圓柱體。

教師提問:如果要知道這個圓柱體積,該用什麼方法?讓學生說一說是怎樣測量的?又是如何計算的?

這道題的設計,一方面培養了學生解決實際問題的能力,另一方面也加深了對圓柱體積計算公式的理解,同時數學知識也和學生的生活實際結合起來,使學生明白,我們所學的數學是身邊的數學,是有趣的、有用的數學,從而激發學生的學習興趣。

(四)總結全課,深化教學目標

結合板書,引導學生說出本課所學的內容,我是這樣設計的:這節課我們學習了哪些內容?圓柱體積的計算公式是怎樣推導出來的?你有什麼收穫?然後教師歸納,通過本節課的學習,我們懂得了新知識的得來是通過已學的知識來解決的,以後希望同學們多動腦,勤思考,在我們的生活中還有好多問題需要利用所學知識來解決的,望同學們能學會運用,善於用轉化的思想來豐富自己的頭腦,思考問題。

板書設計:圓柱的體積

長方體的體積=(長×寬)×高

↓↓↓

圓柱體的體積=底面積×高

↓↓

V=Sh

本節課我採用的是圖示式板書,這樣能讓學生清楚地看出圓柱體積公式的推導過程,以及兩個形體間的密切聯繫,同時便於學生對於公式的記憶和理解。

五、教學效果預測:

新課程標準認為:“數學教學是師生交往、互動與共同發展的過程,教師是課堂氣氛的調節者”。本節課我始終注意以人為本,從學生的興趣出發,通過動手實踐、自主探究、自主發現、使學生充分地理解、掌握圓柱體體積公式的推導過程,並熟練地加以運用。總之,本節課的設計,我遵循小學生的認知規律,由直觀到抽象,由感性到理性,採用分組討論,合作學習等形式,讓學生參與教學全過程,增強了學生的主人翁意識。並用計算機多媒體教學輔助教學,激發了學生的學習興趣,提高了教學效率與效益。在圓滿的同時,我也覺得會有一些可能出現問題的地方:比如,在具體的運用、實踐中一定要注意和圓柱的表面積加以區別,這一點我在實際的教學中會多加以指導和訓練。

以上是我《圓柱的體積》的說課設計,謝謝大家!

國小六年級下冊數學《圓柱的體積》教案 篇11

教學過程

一、情景引入

1、教學開始首先出示了一個裝了半杯水的燒杯,然後拿出一個圓柱形物體準備投入水中並讓學生觀察:會發生什麼情況?由這個發現你想到了些什麼?

2、提問:“能用一句話說說什麼是圓柱的體積嗎?”

(學生互相討論後匯報,教師設疑)

二、自主探究、

1、比較大小、探究圓柱的體積與哪些要素有關。

(1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?

(2)、提問:“要比較兩個圓柱體的體積你有什麼好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。

(3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,並將實驗結果填入實驗報告1中。(課件出示)

(4)、學生通過動手操作匯報結論:當底等時,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關。

2、大膽猜想,感知體積公式,確定探究目標。

(1)、再次設疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什麼好辦法?學生想如何計算圓柱的體積。

(2)、引導學生回憶圓的面積公式和長方體的體積公式的推導過程。

(3)、讓學生思考:怎樣計算圓柱的體積呢,依據學過的知識,你可以做出怎樣的假設?

(4)、學生小組討論交流並匯報:圓柱平均分成若干小扇形體後應該也能夠轉化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。

(5)、讓學生依據假設結論分組測量圓柱c和圓柱d的有關數據,用計算器計算體積,並填入實驗報告2中。(課件出示)

4、確定方法,探究實驗,驗證體積公式。

(1)、首先要求學生利用實驗工具,自主商討確定研究方法。

(2)、學生通過討論交流確定了兩種驗證方案。

方案一:將圓柱c放入水中,驗證圓柱c的體積。

方案二:將學具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。

(3)、學生按照自己所構想的方案動手實驗,並記錄有關數據,填入實驗報告2中。

(4)、實驗後讓學生對數據進行分析:用實驗的方法得出的數據與實驗前假想計算的數據進行比較,你發現了什麼?

