國中數學研修總結集錦

國中數學研修總結集錦 篇1

我是一名普普通通的中學數學教師,我覺得作為一個好老師,首先要愛他們,包容他們,我相信好學生是夸出來的,我不是神,只是一個普通的人,或許在工作中也有這樣那樣的失誤,但我會努力去關愛他們。對如何有效教學形成了獨特的見解。

1、培養積極探究習慣,發展求異思維能力。

在教學中,構建數感的理解、體會,要引導學生仁者見仁,智者見智,大膽,各抒己見。在思考辯論中,教師穿針引線,巧妙點撥,以促進學生在激烈的爭辯中,在思維的碰撞中,得到語言的升華和靈性的開發。教師應因勢利導,讓學生對問題充分思考後,學生根據已有的經驗,知識的積累等發表不同的見解,對有分歧的問題進行辯論。

通過辯論,讓學生進一步認識了自然,懂得了知識無窮的,再博學的人也會有所不知,體會學習是無止境的道理。這樣的課,課堂氣氛很活躍,其間,開放的課堂教學給了學生更多的自主學習空間,教師也毫不吝惜地讓學生去思考,爭辯,真正讓學生在學習中體驗到了自我價值。這一環節的設計,充分讓學生表述自己對數學的理解和感悟,使學生理解和表達,輸入和輸出相輔相成,真正為學生的學習提供了廣闊的舞台。

2、注意新課導入新穎。

“興趣是最好的老師”。在教學中,我十分注重培養和激發學生的學習興趣。譬如,在導入新課,讓學生一上課就能置身於一種輕鬆和諧的環境氛圍中,而又不知不覺地學數學。我們要根據不同的課型,設計不同的導入方式。可以用多媒體展示課文的畫面讓學生進入情景;也可用講述故事的方式導入,採用激發興趣、設計懸念……引發設計,比起簡單的講述更能激發學生的靈性,開啟學生學習之門。

雖然在工作中我們取得了一些成績,但是這離我們所追求的目標還有很長的路要走。集體備課、研修活動培養了教師理解和把握教材的能力,喚醒了教師推進新課程的意識,中學數學研修正在逐漸由“經驗型”向“反思型”和“研究型”群體發展。在我們看來,課改與教研是一個永恆不變的主題,我們還要把教後記只注重對具體實踐結果的粗淺回顧,提高到對實踐本身的深入反思,使“研”更有深度;同時有效地利用數學教師的部落格,與同行交流思想,為學生提供服務!

國中數學研修總結集錦 篇2

通過研修學習,我接觸到了專家學者們的教育新理念,同時還與班內的一線教師們進行了充分的交流,可以說這次網上研修內容很深刻,研修的效果影響深遠。下面我談談一些體會。

首先,教師要尊重、關心、信任學生。因為良好的師生關係是學好數學的前提。尊重、關心、信任學生,和學生友好相處是營造和諧課堂氛圍的基礎,在教學活動中,教師與學生在心理上形成一種穩定,持續的關係,不僅是在知識、能力上的交往,也是情感心靈上的溝通、交流。 其次,教師要立足課堂,將所學的新課程理念套用到課堂教學實踐中,力求讓我的數學教學更具特色,形成獨具風格的教學模式,更好地體現素質教育的'要求,提高數學教學質量。

第三、培養學生的學習興趣,樹立其自信心,在學生取得點滴成績時予以表揚,讓他們覺得自己能行。有了自信心,他們對難題就有了挑戰性,這樣他們才會積極主動進行學習。同時培養學生的自學能力,幫助學生髮展自學技能。課堂上我有意識對學生的進行合作訓練。在小組合作過程中,教師要承擔小組任務,同時有目的地在小組活動中示範,協調教學活動,確保小組專注於學習目標,使小組成員在教師帶領下逐步學會合作的技能。

第四運用網路資源,豐富自己的教學內容。在教學設計過程中,

對教學內容、教學媒體、教學策略和教學評價等要素進行具體計畫,使自己的課堂多姿多彩。

第五課堂上重視德育工作,讓學生在學習數學知識的同時,陶冶他們愛自然、愛科學、愛祖國、愛勞動的思想情操,樹立關心生態環境等的思想,促進學生全面發展和個性培養。

總之,今後,自己一定更新觀念,不斷嘗試新的教學方法,努力提高自己的業務水平和教學能力。精心設計每堂課,做一名學生最喜歡的老師。

國中數學研修總結集錦 篇3

數學是人們對客觀世界定性把握和定量刻畫、逐漸抽象概括、形成方法和理論,並進行廣泛套用的過程。近幾年來,通過數學新課程改革的實行,給基礎教育注入了生機和活力。但由於多方面的原因推行過程中暴露的問題也不少,筆者近幾年來對我國數學教改的理論與實踐作了多角度、全方位的思考和分析,發現在取得教改成果的同時,其中也出現了很多有必要提請教育界人士引起重視的問題,這些問題不從根本上加以解決,數學課改便難以走上正軌的出路。下面筆者對數學新課程改革中存在的問題及對策作一點簡單的闡述。

一、數學教改的存在的問題

1、數學新課改精神落實不到位

目前通過數學新課標的學習,不少教師也重視新課改的指導定神,儘管也提到了思想教育和能力的提高,但大家的著眼點只在知識。能夠落實的也只是知識目標。部分教師也許是因為“慣性”,也許是因為新的課程理念還未形成,在課堂教學中依然是從概念到概念,就知識講知識,不能把知識與套用、知識與能力結合起來,只注重基礎知識的教學,只注重落實知識性的目標,忽視《課程標準》規定的三維目標的落實。例如,在講初一年級有理數運算時,由於只注重得出正確的結果,強調運算法則、運算順序,而對生活中列舉事例不夠,更是對整體的運算律或簡化運算注重不夠,而把數學引入生活中更能對發展學生運算能力卻更為重要。教材中是作為重點來處理,但(課程標準》上並沒有規定這個知識點,故全書不出現結論。教材上這樣安排著眼點在於學生的參與及過程的體驗,是要讓學生經歷探究的過程,能夠得出大致的正確結論即可。至於結論是否完整、表達是否嚴謹,並不是本節內容所強調的。而實際教學中,部分教師恰恰是只注意到概念與法則的教學上,只注重了知識的目標,而忽視了其實踐教學。

2、忽視對學生自學能力和創造能力的培養

目前數學教改活動中的一個突出問題便是重視知識和解題技能的傳授,而忽視了對學生自學能力的培養,這是一個極為令人擔憂的現象,因為學生在校學習的知識畢竟是有限的,更多的知識則是學生在走向社會後通過自學來獲得。所以教學活動中要重視教給學生獲取知識的方法,葉聖陶先生的“教是為了不教”不僅僅只適用於語文教學。

由於受到升學率的衝擊,在高、中考指揮棒的指揮下,迫於各種社會壓力,目前教改實踐中很多採用的是灌知識,講題型,遞游於題海,教改老師有口難言,學生疲憊不堪。對學生創造能力的'培養是一個長期被忽視了的問題。

3、教改過程中方向不明,缺乏創新或急於標新立異

很多教師對教改的認識不足,因此在教改問題上方向不明,對於教學、教研、教改問題上不能正確處理這三者的關係。此外,有些教師缺乏創新精神,不作深入思考,便將別人的教改經驗盲目地加以移植,結果只能導致失敗。

在教改問題上,有些教師由於理論知識不豐富,缺乏嚴謹的治學精神,急於標新立異,故弄炫虛,開口便是自己的“什麼法”或“什麼式”等。

4、部分學校教改過程不能堅持到底,易受外界左右

在教改過程中,有些教師在教改上付出了艱苦的勞動,並且取得了優異的成績,正當他們準備大顯身手的時候,卻被上級委任了校長、主任之類的行政職務。這樣經常外出開會、學習,忙於行政事務,在業務工作上用非所學,結果兩敗俱傷。

或者一旦取得一點成績,便到這裡作報告,那裡介紹經驗,最終使教改成為曇花一現。

以上便是在教改過程中容易出現的問題,要使教改達到預期的目的,有必要通過對以上問題作出分析以採取措施,使數學教改得以順利進行,從而達到預期的目的。

二、面對數學教改出現的問題應採取的措施

要使教改能順利地按計畫地進行,達到預期的目的,必須尋求教改中出現的問題而採取解決的措施。依筆者之見:可以從如下幾方面著手:

1、教師必須加強理論及業務的學習。

對教師而言,加強理論及業務學習的重要性是不言而喻的,理論的模糊必然導致實踐的盲目,教學中的無效勞動主要是由於理論上的偏頗所致。

首先,教師要加強哲學的學習,教改過程中要以辯證的觀點提出問題、分析問題和解決問題。

其次,教師要加強教育心理學的學習,要使教改取得成功,必須在教育科學理論的指導下才能得以進行,否則便不能使教改達到預期的目的。

在業務學習方面,教師要不斷地加強本學科的學習,同時還應了解數學學科的最新發展與動向,這樣才能與教材同步,與學生同步,與時代同步。

2、教師應加強對教學法的研討

要使教改取得成功,教師必須熟悉各種數學教學法及其特點,並在教學中選擇恰當的教學方法。目前各地教改在教法改革方面取得了很大的成績,總結出了很多各具特色的教學方法。

3、教師必須端正思想,提高認識

教改是教育事業的百年大計,它需要教師付出的不僅僅是一年或幾年的勞動,而應當是十幾年、幾十年甚至是終身的求索和奮鬥,教師要有戰勝困難的信心和勇氣,知難而進。同時教師教改的方向要明確,目標宜具體:要通過教改實驗使學生在較少的時間內最大限度地獲取知識,促使學生的各項能力得以全面發展。