(5)、學生匯報:實驗的結果與猜想的結果基本相同。

(6)、教師用課件演示將圓柱體轉化成長方體的過程,向學生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。

(7)、小結:

要想求出一個圓柱的體積,需要知道什麼條件? 

(8)、學生自學第8頁例4上面的一段話:用字母表示公式。

學生反饋自學情況: 

v=sh

三、鞏固發展 

1、課件出示例4,學生獨立完成。

指名說說這樣列式的依據是什麼。

2、鞏固反饋

3、完成第9頁的“試一試”和練一練”中的兩道題。

(“練一練”只列式,不計算)

集體訂正,說一說圓柱體的體積還可以怎樣算?

4、一個圓柱形水杯的底面直徑是10厘米,高是15厘米,已知水杯中水的體積是整個水杯體積的 2/3, 計算水杯中水的體積?

5、拓展練習

(1)、 一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數保留兩位小數)

(2)、 一個底面直徑是20厘米的圓柱形容器里,放進一個不規則的鑄鐵零件後,容器里的水面升高4厘米,求這鑄鐵零件的體積是多少? 

四、全課小結:

談談這節課你有哪些收穫。

教學內容:人教版《九年義務教育六年制國小數學》(第十二冊)圓柱體積

教學目標:

1、結合具體情境,讓學生探索並掌握圓柱體積的計算方法,並能運用計算公式解決簡單的實際問題。

2、讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究的方法。

3、通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。

教學重點:掌握和運用圓柱體積計算公式。

教學難點:圓柱體積計算公式的推導過程

國小六年級下冊數學《圓柱的體積》教案 篇12

一、教學內容

教材第25頁 例5、例6

二、學習目標

1、知識目標:理解、掌握圓柱的體積公式的推導過程,能利用圓柱的體積計算公式解決問題。

2、能力目標:經歷圓柱的體積公式的推導過程,學會運用轉化的思想解決一些具體問題。

3、情感目標:感受圓柱的體積的計算與生活密不可分,激發學生學習數學的熱情。

三、教學重難點

1、重點:理解、掌握圓柱的體積公式的推導過程。

2、難點:圓柱體積公式的推導過程。

四、教學準備

多媒體課件

五、教學過程

創設情境、生成問題

師:前面我們學過長方體和正方體的體積計算方法,你還記得是怎么計算的嗎?(課件出示一個長方體和一個正方體)

生答:長方體的體積用長X寬X高,正方體的體積是用棱長X棱長X棱長,或者用一個公用的底面積X高來計算

師:這位同學回答的非常好,今天這節課我們就一起來研究圓柱體的體積計算方法。

板書:圓柱的體積(課件)

探索交流、解決問題

1、猜想

師:長方體和正方體體積的大小取決於三條棱的長度,或者說取決於底面積和高,那么你認為圓柱的體積取決於什麼呢?

(生自由猜想,並討論交流)師適當板書記錄

剛才那幾個同學都很有想法,覺得圓柱的體積的大小可能和有關係,有人這樣說過,偉大的猜想必須要經過驗證才能得到證明,否則的話只能是空想,接下來通過兩組圖片大家進行驗證一下

(課件出示兩組圖片,第一組兩個圓柱等底不等高,第二組兩個圓柱等高不等底)

師:第一組圖片中的兩個圓柱有什麼特徵?

生:底面一樣,但是高度卻不一樣,體積也不一樣

師:第二組圖片中的兩個圓柱有什麼特徵?

生:這組圖片中的兩個圓柱高度一樣,但是底面卻不一樣,體積也不一樣

師:那么通過剛才兩個同學的回答,你能得出什麼結論呢?

小結:圓柱的體積的大小取決於圓柱底面的大小和高度的`大小

師:那么你能大膽的猜想一下圓柱的體積是如何計算的嗎?

生猜想......