4、同科教師通力協作,聯合攻關

個人的時間、精力和知識畢竟是有限的,要使教改活動能順利地實施進行,同科教師要通力協作,充分發揮集體的智慧和力量,使全體教師能參加教改,聯合攻關,有利於教改向縱向深入發展,這就必須杜絕和防止文人相輕,同行相嫉妒的不良現象,老教師不要以有較強的實踐經驗而自居,青年教師也不要因為有較高的理論知識而自傲。

5、教師講解中要注重對學生推理能力的培養

新教材在九年級下冊才正式引入證明,三段論式的演繹推理正式開始。因此,在國中階段培養學生邏輯推理訓練的時間太短,學生演繹推理能力達不到要求,這將給高中教學帶來不利因素。三年實驗結果也可證實這一現實。如我市某年數學畢業卷的壓軸題是;△abc是⊙0的內接等邊三角形,d為⊙0上的一點,ad與bc相交於e,連結bd,ae=4cm,ed=lcm。求:(1)∠d的度數;(2)ab的長。”該題應是一道較簡單的題目,但評卷後的抽樣統計結果是:該題得分率為28.6%。確實反映出學生的演繹推理能力薄弱。因此,在學生推理能力的培養上,我們提出以下建議:一是在八年級《四邊形》一章開始,加強學生說理能力的培養;二是在搞好實驗、合情說理的前提下,滲透演繹推理,三是將《證明》一章的教學提前;四是加強幾何分析法的教學,提高學生演繹推理能力。

新的教學理念是:注重學生的發展,面向全體學生,培養學生對學科探究的興趣

和熱愛,教學中貼近生活、社會,密切聯繫實際,體現學習方式和師生關係的轉變,突出學生主動參與,發展學生的探究樂趣。只要我們廣大教師,對影響教改實驗中的的問題引起重視、作了分析,我們離新課改的要求就會越來越近

國中數學研修總結集錦 篇4

一、工作目標:

開學初,根據學校的工作計畫,結合本組的特點,經過全組教師的討論,確定了工作目標和具體措施,明確樹立集體質量意識,信息資源共享,把校本研修活動和教學實踐結合起來,工作要點有:(1)組織教師認真學習教育理論,提高教師的理論素質。(2)抓好本學科各項教學基礎工作,從整體最佳化出發,加強教學工作的五個環節(備課、上課、作業、輔導、考查)的管理,提高課堂教學效率。(3)積極開展教學科研,用教育科學指導教學。(4)組織公開教學,開展聽課和評課活動。(5)關心培養青年教師,使之早日成為教學骨幹。各備課組長在最佳化過程、減輕負擔、提高質量的前提下,提出本學期的工作重點。初一抓好起始階段數學學習習慣的養成;初二抓好“平幾”基礎教學,培養數學素質;初三多角度訓練學生的思維品質,提高數學解題能力。圍繞目標,教研組有計畫,有內容積極展開工作。

二、組風建設:

我們國中數學組每位教師有富有強烈的事業心和責任感,嚴謹治學,七年級的兩位教師為了抓好起始年級學生的思想品質,提高數學成績,培養良好習慣,他們新老結對,集體備課,老教師無私奉獻,新教師虛心好學,集思廣益,通力合作。組內兩位教師上匯報課,全體教師都能當好參謀,提出建議;初二年級班級大,學生多,課程難,他們輔導學生非常耐心,遇到問題總是共同探討,經常互相交流,取長補短,激發學生學習興趣,挖掘非智力因素,努力縮小落後面,教學效果較好;初三畢業班的教師惜時如金,分秒必爭,他們經常一起研究提高數學複習課教學質量的方法和措施。每位教師都十分注重自我提高,不斷給自己加壓,以便更好地從事教學工作,在進行繁重的教學工作的同時,個別教師還潛心研究,自覺反思。不斷地總結與提高,教研風氣濃厚。數學組形成了一個團結勤奮,銳意進取的集體,充分體現了教研組的整體能力。

三、做好常規檢查,強化教學管理

在鼓勵教師們創造性工作的同時,不放鬆對教學常規的指導和監督。本學期,教研組配合教務處共進行兩次教學常規工作檢查,內容包括是否寫教案,是否寫教學反思和教後記,作業批改是否及時,認真等方面,檢查結果令人滿意。

四、 開展及參加校本研修活動情況

堅持每周進行研修活動,每次活動事先都經過精心準備,定內容、定時間、講實效,多次組織學習教育理論和本學科的教學經驗,充實教師的現代教育理論和學科知識。

1、開學初,我們積極準備小課題的校級結題工作。《合作互助 激發情感型學困生的數學學習興趣》的個案研究自州級課題立項以來,參與本課題的幾位老師做了大量工作,為這次校級結題做好了充分準備,從而在學校順利結題,並拿到了結題證書。

2、在準備小課題結題的同時,我們數學組的老師又在為新一輪的小課題立項做前期準備。在這期間,先在組內進行討論、分析,針對自己在教學中存在的普遍問題進行論證,然後確立課題,本學期我們的研究課題是《數學課堂練習優選活用的有效性研究》。參與課題的老師結合這一課題,查閱資料,上網搜尋,進行理論學習。然後制定研修計畫,研修方案等,做好一系列課題研究的'相關工作。

3、因為《合作互助 激發情感型學困生的數學學習興趣》的個案研究是昌吉州立項課題,所以在三月下旬又準備州級結題工作,整理資料,完善結題報告,上報材料。組內老師也希望這一課題能在昌吉州結題。

4、三月份,數學組四位老師又參加了縣教研室組織的教師技能大賽,參賽教師有唐偉華、崔圓新、張桂榮、馬海燕。參賽項目有說課、評課、板書設計三項。其中唐偉華、崔圓新分別獲得說課與板書設計的二等獎,張桂榮、馬海燕分別獲得說課與評課的三等獎。

5、四月結合小課題研究開展了兩次研修活動。一是八年級數學四課活動,由馬春麗、楊天慧、米存三位老師承擔主講。他們根據活動內容提前做好準備,備課、說課、上課、聽評課,本次四課活動的主題是如何優選課堂練習,從而使練習更有效。通過活動,馬春麗、米存兩位老師在上課時的主題鮮明,針對性強,能緊扣課題體現課題研究的主體性。第二次是小課題研究的階段性反思,就這一課題的研究前一階段的工作進行總結反思,然後提出修改、完善的建議或意見,為下一階段的研究做好鋪墊工作。

6、五月份的兩次研修活動分別是小課題研究案例分析與九年級數學同課異構活動。案例分析主要針對自己在前期課題實施過程中遇到的問題或課堂實踐事件進行分析、交流。這次活動有一定的效果。九年級數學同課異構有九年級的三位老師承擔,他們都做了充分的準備,同樣是一節二次函式的專題複習課,可三位老師因為不同的構思,上出了不同的風格,尤其能夠凸顯小課題的主體研究內容。所設計的練習具有一定的代表性,尤其對即將中考的學生來說,非常有效,無論是基礎性、典型性、靈活性、開放性、綜合性、技巧性都能融在一起,這樣及訓練學生的邏輯思維,又能訓練學生的發散思維。何玲與馬海燕老師尤其在學生學習方法與解題方法方面給學生的指導是非常的細心、到位。這些題目的訓練使學生在解題過程中能夠做到融會貫通,觸類旁通的效果。

7、最後的兩次活動分別是數學教師說課交流與小課題研究總結。對於說課,咱們老師不是很熟悉,說課可分為課前說可與課後說課,這兩者是有明顯不同的,對公開課嚴格把關,要求每一節公開課前都經過備課組的老師多次的研究和修改,每堂公開課後,全組的老師都進行認真的評課,我們組的老師對評課向來非常認真,從不避醜,不走過場,不管你的資格有多老,你有多年輕,大家能本著對事不對人的原則,對有研究性的問題、有爭議的問題都能暢所欲言,儘管有時爭論的很激烈,但道理是越辯越明的,組內課題研究教研課六次,每位教師聽棵都在10節以上,大家通過爭議都很有收穫,以此推動本組的教研氛圍。儘管日常教育教學工作十分繁忙,但老師們仍十分重視教育科研,積極參加學校組織的各類教育教學活動。

五、將培優補差工作落實到了實處

本學期,我組各位老師更是兢兢業業,認真負責,每天都有老師在進行補差和培優,力爭使不同程度的學生得到了不同的進步和發展;各位老師,目的是使一些基礎較好,但學習不紮實又很粗心的學生能在學習考試中發揮出自己真實的水平;補差計畫:根據我校班制的特點,我們的補差工作每天都在抓,不僅給他們補文化課,最主要的是轉變他們的學習態度,卸掉他們思想上的包袱,使他們能夠輕鬆,自覺的學習,真正達到補課的效果。