師:我們的猜想對不對,還是要用實驗去證明

2、推導圓柱體積計算公式

師:怎么樣進行實驗呢?結合我們以往學習幾何圖形的經驗,小組討論交流,說說自己的想法

生:我們是把圓柱的底面分成若干偶數分,然後用刀割開,在進行拼組,變成一個長方體,這樣通過轉化,圓柱就變成了一個近似的長方體,分的份數越多,越接近一個長方體,然後通過求長方體的體積去求圓柱的體積

師:用心思考的同學總能找到解決問題的辦法,那么接下來同學們就利用手裡的學習用具完成這個驗證實驗並完成老師給你們的實踐作業紙

(課件出示作業紙)對應和公式推導

選取小組的作業紙進行展示,有其他同學進行評定

課件演示結果

小結:通過轉化的數學思想我們將圓柱的體積轉化成已經學過的長方體的體積,圓柱的體積計算公式是底面積乘高。

另外,圓柱的底面積、直徑、半徑和周長四個數據中的任意一個和圓柱的高兩個數據就可以求出圓柱的體積。

鞏固套用、內化提高

2、

3、下面這個杯子能不能裝下這袋奶?(杯子的數據是從裡面測量得到的)

8cm

8cm

498ml

498ml

10cm

10cm

回顧整理、反思提升

今天這節課你有什麼新的收穫說出來和大家一起分享吧!

國小六年級下冊數學《圓柱的體積》教案 篇13

教學內容:

北師大版教學六年級《圓柱的體積》

教學目標:

1、結合具體的情境和實踐活動,理解圓柱體體積的含義。

2、經歷探索圓柱體積計算方法的過程,掌握圓柱體積的計算方法,能正確計算圓柱的體積,並會解決一些簡單的實際問題。

3、培養學生初步的空間觀念和思維能力;

教學重點:

理解和掌握圓柱的體積計算公式,會求圓柱的體積。

教學難點:

理解圓柱體積計算公式的推導過程。

教具準備:

圓柱體積演示教具。

教學過程:

一、舊知鋪墊

1、談話引入

最近我們認識了圓柱和圓錐,還學會了計算圓柱的表面積。現在請看老師的這個圓柱形杯子和這個圓柱比較,誰大?這裡所說的大小實際是指它們的什麼?(生答)

2、提出問題:什麼叫體積?我們學過那些圖形的體積?怎么算的?(生答師隨之板書)

這節課我們就來學習圓柱的體積。

二、自主探究,解決問題

(一)認識圓柱體積的意義。

圓柱的體積到底是指什麼?誰能舉例說呢?

(二)圓柱體積的計算公式的推導。

1、我們學過長方體和正方體體積的計算,圓柱體的體積跟什麼有關呢?你會有怎樣的猜想?(小組內說說)

2、回憶圓面積的推導過程。

3、教具演示。

(1)取圓柱體模型。

(2)將圓柱體切成兩半。

(3)分別將兩半均分成若干小塊。

(4)動手拼成一個近似的長方體。

(三)歸納公式。

(板書:圓柱的體積=底面積×高)

用字母表示:(板書:V=Sh)

三、鞏固新知

1、這個杯子的底面半徑為6厘米,高為16厘米,它的體積是多少?

審題。提問:你能獨立完成這題嗎?指名一同學板演,其餘學生做在練習本上。

現在這個杯子裝了2/3的水,裝了多少水呢?

2、完成“試一試”

3、“跳一跳”:統一直柱體的體積的計算方法。

四、課堂總結、拓展延伸

這節課學習了什麼內容?圓柱的體積怎樣計算,這個公式是怎樣得到的?這個公式適合哪些圖形?他們有什麼共同特點?

五、布置作業

練一練1-5題。

國小六年級下冊數學《圓柱的體積》教案 篇14

教學內容:人教版《九年義務教育六年制國小數學》(第十二冊)圓柱體積

教學目標:

1、結合具體情境,讓學生探索並掌握圓柱體積的計算方法,並能運用計算公式解決簡單的實際問題。

2、讓學生經歷觀察、實驗、猜想、證明等數學活動過程,發展合情推理能力和初步的演繹推理能力,滲透數學思想,體驗數學研究的方法。

3、通過圓柱體積計算公式的推導、運用的過程,體驗數學問題的探索性和挑戰性,感受數學思考過程的條理性和數學結論的確定性,獲得成功的喜悅。

教學重點:掌握和運用圓柱體積計算公式。

教學難點:圓柱體積計算公式的推導過程

教學過程

一、情景引入

1、教學開始首先出示了一個裝了半杯水的燒杯,然後拿出一個圓柱形物體準備投入水中並讓學生觀察:會發生什麼情況?由這個發現你想到了些什麼?

2、提問:“能用一句話說說什麼是圓柱的體積嗎?”

(設計意圖:在這個環節設計觀察活動,意圖是讓學生通過觀察自主得出圓柱體積的定義,進一步加深對體積概念的理解,並為下面的探究活動提供研究方法。)

二、自主探究、

1、比較大小、探究圓柱的體積與哪些要素有關。

(1)、先出示了兩個大小不等的圓柱體讓學生判斷哪個體積大?

(2)、提問:“要比較兩個圓柱體的體積你有什麼好辦法?”學生想到將圓柱體放進水中,比較哪個水面升得高。

(3)、讓學生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積.

(4)、學生通過動手操作匯報結論:當底等時,圓柱越高體積越大;當高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關。

(設計意圖:本環節教學讓學生根據已有的知識解決簡單的問題,通過探究活動,引導學生找出決定圓柱體積的兩個因素,為學習新知識作鋪墊,同時也發展了學生的抽象概括能力。) 

2、大膽猜想,感知體積公式,確定探究目標。

(1)、再次設疑:如果要準確的知道哪個圓柱的體積大,大多少,你有什麼好辦法?學生想如何計算圓柱的體積。

(2)、引導學生回憶圓的面積公式和長方體的體積公式的推導過程。

(3)、讓學生思考:怎樣計算圓柱的體積呢,依據學過的知識,你可以做出怎樣的假設?

(4)、學生小組討論交流並匯報:圓柱平均分成若干小扇形體後應該也能夠轉化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。

(設計意圖 : 通過設疑使學生認識到學習圓柱體積公式的必要性,激發學生的探究興趣。接著通過設計猜想的過程,充分運用學生已有的知識經驗,讓學生回憶了學習長方體體積時的實踐方法和將圓形轉化成長方形的過程,學生在如此豐富的知識經驗基礎上就做到了心中有數,猜想的膽量就更大,假想的合理性就更強。)

4、確定方法,探究實驗,推導公式。

(1)、思考你發現了什麼?

(5)、學生匯報:實驗的結果與猜想的結果基本相同。

(6)、教師用課件演示將圓柱體轉化成長方體的過程,向學生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。(課件出示)

(7)、小結:要想求出一個圓柱的體積,需要知道什麼條件?

(8)、學生自學第17頁例4上面的一段話:用字母表示公式。

學生反饋自學情況: 

v=sh (設計意圖 這部分教學採用以小組合作探究的學習方式進行數學活動,充分調動學生各種感官,完成從操作→觀察、比較→歸納推理的認知過程,讓學生通過自己動手、動腦得到結論。通過讓學生自己設計實驗方案和自主實驗探究的活動,培養了學生的創新精神和實踐能力。) 

三、鞏固發展

1、課件出示例5,學生獨立完成。

指名說說這樣列式的依據是什麼。

(設計意圖:使學生注意解題格式,注意體積的單位為三次方)

2、鞏固反饋

填表(單位:厘米)

底面積  高 體積

6  3

0.5  8

8  2

(設計意圖:設計練習能使學生達到舉一反三的效果,從而訓練學生的技能。這是第一層基本練習,通過這道題可以使學生更好的掌握本課重點,夯實基礎知識)

3、完成第9頁的“試一試”和練一練”中的兩道題。

(“練一練”只列式,不計算)

集體訂正,說一說圓柱體的體積還可以怎樣算?

(設計意圖:這是第二層變式練習。是讓學生在掌握公式的基礎上理解公式,學會靈活運用公式的訓練題。通過對公式的拓展性理解,可以進一步加深學生對圓柱體積公式的理解和掌握,同時也能培養學生的邏輯思維能力。)

4、一個圓柱形水杯的底面直徑是10厘米,高是15厘米,已知水杯中水的體積是整個水杯體積的 2/3, 計算水杯中水的體積?