六、教研組建設的構想:

1、新課標與教育理論的學習與鑽研還要加強;

2、課堂教學設計、研究、效果方面還要深入研究;

3、全組走出去聽課;

4、“培優、輔中、穩差”的方法方式還有待完善;

5、青年教師多上公開課。

時光的腳步帶領我們走過了一個充實而忙碌的學期。總結過去,展望未來,我們清醒地認識到身上肩負的重任,探索之路任重而道遠,我們只有不斷學習,不斷地開拓進取,迎接更大的挑戰。

國中數學研修總結集錦 篇5

各級領導對這次研修給予了高度重視和支持。為做好遠程研修培訓的組織和管理工作,更有效探討分散學習教學管理的方法,鹿寨教研室於8月15日下午召開參加遠程培訓的各學科班主任、簡報編寫組成員會議,會議討論並確定了對於XX年年秋季遠程研修培訓的實施方案和班主任工作要求,並對分散學習過程中的一些細節和可能存在的問題,組織各班主任分組進行深入的探討,各班主任積極發言,為培訓順利開展獻計獻策,積極尋求解決問題的辦法,在思想上和工作環節上都提出了明確的要求,各班級分4個小組學習,小組長“網上檢查,電話督促”的工作方法,為XX年年秋季遠程研修培訓工作順利的開展提供了有利的保障。緊接著在8月19日下午,國中0602班40多位學員懷著喜悅的心情聚在實驗中學會議室召開了XX年年秋季遠程研修培訓的動員大會。會上,班主任詳細講解了XX年年秋季遠程研修培訓的學習目的與要求。隨後,學員們進行了充分地交流和討論,大家分擔著存在的困難、分享著能參加這個難得的學習機會的喜悅。最後大家表示,一定會合理安排時間,克服一切困難,做到學習、工作兩不誤。

在學習過程中,班主任通過上網、電話、聊天等途徑及時了解各學員的情況,對存在的問題督促其改正,在後階段發現有的老師沒有按時完成作業,就分別給學校領導打電話督促其完成作業,至學習結束我們班全體學員基本都按規定完成了作業(有三個特例除外—這三個老師由於種種原因已經轉到其他科目的培訓)。對好的現象給予及時表揚,如羅曉萍老師作為我們班的簡報編輯員,在第一階段結束後,自己覺得自己在簡報的編輯中還有一些技術性的知識未掌握好,覺得自己所編輯的簡報與別人的還有一些差距,於是聯繫到上一期的簡報編輯,利用暑假最後兩天時間不遠幾十公里趕到縣城向那位老師請教,回到家後還自己不斷地練習排版、編輯圖片等等,正是有了她的不懈努力,我們班的簡報才能多次進入課程簡報中的簡報攬勝。

指導老師梁華亮老師在研修過程中,對我們學員的作業及時的批改和鼓勵,促使我們班的學員學習熱情一直高漲。因此整個學習過程中,我們學員儘管遇到了諸多困難,如停電、電腦上不了網、電腦不夠用、遇上上級的各種檢查、出差等等,但我們的學員都能想盡辦法解決,有的從鄉下專程到縣城上網學習,有的白天沒辦法進行學習,就利用深夜時間進行學習,有的甚至買電腦上網專程為遠研學習,研修學習已經成為我們生活的.一部分,正如陶玉蓮老師在班級交流中說到“越是缺少監督的學習,越是真正意義上的學習。”學員們種種克服困難的辦法和精神真的很令我們感動,其中表現比較突出的有:羅曉萍、馮愛英、鄧劍、韋水蘭、陸漢華等。

正因為有了領導的重視和支持,班主任的跟蹤學習,學員們的主動,在研修專家的指導下,我們班的學員在理論知識、學習狀態、教學技能上等方面都有了很大的收穫,多次得到專家組的好評。在這個知識舞動的平台上,我們所有參加研修的學員們累並快樂著!我們的目標只有一個:為了孩子的明天!

在此我代表我們廣西鹿寨縣國中數學0602班全體學員對新課程學科遠程研修課程團隊的專家們表示衷心的感謝!我們鹿寨國中數學教育一定會因為有你們的指導而更精彩!

國中數學研修總結集錦 篇6

作為一名數學教師,我有幸參加了中國教師研修網組織的國培計畫(20xx年)——貴州省農村中國小教師遠程培訓項目的貴陽國中數學教學技能研修班的培訓學習,使我深受啟發和鼓舞!通過這次培訓學習我開闊了知識視野,加深了數學課程改革的認識,提升了對素質教育改革的理解,對今後的教育教學工作一定會起到重要的促進作用。同時,也衷心感謝各級領導為我提供了這次寶貴的學習機會。

第一、通過參觀學習及研討交流,豐富了閱歷,拓寬了視野,提升了對數學教育教學的認識。在短短几個月的學習時間裡,雖然緊張而忙碌,但更感充實與快樂。在這裡,來自全國各地各領域專家學者給我們帶來了精彩紛呈的學術報告,專家們精闢獨到的理論闡述、鮮活生動的案例分析,拓寬了我們的視野,豐富了我們的知識,啟迪著我們的思想;

培訓學習的同時,有機會與來自貴陽市各地的100多名學員們一起交流各學校的教學改革經驗,切磋課堂教學技藝。往日教學教研中的許多疑難、困惑就在這種學習、討論、交流中得以解答。這次培訓為全體參訓學員今後的工作提供了強大的理論支持和精神動力。

第二、通過學習經典務實的課例,開闊了我的視野。數學教師的視頻課,對於我,很好地起到了示範作用。讓我從他們的課堂中領略了他們的執教標準,以及駕御課堂的能力,可以說重新讓我堅定了課堂教學的信念。教學中,教師要勇於創新,改變傳統的教學定勢,進行有針對性的輔導與幫助,從而激發學生的學習興趣,培養他們勇於實踐的能力。課例從不同層次、不同角度重新提升了我對課堂教學的認識與把握,極大地開闊了我的視野。

第三、通過幾次專家線上研討,解除我心中的許多困惑。在培訓中,專家們的授課湧現出太多精彩,讓我感受到了大師們高尚的師德修養,以及他們的敬業精神,深邃的思考、紮實的工作作風和積極樂觀的心態,使我深切領悟到“學高為師,德高為范”的真諦,給我這個一線的教師留下了終生揮之不去的印象,它必將成為我今後人生的指南,事業的航標,深深地影響著我、激勵著我。他們身上理想的光輝照亮了我的心房,也改變了我曾有的.學習觀念,告訴自己要多學習。曾經認為自己從教十幾年,知識已經足夠,課堂也可以深淺無謂。當我看完視頻欣賞完同行的課堂聽完專家的點評之後,我深有感觸:我們需要的不僅僅是書本上的專業知識,更需要的是淵博的知識、教育的智慧。我們自身要多學習知識,讓自身知識不斷厚重。專家的線上研討,對困擾一線教師教學中存在的問題進行解答。通過認真學習專家的留言答疑,使我明確了自己今後的教學目標,而且對一些現實存在的問題有了自己解決的心理準備。儘管面對的困難很多,但我要積極地進行教學改革、探索新教學方法,積極進行嘗試新課改。

第四、通過專家的講課,專家的研討,使我們知道教學中要了解數學的發展,深刻意識數學的發展史對教學中的作用。傳統的數學教育使得教師在課堂上講授的知識的現在,忽視了知識的過去發明過程。我們說人的學習是一個認知過程,而教科書上講的往往是成熟的、完美的知識,而從不講獲得真理的艱苦歷程,使學生認識不到數學發展的曲折性,更不能讓學生了解知識發展過程,容易使學生產生誤解,以為數學家獲得知識很輕鬆。這嚴重阻礙了學生創造力的發展。了解數學發展過程中的數學家的故事,能夠使學生從數學家身上學習鍥而不捨的精神,在學習中鞭策自己。

第五、通過遠程研修,激勵自身成長,展望未來。培訓雖然是短暫的,但是收穫是充實的。讓我站在了一個嶄新的平台上審視了我的教學,使我對今後的工作有了明確的方向,這一次培訓活動後,我要把所學的教學理念咀嚼、消化內化為自己的教學思想,指導自己的教學實踐,要不斷蒐集教育信息,學習教育理論,增長專業知識,課後經常撰寫教學反思,以便今後上課進一步提高,並積極撰寫教育隨筆和教學論文參與投稿或評比活動。我的未來目標是通過自己的不斷磨礪成為一名數學骨幹教師,我有信心在未來的道路上通過學習,讓自己走得更遠,要想讓自己成為一名合格骨幹教師,為了理想中的教育事業,我將自強不息努力向前!