(設計意圖:這是第三層發展性練習,安排了密切聯繫生活實際的習題,讓學生運用公式解決問題,切實體驗到數學就存在於自己的身邊。)

5、拓展練習

(1)、 一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數保留兩位小數)

(2)、 一個底面直徑是20厘米的圓柱形容器里,放進一個不規則的鑄鐵零件後,容器里的水面升高4厘米,求這鑄鐵零件的體積是多少?

(設計意圖:安排了密切聯繫生活實際的習題,讓學生運用公式解決引入環節中的兩個問題,使學生認識到數學的價值體驗到數學對於了解周圍世界和解決實際問題是非常有作用的;能使學生的思維處於積極的狀態達到培養學生思維的靈活性和創造性解決問題能力的目的。)

四、全課小結:談談這節課你有哪些收穫。

板書設計:

圓柱的體積

長方體的體積=底面積高

圓柱的體積  =底面積高

v = s  h

或v=πr²h

設計理念:圓柱的體積是幾何知識的綜合運用,是在學生已了解了圓柱體的特徵、掌握了長方體體積的計算方法以及圓的面積計算公式的推導過程的基礎上進行教學的,是後面學習圓錐體積的基礎。因此根據本節課內容的特點,我把教學設計定位在通過對圓柱體積知識的探究,培養學生探究數學知識的能力和方法。《數學新課標》指出:動手實踐、自主探索、合作交流是學生學習數學的重要方式,在圓柱的體積這節課我儘量使其體現達到最大化,因此為了突破重難點,本節課的教法和學法體現出以下的幾個特點:

1、合作探究學習為主要的學習方式。

2、直觀教學,先利用教具演示讓學生觀察比較,再讓學生動手操作。

3、讓學生運用知識的遷移規律,主動學習,掌握知識、形成技能。

教具準備:圓柱的體積公式演示課件  體積不同的圓柱體  直尺  細繩  計算器。

國小六年級下冊數學《圓柱的體積》教案 篇15

教學目標:

1.知識與技能:運用遷移規律,引導學生藉助圓面積計算公式的推導方法來推導圓柱的體積計算公式,會用圓柱的體積公式計算圓柱形物體的體積。

2.方法與過程:經歷猜測、驗證、合作、動手操作等過程,體驗和理解圓柱體體積公式的推導過程。

3情感、態度、價值觀:創設情境,激發學生學習的積極性。讓學生在主動學習的基礎上,逐步學會轉化的數學思想和數學法,培養學生解決實際問題的能力和培養學生抽象、概括的思維能力。

教學重點和難點:

圓柱體積公式推導過程;正確理解圓柱體積公式推導過程。

教 具:

圓柱的體積公式演示教具,圓柱的體積公式演示課件

教學過程:

一、教學回顧

1、交代任務:這節課我們來學習《圓柱的體積》。

2、回憶導入

(1)、請大家想一想,我們在學習圓的面積時,是怎樣把圓變成已學過的圖形再計算面積的?

(2)、我們都學過那些立體圖形的體積公式。

二、積極參與 探究感受

1、猜測圓柱的體積和那些條件有關。(電腦演示)

2、.探究推導圓柱的體積計算公式。

小組合作討論:

(1)將圓柱體切割拼成我們學過的什麼立體圖形?

(2)切拼前後的兩個物體什麼變了?什麼沒變?

(3)切拼前後的兩個物體有什麼聯繫?

課件演示拼、組的過程,同時演示一組動畫(將圓柱底面等分成32份、64份),讓學生明確:分成的扇形越多,拼成的立體圖形就越接近於長方體。

①把圓柱拼成長方體後,形狀變了,體積不變。(板書:長方體的體積=圓柱的體積)

②拼成的長方體的底面積等於圓柱的底面積,高就是圓柱的高。配合回答,演示課件,閃爍相應的部位,並板書相應的內容。)

③圓柱的體積=底面積×高 字母公式是V=Sh(板書公式)

2、練一練:一根圓柱形木料,底面積為75平方厘米,長90厘米,它的體積是多少?

3、要用這個公式計算圓柱的體積必須知道什麼條件?