總而言之,在今後的工作中,我還會一如既往地進行專業研修,不斷創新思路,改進教學方法,使自己真正成為一名數學骨幹教師。

國中數學研修總結集錦 篇7

在授課這一階段應該好好分析學習情況,這是學生學習的進步以及養成很好素養的當務之急,在國中的數學授課中應該具體到每一位學生,弄清楚她們的行為、愛好、想法以及個人思想這一系列的東西對促進教育有重要影響。

儘管當下大多數老師都明白學習情況的掌握十分關鍵,可再進一步的行動中卻發現了很多困難。

1當下的國中數學學情分析態勢

1.1分析方法科學性缺失通過樣本調查,超過半數的教師通過談話和提問的方式了解學生的興趣愛好和知識水平,教師進行學情分析的方法比較單一,缺乏相應的科學合理性。教學是一個複雜的過程,我們應該綜合運用各種方法,如問卷調查、談話、前測、後測、練習等,準確把握學生的知識能力水平和學習效果。

1.2分析內容太泛化從調查來看,國中數學教師進行學情分析主要圍繞以下兩點進行:一是分析學生對將要學習的內容有無困難和興趣,這是對學生學習需要的分析;二是分析學生的學習能力、班級的整體水平等,這是對學生學習準備的分析。如此的學情分析,沒有結合具體教學內容和學生個體差異展開,內容粗糙,對教學並無實際指導意義。例如,一位教師這樣進行學情分析:該班學生數學基礎較好,有較強的學習欲望。這是對學生群體的心理和生理模糊特徵的分析,並不是對本班學生具體知識水平和能力的分析,這樣的學情分析比較空洞抽象,對改進教學幫助不大。

1.3學情分析的反饋工作沒有落實學情分析應貫穿教學的全過程,但從調查結果來看,很多教師都只是孤立地把學情分析當作備課的環節之一,沒有結合教學目標、教學重難點和作業練習來設計適應相應學情的教學環節,更沒有根據學情分析的結果來進行後續的反饋與完善工作。例如,在分析“學習需要”時,很多教師在備課環節分析了學生在學習中可能會遇到的困難,卻沒有針對這些可能性設計幫助學生克服困難的具體措施。針對學情分析的現狀,我認為,要能正確地進行學情分析、提高教學效率,必須明確兩個問題。一是分析什麼,這就要弄懂幾個概念,包括“已知”、“未知”、“能知”、“怎么知”,“已知”指的是學生的知識經驗和與學習內容相關的能力水平;“未知”包含將要學習的知識和已經學習過了但學生沒有掌握的知識;“能知”就是指通過教學,學生能掌握什麼知識;“怎么知”是如何學習到知識,包括學生的學習習慣和學習方法等。二應該通過多種方式進行學情分析,不僅需要根據自身的經驗,同時還需要通過實際觀察以及調查問卷等形式進行。

2利用學情分析更好地開展數學教學

2.1根據學情分析設定教學目標教學目標對教學有方向性的指導作用,它是教學的出發點也是歸屬點,學情分析是教學目標設定的基礎,沒有學情分析基礎的教學目標是不科學的,科學的教學應通過分析學生的“已知”和“未知”來確定教學目標。例如,我在教學人教版七年級上冊《正數和負數》這一章節時,先進行學情分析:學生已經學習過整數和分數(包括小數),對數的概念有了一定的了解,但是對生活中數的套用理解不深。根據對課前對學生學習情況的摸底調查,制定了本堂數學課的學習目標。一是複習上兩堂課關於有理數的相關知識點;二是在正號和負號在數中代表的意義;三是介紹這些不同概念數的產生背景,讓學生了解到數學的是人類改造自然的必然產物。這一教學目標不但重視問題解決的結果,而且重視問題解決的過程以及學生在問題解決過程中的體驗等。

2.2根據學情分析增強學生學習主動性只有當孩子們對學習的知識十分喜歡時,就會出現內心的渴望與學習的理由,這樣他們才會有完成目標的積極性,從“要我學”換成“我要學”。如“有趣的七巧板”是一節數學教學活動課,通過本節課可以進一步豐富七年級學生對平面圖形中平行、垂直和角的有關內容的認識,培養學生探究問題的能力和獨創精神。就學情而言,在學習本課之前,學生已經學習了幾何的初步知識——線段、平行、垂直、角的概念,能夠藉助三角尺、量角器、方格紙等畫線段、平行線、垂線、角。本節課的重點內容並不是繪製七巧板,而是藉助七巧板來了解線段的位置關係,然後藉助這套工具來設計和欣賞圖案,培養學生的空間想像以及審美,讓充滿好奇心的國中生對七巧板的操作充滿了求知慾,進而讓他們對數學學科產生興趣。2.3根據學情分析針對性開展教學“學習需要”和“學習準備”都是學情分析的重點內容,在上每一節新課之前,都要分析本班學生的整體學習能力和特殊群體的學習能力,並在教學中採取相應的措施。譬如人教版七年級下冊第七章《三角形的高、中線與角平分線》涉及的定理、性質、公式較多,且所任教班級大部分學生平時上課都不夠活躍。教學時筆者鼓勵較為積極的學生上台講解,教師退居傾聽者和引導者的角色,讓學生成為課堂的主角。這就促使上台講解的同學必須先理清思路,組織語言;台下聽講的同學對這一新穎的方式感到新奇,促使他們認真聽講,積極思考,參與的熱情高漲。這一變化不僅激發了講課學生的積極性,也給聽課的學生注入了一支強心劑,引起學生對數學的興趣,提升課堂教學效果的同時,對於學生培養數學思維和鍛鍊語言表述能力也大有裨益。

3結語

總的來說,學情分析並不屬於孤立形式,其實應是教師安排組織教學環節,從而使學生找到有益於自身發展的保證。正確的學情分析,教師不僅僅只注重學生的成績,也應了解學生的學習熱情、性格方面、興趣點等,參考教學改革的理念,進一步增強教學質量。

國中數學研修總結集錦 篇8

動點與函式圖象問題常見的四種類型:

1、三角形中的動點問題:動點沿三角形的邊運動,根據問題中的常量與變數之間的關係,判斷函式圖象.

2、四邊形中的動點問題:動點沿四邊形的邊運動,根據問題中的常量與變數之間的關係,判斷函式圖象.

3、圓中的動點問題:動點沿圓周運動,根據問題中的常量與變數之間的關係,判斷函式圖象.

4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據問題中的常量與變數之間的關係,判斷函式圖象.

圖形運動與函式圖象問題常見的三種類型:

1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經過三角形或四邊形,根據問題中的常量與變數之間的關係,進行分段,判斷函式圖象.

2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經過另一個多邊形,根據問題中的常量與變數之間的關係,進行分段,判斷函式圖象.

3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經過一個圓,根據問題中的常量與變數之間的關係,進行分段,判斷函式圖象.

動點問題常見的四種類型:

1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構成的新圖形與原圖形的邊或角的關係.

2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構成的新圖形與原圖形的全等或相似,得出它們的邊或角的關係.

3、圓中的動點問題:動點沿圓周運動,探究構成的新圖形的邊角等關係.

4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構成的三角形是等腰三角形或與已知圖形相似等問題.

總結反思:

本題是二次函式的綜合題,考查了待定係數法求二次函式的解析式,一次函式的解析式,三角形全等的判定和性質,等腰直角三角形的性質,平行線的性質等,數形結合思想的套用是解題的關鍵.

解答動態性問題通常是對幾何圖形運動過程有一個完整、清晰的認識,發掘“動”與“靜”的內在聯繫,尋求變化規律,從變中求不變,從而達到解題目的.

解答函式的圖象問題一般遵循的步驟:

1、根據自變數的取值範圍對函式進行分段.

2、求出每段的解析式.

3、由每段的解析式確定每段圖象的形狀.

對於用圖象描述分段函式的實際問題,要抓住以下幾點:

1、自變數變化而函式值不變化的圖象用水平線段表示.

2、自變數變化函式值也變化的增減變化情況.

3、函式圖象的最低點和最高點.

國中數學研修總結集錦 篇9

1.分式及其基本性質:分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的值不變。

2.分式的運算:

(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。

(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減。

國中數學研修總結集錦 篇10

把一元二次方程化成ax2+bx+c的一般形式,然後把各項係數a, b, c的值代入求根公式就可得到方程的根。

公式法

公式:x=[-b±√(b2-4ac)]/2a

當Δ=b2-4ac>0時,求根公式為x1=[-b+√(b2-4ac)]/2a,x2=[-b-√(b24ac)]/2a(兩個不相等的實數根)

當Δ=b2-4ac=0時,求根公式為x1=x2=-b/2a(兩個相等的實數根)

當Δ=b2-4ac<0時,求根公式為x1=[-b+√(4ac-b2)i]/2a,x2=[-b-√(4ac-b2)i]/2a

例3.用公式法解方程 2x2-8x=-5

解:將方程化為一般形式:2x2-8x+5=0

∴a=2, b=-8,c=5

b2-4ac=(-8)2-4×2×5=64-40=24>0

∴x= (4±√6)/2

∴原方程的解為x?=(4+√6)/2,x?=(4-√6)/2.