三、練習

1、填空

(1)、圓柱體通過切拼轉化成近似的 ( ) 體。這個長方體的底面積等於圓柱體的( ),這個長方體的高等於圓柱體 。因為長方體的體積等於( ),所以,圓柱體的體積等於( )用字母表示 。

(2)、底面積是 10平方米,高是2米,體積是( )。

(3)、底面半徑是2分米,高是5分米,體積是( )。 2討論:

(1)已知圓柱底面的半徑和高,怎樣求圓柱的體積

V= 兀r2× h

(2)已知圓柱底面的直徑和高,怎樣求圓柱的體積

V=兀(d÷2)2×h

(3)已知圓柱底面的周長和高,怎樣求圓柱的體積

V=兀(C÷兀÷2) ×h

3、練習:已知半徑和高求體積,已知直徑和高求體積。

四、小結或質疑

五、作業

板書設計:

圓柱的體積

長方體的體積=底面積x高

圓柱的體積=底面積x高

V=Sh

國小六年級下冊數學《圓柱的體積》教案 篇16

《數學課程標準》指出“數學教學要讓學生經歷知識的形成過程,能夠初步學會運用數學的思維方式去觀察、分析現實社會,去解決日常生活和學科學習中的問題,增加套用數學的意識”。新課標註重的不只是讓學生掌握學習中的結論,更關注的是個性的體驗,讓學生在活動中體驗 、在實踐中運用即讓學生主動參與、實踐交流、合作探究中去經歷知識形成的過程,通過不斷地發現問題、提出問題、分析問題、解決問題,積累生活中的經驗,培養套用數學的能力,體驗數學的樂趣,感受數學在生活中的套用價值。

圓柱的體積這節課是在學生已經初步理解體積和容積的含義、掌握了長方體和正方體體積計算方法的基礎上學習的。本節內容包括圓柱的體積計算公式的推導,利用公式計算圓柱的體積,能運用圓柱的體積解決生活中的實際問題。

教學情境如下:

一:情境引入,感性認識

師:(拿出橡皮泥)你知道它的體積嗎?你用什麼方法知道的,說給大家聽一聽。

生:捏成長方體或正方體,量出長、寬、高后再用公式:長×寬×高計算出體積。

師:你還能捏成我們學過的其他圖形嗎? (學生操作:捏成圓柱)

師:現在你會計算它的體積嗎?猜一猜,怎么辦呢?(學生操作:圓柱捏成長方體)

師:你發現了什麼?

生:形狀變,體積不變.

師:我們曾經學過可以把什麼圖形通過什麼方法轉化成什麼圖形求面積呢?

生:圓切割拼成一個近似的長方形。

師: 圓柱形橡皮泥的體積會求了, 如果要求圓柱體容器里水的體積該怎么辦?

生:把水倒入長方體容器中,再測量計算。

師:要求圓柱體鐵塊的體積呢?

生:把它浸入水中,求出排出水的體積。

師:要求商場門口圓柱體柱子的體積呢?(生面面相覷,不知所措)。

二:自主探究,遷移轉化

1、引導

師:有的同學把圓柱轉化成我們已學過的立體圖形,來計算它的體積。

(讓學生互相討論,應如何轉化,然後組織全班匯報)

生:把圓柱的底面分成許多相等的扇形,然後把圓柱切開,再把它拼起來,就轉化成近似的長方體了。

2、 操作

學生拿出事先準備好的蘿蔔(圓柱體模具)和小刀,讓學生動手切一切,拼一拼。

3、感知:將圓柱體模具(已切好)當場演示。

①讓一位學生把切割好的一半拿上又叉開;

②另一位學生將切割好的另一半拼合上去;

③觀察得到一個什麼形體?同時你發現了什麼?

以四人小組為單位進行探索、討論、總結。

小組匯報:

生:拼成的長方體和圓柱體不變的有:體積、底面積、高等;變了的有:側面積、表面積、底面周長。

4、課件演示,讓學生明白:分成的扇形越多,拼成的立體圖形就越接近於長方體。

5、討論:圓柱與所拼成的近似長方體之間的有什麼聯繫?你發現了什麼?

6、匯報:

圓柱→近似長方體

①體積相等②底面積相等③高相等④表面積不相等,

根據學生的回答板書如下:

長方體的體積=底面積×高

↓ ↓ ↓

圓 柱 體 的 體 積 =底面積×高

引導學生用字母表示計算公式:V=Sh

師:要用這個公式計算圓柱的體積必須知道什麼條件?

生:底面積和高。

師:如果給你圓柱的直徑(半徑或者周長)和高,如何求圓柱的體積呢?

生:根據公式先求出半徑,再求出底面積即可…

教學反思

教學中充分利用學生學過的知識作鋪墊,採用遷移法,引導學生將圓柱體化成已學過的立體圖形,再通過觀察、實踐、比較找兩個圖形之間的關係,推導出圓柱的體積計算公式。直觀有效的教學過程不需要教師繁複的講解,學生在自主動手探索,互動交流討論的學習空間裡思維的火花自然而然地爆發出來。教學內容和重難點不僅得到實施和解決,更重要的是學生的綜合能力得到提高。

實際教學中教師只有不斷誘發學生主動思維的願望,營造無拘無束的思維空間,讓學生經歷知識發現、探索、創造的過程,才能更有效地培養學生的創新能力,還要使學生在學習中發現數學知識“從生活中來到生活中去”的理念。

國小六年級下冊數學《圓柱的體積》教案 篇17

評價樣題:

學習流程:

一、創設現實情境,增強探究欲望。

1、出示橡皮泥做的圓柱體:怎樣求出這個圓柱體橡皮泥的體積?你能想出幾種辦法?

如果要求(出示百家姓廣場上的圓柱形大鼎底座圖片)圓柱形大鼎底座的體積,還能用剛才那樣的方法嗎?那怎么辦?(學生試說出自己的辦法。)

看起來前面這些方法雖然可行,但有一定的局限性,我們必須找到一個解決任意圓柱體積的方法才行,對嗎?今天,就讓我們來共同研究解決任意圓柱體積的方法。(板書課題:圓柱的體積)

二、親歷建構過程,提高探索能力。

1、提出問題,大膽猜想

你能猜一猜圓柱的體積怎樣計算嗎?你覺得圓柱體積的大小和什麼有關?

(鼓勵學生大膽猜測,說出自己的想法)

2、回顧舊知,幫助遷移

同學們都很會大膽猜想,但還要小心地論證猜想的科學性。你還記得圓面積轉化什麼圖形的面積來求它的公式的嗎?

(演示課件:圓轉化成長方形)

3、引發思考:我們能否把圓柱體也轉化成學過的立體圖形來計算它的體積呢?如果能,猜一猜能轉化成哪種立體圖形?

4、小組合作,驗證猜想

下面請大家四人一組,藉助手中的學具或用蘿蔔和土豆做成的圓柱分組進行探討。

(出示合作提綱)小組長做好分工,並完成記錄表。

活動記錄表

思考:

1、圓柱體可以轉化成哪種立體圖形?

2、兩種立體圖形之間有怎樣的聯繫?你們發現了什麼?得出了什麼結論?

3、怎樣用簡捷的形式表示你推導出來的公式呢?

活動過程:

1、我們用方法,把圓柱體轉化成了體。

2、在這個轉化的過程中,變了,沒有變。

3、通過觀察比較,我們發現:把一個圓柱體的底面分成許多相等的扇形,然後切、拼,就能得到一個近似的長方體。這個長方體的底面積等於圓柱體的,高就是圓柱體的。因為,長方體體積=,所以,圓柱體的體積計算公式是v=。

5、全班交流,展示評價。

評價交流中,藉助評價樣題。同時課件演示切拼的'過程,同時演示將圓柱底面等分成32份、64份……,讓學生明確:分成的扇形越多,拼成的立體圖形就越接近於長方體。 6、根據學生的發現引導學生推導出:

圓柱的體積=底面積×高,

用字母表示v = sh。

7、反饋練習。

(1)要求圓柱體積,必須知道哪些條件?

(2)出示例5,學生藉助圓柱體積公式自主完成,並及時訂正反饋。

圓柱的體積教學設計 相關內容:用轉化的策略解決分數問題“長方體和正方體的表面積”的教學實錄國小數學《倒數的認識》教案北師大版6年級數學第11冊第1單元《圓的認識》教案1、分數四則混合運算《按比例分配》課後反思百分數的意義和讀寫法反思百分數(三)用百分數解決問題查看更多>>國小六年級數學教案