大家不知道的是兩個複數根在國中數學的學習中理解為無實數根。

國中數學研修總結集錦 篇11

橢圓知識:平面內與兩定點F1、F2的距離的和等於常數2a(2a>|F1F2|)的動點P的軌跡叫做橢圓。

橢圓的第一定義

即:│PF1│+│PF2│=2a

其中兩定點F1、F2叫做橢圓的焦點,兩焦點的距離│F1F2│=2c<2a叫做橢圓的焦距。P 為橢圓的動點。

長軸為 2a; 短軸為 2b。

橢圓的第二定義

平面內到定點F的距離與到定直線的距離之比為常數e(即橢圓的離心率,e=c/a)的點的集合(定點F不在定直線上,該常數為小於1的正數) 其中定點F為橢圓的焦點,定直線稱為橢圓的準線(該定直線的方程是x=±a^2/c[焦點在X軸上];或者y=±a^2/c[焦點在Y軸上])。

橢圓的其他定義

根據橢圓的一條重要性質,也就是橢圓上的點與橢圓短軸兩端點連線的斜率之積是定值 定值為e^2-1 可以得出:平面內與兩定點的連線的斜率之積是常數k的動點的軌跡是橢圓,此時k應滿足一定的條件,也就是排除斜率不存在的情況,還有K應滿足<0且不等於-1。

簡單幾何性質

1、範圍

2、對稱性:關於X軸對稱,Y軸對稱,關於原點中心對稱。

3、頂點:(當中心為原點時)(a,0)(-a,0)(0,b)(0,-b)

4、離心率:e=c/a

5、離心率範圍 0

知識歸納:離心率越大橢圓就越扁,越小則越接近於圓。

國中數學知識點總結:平面直角坐標系

平面直角坐標系

平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:①在同一平面②兩條數軸③互相垂直④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

國中數學知識點:平面直角坐標系的構成

平面直角坐標系的構成

在同一個平面上互相垂直且有公共原點的兩條數軸構成平面直角坐標系,簡稱為直角坐標系。通常,兩條數軸分別置於水平位置與鉛直位置,取向右與向上的方向分別為兩條數軸的正方向。水平的數軸叫做X軸或橫軸,鉛直的數軸叫做Y軸或縱軸,X軸或Y軸統稱為坐標軸,它們的公共原點O稱為直角坐標系的原點。

國中數學知識點:點的坐標的性質

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的'。

國中數學知識點:因式分解的一般步驟

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個範圍內因式分解,應該是指在有理數範圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

國中數學知識點:因式分解

因式分解

因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。

因式分解要素:①結果必須是整式②結果必須是積的形式③結果是等式④

因式分解與整式乘法的關係:m(a+b+c)

公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。

公因式確定方法:①係數是整數時取各項最大公約數

②相同字母取最低次冪

③係數最大公約數與相同字母取最低次冪的積就是這個多項式各項的公因式。

提取公因式步驟

①確定公因式。②確定商式③公因式與商式寫成積的形式。

分解因式注意

①不準丟字母

②不準丟常數項注意查項數

③雙重括弧化成單括弧

④結果按數單字母單項式多項式順序排列

⑤相同因式寫成冪的形式

⑥首項負號放括弧外

⑦括弧內同類項合併。

國中數學研修總結集錦 篇12

一、數與代數A:數與式:

1:有理數

有理數:

①整數→正整數/0/負整數

②分數→正分數/負分數

數軸:

①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。

在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。

④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

絕對值:

①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

②正數的絕對值是他本身/負數的絕對值是他的相反數/0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

有理數的運算:加法:

①同號相加,取相同的符號,把絕對值相加。

②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。③一個數與0相加不變。

減法: 減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

②任何數與0相乘得0。

③乘積為1的兩個有理數互為倒數。

除法:

①除以一個數等於乘以一個數的倒數。

②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

2:實數

無理數:無限不循環小數叫無理數

平方根:

①如果一個正數X的平方等於A,那么這個正數X就叫做A的算術平方根。

②如果一個數X的平方等於A,那么這個數X就叫做A的平方根。

③一個正數有2個平方根/0的平方根為0/負數沒有平方根。

④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:

①如果一個數X的立方等於A,那么這個數X就叫做A的立方根。

②正數的立方根是正數/0的立方根是0/負數的立方根是負數。

③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:

①實數分有理數和無理數。

②在實數範圍內,相反數,倒數,絕對值的意義和有理數範圍內的相反數,倒數,絕對值的意義完全一樣。

③每一個實數都可以在數軸上的一個點來表示。

3:代數式

代數式:單獨一個數或者一個字母也是代數式。

合併同類項:

①所含字母相同,並且相同字母的指數也相同的項,叫做同類項。

②把同類項合併成一項就叫做合併同類項。

③在合併同類項時,我們把同類項的係數相加,字母和字母的指數不變。

4:整式與分式

整式:

①數與字母的乘積的代數式叫單項式,幾個單項式的.和叫多項式,單項式和多項式統稱整式。

②一個單項式中,所有字母的指數和叫做這個單項式的次數。

③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

整式運算:加減運算時,如果遇到括弧先去括弧,再合併同類項。

冪的運算:AM。AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一樣。

A0=1,A-P=1/AP

整式的乘法:

①單項式與單項式相乘,把他們的係數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。

②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式/完全平方公式

整式的除法:

①單項式相除,把係數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式

方法:提公因式法/運用公式法/分組分解法/十字相乘法

分式:

①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對於任何一個分式,分母不為0。

②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。

分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個分式等於乘以這個分式的倒數。

加減法:

①同分母的分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:

①分母中含有未知數的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。

B:方程與不等式

1:方程與方程組

一元一次方程:

①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:去分母,移項,合併同類項,未知數係數化為1。

二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。

解二元一次方程組的方法:代入消元法/加減消元法。

2:不等式與不等式組

不等式:

①用符號〉,=,〈號連線的式子叫不等式。

②不等式的兩邊都加上或減去同一個整式,不等號的方向不變。

③不等式的兩邊都乘以或者除以一個正數,不等號方向不變。

④不等式的兩邊都乘以或除以同一個負數,不等號方向相反。

不等式的解集:

①能使不等式成立的未知數的值,叫做不等式的解。

②一個含有未知數的不等式的所有解,組成這個不等式的解集。

③求不等式解集的過程叫做解不等式。

一元一次不等式:左右兩邊都是整式,只含有一個未知數,且未知數的最高次數是1的不等式叫一元一次不等式。

一元一次不等式組:

①關於同一個未知數的幾個一元一次不等式合在一起,就組成了一元一次不等式組。

②一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。

③求不等式組解集的過程,叫做解不等式組。

3:函式

變數:因變數,自變數。

在用圖象表示變數之間的關係時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。

一次函式:

①若兩個變數X,Y間的關係式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函式。

②當B=0時,稱Y是X的正比例函式。

一次函式的圖象:

①把一個函式的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函式的圖象。

②正比例函式Y=KX的圖象是經過原點的一條直線。

③在一次函式中,當K〈0,B〈O,則經234象限;當K〈0,B〉0時,則經124象限;當K〉0,B〈0時,則經134象限;當K〉0,B〉0時,則經123象限。

④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

二、空間與圖形

A:圖形的認識:

1:點,線,面

點,線,面:

①圖形是由點,線,面構成的。

②面與面相交得線,線與線相交得點。

③點動成線,線動成面,面動成體。

展開與摺疊:

①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。

②N稜柱就是底面圖形有N條邊的稜柱。

截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

3視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧,扇形:

①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個扇形。

2:角

線:

①線段有兩個端點。

②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

③將線段的兩端無限延長就形成了直線。直線沒有端點。

④經過兩點有且只有一條直線。

比較長短:

①兩點之間的所有連線中,線段最短。

②兩點之間線段的長度,叫做這兩點之間的距離。

角的度量與表示:

①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

②一度的1/60是一分,一分的1/60是一秒。

角的比較:

①角也可以看成是由一條射線繞著他的端點旋轉而成的。

②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續旋轉,當他又和始邊重合時

國中數學研修總結集錦 篇13

參加國中數學遠程培訓二個多月時間了,通過這段培訓,我受益匪淺,感受很多。下面就是我的.點滴體會:

一.對新教材有了初步了解

學習了義務教育新課標的理念和課例解讀後,我對於未曾變動的舊的知識點,考綱上有所變化的做到了心中有數。對於新增內容,哪些是中考必考內容,哪些是選講內容,對於不同的內容應該分別講解到什麼程度,也更明確了。這樣才能做到面對新教材中的新內容不急不躁、從容不迫,不至於面對新問題產生陌生感和緊張感。通過學習,使我清楚地認識到國中數學新課程的內容是由哪些模組組成的,各模組又是由哪些知識點組成的,以及各知識點之間又有怎樣的聯繫與區別。專家們所提供的專業分析對我們理解教材,把握教材有著非常重要而又深遠的意義。對於必修課程必須講深講透,對於部分選學內容,應視學校和學生的具體情況而定。

二.對課堂教學設計、教學案例的編寫方面的內容有了提高。

培訓活動中,自己通過視頻觀看學習了“案例導入”、“專家講座”、“互動討論”、“課例作業”等內容,使自己在教學設計、教學案例以及課堂教學等方面有了進一步的提升和加強,特別是在課堂教學設計,令人豁然開朗。通過視頻觀看學習了《有序數對》和《圖形的旋轉》,感覺很有收穫。如以往聽課從未記錄過講課者教學過程各個環節的時間分配,聽課時只注意了講課者的知識傳授情況,而沒注意欣賞、品析講課者的教學追求、洞察其教學的理論依據等。特別是聽了專家講座後,自己才知道還有很多不足。自己今後將認真按專家的指點開展教學活動。

三、教學實戰能力得到加強

本次培訓充分關注培訓教師的實際需要,不僅傳授了現代教學技術和手段,在大的緯度上幫助教師構建理論體系,同時更關注新課程背景下課堂教學深層問題。專家向我們講授了“計算機教學手段套用”“中學教師標準解讀”“教學技術及套用”“新課標解讀”等,先進的教學理念及其別具一格的教學風格使本人在觀摩、思考、碰撞中得到提高。整個培訓活動從實際到理論,再由理論到實際,循序漸進,降低了學習的難度,提高了學習的實效。

四、通過培訓學習,使我清楚地認識到整體把握國中數學新課程的重要性及其常用方法。

整體把握國中數學新課程不僅可以使我們清楚地認識到國中數學的主要脈絡,而且可以使我們站在更高層次上面對國中數學新課程。整體把握國中數學新課程不僅可以提高教師自身的素質,也有助於培養學生的數學素養。只有讓學生具備良好的數學素養才能使他們更好地適應社會的發展與進步。與學生的總結、交流能促進我們產生更多更好的授課方式、方法,產生更多更新的科學思維模式。這對於我們提高課堂教學質量具有非常現實而深遠的意義。

總之,此次培訓活動,使自己的教育教學觀念、教學行為方法、專業化水平,教育教學理論均有了很大的提升。今後,自己充分將所學、所悟、所感的內容套用到教學實踐中去,做新時期的合格的國中數學教師。

國中數學研修總結集錦 篇14

1、正數和負數的有關概念

(1)正數:比0大的數叫做正數;

負數:比0小的數叫做負數;

0既不是正數,也不是負數。

(2)正數和負數表示相反意義的量。

2、有理數的概念及分類

3、有關數軸

(1)數軸的三要素:原點、正方向、單位長度。數軸是一條直線。

(2)所有有理數都可以用數軸上的點來表示,但數軸上的點不一定都是有理數。

(3)數軸上,右邊的數總比左邊的數大;表示正數的點在原點的右側,表示負數的點在原點的左側。

(2)相反數:符號不同、絕對值相等的兩個數互為相反數。

若a、b互為相反數,則a+b=0;

相反數是本身的是0,正數的相反數是負數,負數的相反數是正數。

(3)絕對值最小的數是0;絕對值是本身的數是非負數。

4、任何數的絕對值是非負數。

最小的正整數是1,最大的負整數是-1。

5、利用絕對值比較大小

兩個正數比較:絕對值大的那個數大;

兩個負數比較:先算出它們的絕對值,絕對值大的反而小。

6、有理數加法

(1)符號相同的兩數相加:和的符號與兩個加數的符號一致,和的絕對值等於兩個加數絕對值之和.

(2)符號相反的兩數相加:當兩個加數絕對值不等時,和的符號與絕對值較大的加數的符號相同,和的絕對值等於加數中較大的絕對值減去較小的絕對值;當兩個加數絕對值相等時,兩個加數互為相反數,和為零.

(3)一個數同零相加,仍得這個數.

加法的交換律:a+b=b+a

加法的結合律:(a+b)+c=a+(b+c)

7、有理數減法:減去一個數,等於加上這個數的相反數。

8、在把有理數加減混合運算統一為最簡的形式,負數前面的加號可以省略不寫.

例如:14+12+(-25)+(-17)可以寫成省略括弧的形式:14+12-25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負25、負17的和.”

9、有理數的乘法

兩個數相乘,同號得正,異號得負,再把絕對值相乘;任何數與0相乘都得0。

第一步:確定積的符號第二步:絕對值相乘

10、乘積的符號的確定

幾個有理數相乘,因數都不為0時,積的符號由負因數的個數確定:當負因數有奇數個時,積為負;

當負因數有偶數個時,積為正。幾個有理數相乘,有一個因數為零,積就為零。

11、倒數:乘積為1的兩個數互為倒數,0沒有倒數。

正數的倒數是正數,負數的倒數是負數。(互為倒數的兩個數符號一定相同)

倒數是本身的只有1和-1。

國中數學研修總結集錦 篇15

時間飛逝,回望開學初的計畫,深感“做事的過程就是結果,努力能帶動效率。”這學期我們數學教研組的工作在三個備課組長及全組數學教師的努力下基本完成了工作任務。

現總結如下:

一、突出研課特色,以公開課為平台,提升教研組教師學習能力通過學校各項活動,我們教師課堂教學水平有很大提高,三個備課組長以學生學段不同,科學合理地進行教學工作,我們強化數學教研組建設,積極發揮教研組備課組的團隊合作力量,走了教研組教學研究特色化,便於提高我們教師教學水平,要求每位教師認真鑽研教材,探討教法,並積極地落實到自己的'教學中。通過骨幹教師帶動青年教師觀課議課評課,提升教師對教學各項能力,並議課中,及時發現一些“共同”問題,緊鑼密鼓地開展研究,並探討解決教學共性問題以及教師教學個人問題,一定程度上有效的提高了教師相互學習能力。

二、多種培訓及教學研修,提升教研組教師素養學校創造機會提高教師的業務學習能力。選派優秀教師積極參加外出跟崗培訓,回來後上好匯報課,實現資源共享。聯繫溫州市送教下鄉活動,縣常規培訓活動,市縣中考複習說明培訓,多個角度,多個平台,進行了教師業務和素養培訓,效果顯著。

三、豐富活動,提高數學教研組綜合能力整合教學活動,展開備課組特點的個性行動研究,在教研中,我們階段交流活動,解決研究過程遇到的問題。九年級進行二輪專題複習研究,由王大團老師做公開課,並在課題組員和全體數學組展開研討,提高了二輪專題複習研究的有效性。七八年級對如何處理培優和教學相宜聯繫,平時更針對性的,更有效的進行教學整合,使培優和教學雙贏。這學期各年段積極組織學生參加生活中的數學的初賽與複賽,並獲得多個一、二、三等獎獎項,成果喜人。

四、發揮備課組長領導力,加強集體備課通過教研組平台,要求備課組長細化、最佳化備課組各項常規工作,發揮教師的積極性,有計畫地開展教研組下達各項數學教學活動。以教研組為單位進行教學研究,發揮備課組的優勢,把教研組作為一個有力的團體,打團隊仗,讓每一位教師在團隊中發揮自己的潛能,凝聚智慧,創造智慧。

五、教研工作的不足之處教研組內教師多,改變提升教研組教師教學水平,還是有很大距離,改變教師教學方式和教學觀念也有困難,教研組教師平均年齡較大,在專業上開始進入了疲倦期,如何激發老師們的工作激情,快速度過工作倦怠期,進入新一輪工作激情期,這是我們教研組面臨的一個問題。經驗型的老教師過多,也給我們帶來了很大工作壓力,從教研活動的公開課到試卷命題等等,活動熱情和投入嚴重不足,每次活動的執行力都會阻礙重重,因此各備課組長壓力極大。

最後,感謝大家這幾年在工作上的大力支持,我們教研組的工作,是見證大家的共同成長,讓我們收穫各自的精彩,同時也成就我們作為數學大組的集體榮譽!再次,感謝有你們!

價方式,讓學生的個性得到自由健康的發展,從而形成肯定的自我意識。

3、加強教學研究,充分發揮教科研活動對常規教學的輔助功能。一是把集體備課、聽課、評課落到實處,加強教師間的交流與合作,真正實現腦力資源的共享。二是加強學習,參加各級新課程培訓和遠程教育培訓等各種學習活動,進一步更新教育理念。堅持閱讀每期《中史參》、《歷史教學》和《歷史研究》等權威學術期刊,了解最新史學動態,並將這些思路和方法及時運用到教學中去,大大提高了教育思想水平和教學水平。三是撰寫了《對新課標下歷史課堂教學的認識》、《如何發揮中學歷史教學的素質教育功能》等教學和學習心得。針對教輔市場良莠不齊的現狀,我用一年時間編寫了一套教輔用書,由黃河出版社發行,得到同行的廣泛好評。

4、擔任班主任工作期間,我建立了一套行之有效的管理方法,教育學生樹立遠大理想,培養學生集體觀念和合作進取意識,用發展的眼光看待學生,以平常心態對待後進生,對學生曉之以理、動之以情,因勢利導,變消極因素為積極因素,從而使學生形成了積極的人生態度,樹立了正確的人生價值觀。

三、一蓑煙雨任平生——繼續我的執著與勤奮。

一分春華,一分秋實。付出心血與汗水,也收穫著充實和沉甸甸的情感,我所教班級的學生,學習興趣濃厚,成績突出。教學之路仍在腳下延伸,作為教學之路上的蹉跎前行者,不求夏花之燦爛,但求秋葉之靜美。在以後的工作中,我將保持自己的勤奮和執著,把自己的工作做的更好。

國中數學研修總結集錦 篇16

點的坐標的性質

建立了平面直角坐標系後,對於坐標系平面內的任何一點,我們可以確定它的坐標。反過來,對於任何一個坐標,我們可以在坐標平面內確定它所表示的一個點。

對於平面內任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應點a,b分別叫做點C的橫坐標、縱坐標,有序實數對(a,b)叫做點C的坐標。

一個點在不同的象限或坐標軸上,點的坐標不一樣。

希望上面對點的坐標的性質知識講解學習,同學們都能很好的掌握,相信同學們會在考試中取得優異成績的。

國中數學知識點:因式分解的一般步驟

關於數學中因式分解的一般步驟內容學習,我們做下面的知識講解。

因式分解的一般步驟

如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,

通常採用分組分解法,最後運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。

注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個範圍內因式分解,應該是指在有理數範圍內因式分解,因此分解因式的結果,必須是幾個整式的積的形式。

相信上面對因式分解的一般步驟知識的內容講解學習,同學們已經能很好的掌握了吧,希望同學們會考出好成績。

國中數學研修總結集錦 篇17

通過這段時間的培訓學習,使我深刻認識到學習的必要性和重要性。使我認識到當前課改的目的和意義,也使自己對課改有了深刻的認識,也大大提高了自己對本學科的理論素養。現將這次培訓體會總結如下:

一、通過研修使我的教學觀念得到進一步的更新

有機會來參加這次培訓,有機會來充實和完善自己,我自豪,我榮幸。但更多感到的是責任、是壓力!回首這次的培訓,真是內容豐富,形式多樣,效果明顯。培訓中有各級教育專家的專題報告,有一線教師的專題講座,有學員圍繞專題進行的各種行動學習,還有我回校後的教育教學實踐。這次的培訓學習,對我既有觀念上的洗禮,也有理論上的提高,既有知識上的積澱,也有教學技藝的增長。這是收穫豐厚的一次培訓,也是促進我教學上不斷成長的一次培訓。

二、拓寬了視野,開闊了眼界

觀看學習視頻使我領略到了教育專家和名師的風采,專家和名師的課程深入淺出,鮮活生動的教學案例讓我們感到就在自己身邊。案例背後的思考與解讀,更是讓我們深受啟發、大開眼界,引起深層次的反思。

遠程研修平台上的同行們都在積極努力地學習,看著他們發表文章和評論,我得到了很多的啟發和實用性的建議和意見,我為自身的淺薄與不足感到羞愧,認識到加強學習的重要性與緊迫性。遠程研修的過程中,我一直抱著向其他老師學習的態度參與,學習他們的經驗,結合自己的教學來思考,反思自己的教學。

三、提高能力,完善自我

網上的專業學科學習和聽取同行們優秀的示範課使我從根本上改變了我原先的傳統教學模式,更給我帶來了新的教學觀念、教學方式和教學理念。這使我對以往在教學中的困惑豁然開朗,教學思路靈活了,對自己的課堂教學也有了新的目標和方向:首先在課堂的'設計上一定要力求新穎,講求實效性,不能為了圖熱鬧,活動多多而沒有實質內容;教師的語言要有親和力,要和學生站在同一高度,甚至蹲下身來看學生,充分尊重學生;在課堂上,教師只起一個引導的作用,不可以在焦急之中代替學生去解決問題,要尊重學生的主體地位;教師可以設定問題引導學生,但是不能全靠問題來牽引學生,讓學生跟著老師走等。在以後的教學工作中,我也會以高質量的課堂要求自己,不斷提高教學能力,完善自我。四、反思不足,努力改進

通過遠程研修,使我學到了很多東西,這對我來說是一個極大的提高。同時,我也重新審視自我,更清醒地認識到自己知識的匱乏、淺陋,也看清了過去的自己:安於現狀、自滿自足,缺乏終身學習的意識,工作中容易被俗念束縛,惰性大,缺少有價值的嘗試探索;我深深地感到自己在工作中存在著許多不足,因此,我決定在以後的工作中努力改進:

1、藉助遠程研修,多學習、多交流,使自己的知識面不斷擴大,使自己的業務水平更上一層樓,以更好的適應新課程教學和時代的挑戰。

2、教學的藝術不在於傳授本領而在於激勵、喚醒、鼓舞。新課標的指導下,教什麼、教多少、如何教等問題得到了進一步明確。教學的宗旨是要激發學生的學習興趣。

3、認真備課、上課,合理設計學案、教案,精心設計練習題,有效地進行分層教學,使所有的學生都不掉隊,讓他們成為真正的智慧型人才。

4、教學方法要靈活多樣,在教學中創設生動的知識情景,促進學生知識、能力、智力、情感意志獲得儘可能大的發展,提高學習效能。在教學中應該堅持以科學的態度和方法,努力減輕學生負擔,儘量讓學生消除畏難情緒。讓學生明白一個事實,那就是課堂上只要積極大膽的參與了各個教學活動,就是最大的成功和可喜的進步。

5、“愛孩子是教師的天職”,愛是教育的源泉,愛學生就可以給學生一個健康的思想,良好的學習心態,所以,我們都應關心愛護每一位學生,使他們在我們的呵護下茁壯成長。

6、教師每時每刻都要學習,所以,我將在今後的工作之餘加強教育理論和教學方法的學習和研究,多讀一些有價值的教育書籍,努力提高自己的整體素質。一份耕耘,一分收穫,相信在以後的工作中,我會更努力,在學習和思考並沒有停止。在今後的工作中努力改善自身,勇敢迎接更多挑戰。

國中數學研修總結集錦 篇18

一、全新的研修,全新的體驗。

20xx年xx月xx日,全省一百多名數學教師齊聚濟南,開展為期10天的集中加分散的研修學習。

晚上的破冰活動,使每一個人都能感覺到,這100名教師都是全省國中數學界最優秀的代表。這其中有多位齊魯名師、山東優秀教師、山東創新人物、全國優秀教師、全國課改實驗先進教師,更不乏山東教學能手、山東省特級教師、省優質課一等獎獲得者等等,很多教師不僅在數學上赫赫有名,也有很多班級管理方面的省級專家。後面的研修,也進一步證明了這是一個紮實務實的教師團隊。

各級培訓,越來越科學、務實,越來越需要耗費精力,這大家都是早有心理準備的。但本次培訓中精力付出之大,還是遠遠超過了每一個人的預期。對於我來說,很渴望聽到專家醍醐灌頂是的指點,也很希望學習別人先進的經驗。但開始培訓後,卻沒有和我想像的一樣——聽報告和觀摩優秀課例,而是從一開始就在做任務培訓。整個培訓都是圍繞著一個課例打磨展開和結束的。“三次備課、兩輪打磨、4段視頻製作、多個文本撰寫”,從問題選擇到問題澄清,從課例選擇到基於研究主題的一次次策劃,從教學設計的不斷完善到課堂觀察量表的細細斟酌,從課堂前台的關注到背後理論的不斷深入,從任務分擔到共同完成製作。一個不一樣的研修,使我們感受到了很多從未有過的體驗,給了我們許多不一樣的思考和震撼。

二、艱巨的任務,共同的成果。

這次研修,是一次基於提高校本研修實效性的體驗式的範例學習,這次研修,是一次基於任務完成的研修。

29日上午,高研班舉行了簡短而又隆重的開班典禮。齊魯師範學院副院長陳小言、山東省中國小師訓乾訓中心主任畢詩文、副主任劉文華、省中國小教師遠程研修項目執行主任蔣敦傑、山東省中國小教師遠程研修國中項目主任梁承鋒和省基礎教育課程研究中心副主任李紅婷教授等領導和專家出席了本次高研班開班儀式。開幕式上,專家和領導就明確的指出這次高級研修班的任務是為xx年全省國中數學教師全員遠程研修開發課例資源。

開幕式只有20分鐘,很快就進入了任務培訓狀態。專家的報告大多是指向如何開展工作的,第一天培訓就顯示了任務的緊張。上午蔣教授的報告《教師研修轉型與省骨幹高級研修》到12點,下午首都師範大學王尚志教授《國中數學教學幾個問題》到5:30,晚上樑承鋒教授《xx國中骨幹教師高級研修目標任務與課例研究變式套用》到了10:30儘管專家們都在強調如何開展工作,如何重要和辛苦,我們還是沒有進入狀態。但王尚志教授的報告,讓大家很興奮,他探討的問題很實在,和一線教師的思考很接近,我們大多數人都不是第一次聽王教授的報告,但看得出這次報告還是給大家帶來了很多思考和收益。而且後續的工作證明,王尚志教授的報告給大家的`工作起了很好的指導作用。

第二天上午首席專家李紅婷教授為大家作了題為《課例研究問題與研究任務——以“課例打磨”為載體的教學改進思路》的報告,李教授從教師培訓方式的轉型、專家型教師的成長路徑、課例與課例設計、課例研究問題與研究問題、觀課與評課等幾個方面作了深入的解讀。下午兩位參加過課例研修教師的現身說法,讓大家不但明白了基本流程和思路,也意識到了責任之大和任務之重。

伴隨著兩天的報告,是大家對關注問題的討論和澄清。很快,我們六個組各自確定了自己的研究主題,並進行了去偽存真式的剝離和澄清,並撰寫了各自的研修計畫。首席專家李紅婷教授的指導是非常重要的,而且貫穿任務全過程。李教授的指導具體、清楚,高屋建瓴而且不厭其煩,從早上到深夜,還處理著一些其他的工作,給大家帶來了很大的感動。

更多的時間留給了以小組為單位的工作團隊。我們小組由16位教師組成,有四位來自濱州,有三位來自東營,有九位來自煙臺。其中由來自煙臺市芝罘區教科研中心的林光老師任組長,由來自濱州市北鎮中學實驗國中部的邢成雲老師和萊州市實驗中學張延芳老師任指導老師,由來自東營市育才中學的劉江老師任組內專家,根據工作需要,組內又分為4個任務小組。

每一項任務都被分解為幾個部分來討論和撰寫,然後再合成討論,再經指導教師、組內專家把關後,再提交李教授審核,然後再審核定稿。課例打磨計畫的制定,讓大家完全進入了工作狀態,也了解了理論研究、行動研究和載體呈現的重要性。授課任務由煙臺三中分校的曲曉媛老師承擔,她自我封閉了一天進行獨立一備,其他人則對a視頻腳本進行了細緻的研討,為便於在網路上呈現這個遞進的過程,我們進行了錄音和會議記錄,想保持這個課例打磨的真實過程。在二備的過程中,大家各抒己見,充分討論,很快達成了共識,二備很順利,b腳本也很順利完成了第一稿。

第一段集中研修,7天很快結束了。我們才發現自己的節奏是那么緊張。基本上是房間、餐廳和工作室,每天從早上到深夜。多數人連樓也沒有走出去。第二階段是分散研修和錄課的時間。但每天大家還是第一時間上網交流和學習。儘管錄課是在煙臺,大家還是克服困難參加了實地的課堂觀察。

12月21日,大家重聚濟南,進行了觀課交流,錄製b視頻和d視頻,完成了網路記錄和呈現任務,並撰寫了課例學習導引等,最終一個完整的課例打磨資源,在大家的共同努力下順利完成。

回顧整個過程,我們不得不說,每一項工作成果無不都是大家共同智慧的結晶。每個小過程,我們組內都進行詳細而明確的分工,而且這種分工特別重視彼此的互助性。每位教師都非常積極認真的完成各自的任務和協助任務。任務是艱巨的,但結果也是令人振奮的。

三、不同的體會,共同的收穫。

(一)這次研修,給了大家太多的感慨。

教學設計、上課、聽課、評課本是教師最經常的工作,卻因沒有明確的問題引領,沒有客觀的觀察統計,沒有必要的理性思考,沒有更深一步的行動和理論跟進,使我們的校本研修擺脫不了低效的困境,也浪費了老師們的時間,也使得大家的水平和課堂教學質量得不到提高。

聚焦問題,不僅需要理論的學習和思考,更需要真實、客觀和科學的關注,更需要行動研究和逐步的跟進踐行,在堅決問題中,成長自己,促進學生。

(二)這次研修,給了大家太多的感動。

參加研修的教師,大多是學校里的中堅力量,身兼多職,但大家對待這項工作,無不盡心盡力,尤其在當討論的時候,都願意把自己的觀點拿出來,與別人分享,闡述自己的理由。彼此真誠的交流,常讓人有無聲處聞驚雷的感覺。與會的工作人員,也都儘可能的為別人服務。各位專家,尤其是李紅婷教授更是耐心指導,精益求精。可以說,研修中,每一個人感動著別人的同時,也被別人感動著。雅斯貝爾斯說:“教育就是一朵雲推動另一朵雲,一棵樹搖動另一棵樹,一個靈魂喚醒另一個靈魂。”研修也正是這樣。

我們有理由相信,教育戰線上不乏執著的追夢人,不乏具有高尚情懷和追求的教育工作者。

(三)這次研修,給了大家太多的收穫。

雖然整個研修,都是圍繞任務展開的。但服務他人的同時,更成就的是自己。在課例打磨的過程中,每一位教師都有自己的收穫。有的開闊了思路,有的提升了理論,有的淨化了心靈。同時,也結交了很多業內同行。其實,同伴的交流是最大的財富。

有一種收穫,可以穿透時空,長久的留在記憶里,那就是精神的成長和彼此的感動。

(四)這次研修,給了大家更多的思考。

日常教學研究,應該聚焦於教學有關的各類現實存在的問題,應該注意反覆開放和聚焦,在解決和研究中,不斷提出新的問題和實際的行動跟進研究。

我們感覺到,廣大的一線教師都是有強烈的教育責任感、使命感和教育情懷的,對教育教學的追求是大家共同的心愿。通過本次高研班研修,我們認識到其實大道至簡,道不遠人。

讓我們紮根校本,藉助課例打磨,以客觀、現實的視角,以理論學習和行動跟進為切入點,來提高我們的教育能力,提升我們的教育智慧吧。

國中數學研修總結集錦 篇19

教學之路仍在腳下延伸,作為教學之路上的蹉跎前行者,不求夏花之燦爛,但求秋葉之靜美。在以後的工作中,我將保持自己的勤奮和執著,把自己的工作做的更好。 在中學任職以來,我本著以重實際、勤鑽研、求實效的工作原則,以培養學生創新精神和實踐能力為重點,以新課程改革為契機,最佳化教學常規,深化課堂教學改革,大力推行素質教育,求真、務實、創新、高效地工作著,現將教學工作總結如下:

一、一片冰心在玉壺——樹立新的教育理念,堅定教書育人信念。

教育事業乃民族大業,振興教育人人有責,素質教育和新課程改革對中學教育提出新的要求,學生成為教育的中心,愛成為教師職業道德的核心,也成為教書育人的根本途徑,因此,我確立了“一切為了人的發展”的教育理念,明確了“用真摯的愛教育每一個學生”,用適合每個學生的方法教育學生的教學工作目標。

二、衣帶漸寬終不悔——我的教學工作。

任職期間,我在堅持抓好新課程理念套用的同時,大膽改革課堂教學,探索新的教學方法,具體表現在:

1、進一步最佳化教學常規,充分發揮老師的主導作用。圍繞著“什麼是有效的歷史教學?怎樣才能提高課堂教學的有效性?”這一問題,我作了認真思考和分析,明確了教學思路和重點,一是在備課上下功夫,為此,我繼續鑽研和解讀新課程標準、考綱和新教材,繼續分析、了解學情,關注學生的知識基礎、思想動態,備課做到知識點準確全面,知識體系簡明科學,授課方式藝術多變,感染力強,使課堂教學集知識性、藝術性、思想性於一體,從而激發了學生的學習興趣,有效調動了學生的學習積極性,大大提高了課堂效率。二是在鞏固訓練上設底線。即精心設計課後作業和單元檢測,定時定量訓練,全批全改,然後通過講評使學生不僅查缺補漏,明確了知識,而且掌握了高質量完成試卷的技巧和方法,提高了解決問題的能力。

2、調動學生積極性,突出學生的主體地位。如何突出學生的主體地位?我從調動學生的學習積極性入手,因為積極性提高了,學生才會真正投入到學習中來,做到自主學習與合作探究,才會主動發現問題和解決問題。為此,在備課時,考慮學生的知識儲備和興趣點,設計出激發學生興趣和激活學生思維的問題;課堂上與學生建立平等、民主的學伴關係,給自己的教學風格定位為親切、風趣、激情、廣博,這就是採取多鼓勵、少批評的評

國中數學研修總結集錦 篇20

最簡單的解釋就是,不等式是指用不等號可以將兩個解析式連線起來所成的式子。

1.概念:在一個式子中的數的關係,不全是等號,含不等符號的式子,那它就是一個不等式.例如2x+2y≥2xy,sinx≤1,ex>0 ,2x<3,5x≠5等>x是超越不等式。

2、分類:不等式分為嚴格不等式與非嚴格不等式。

一般地,用純粹的大於號、小於號“>”“<”連線的不等式稱為嚴格不等式,用不小於號(大於或等於號)、不大於號(小於或等於號)

“≥”(大於等於符號)“≤”(小於等於符號)連線的不等式稱為非嚴格不等式,或稱廣義不等式。

通常不等式中的數是實數,字母也代表實數,不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z )(其中不等號也可以為<,≥,> 中某一個),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達一個命題,也可以表示一個問題。

我們大家在判定不等式時要記得,在一個式子中的數的關係,不全是等號,含不等符號的式子,那它就是一個不等式。

國中數學研修總結集錦 篇21

相關的角:

1、對頂角:一個角的兩邊分別是另一個角的兩邊的反向延長線,這兩個角叫做對頂角。

2、互為補角:如果兩個角的和是一個平角,這兩個角做互為補角。

3、互為餘角:如果兩個角的和是一個直角,這兩個角叫做互為餘角。

4、鄰補角:有公共頂點,一條公共邊,另兩條邊互為反向延長線的兩個角做互為鄰補角。

注意:互余、互補是指兩個角的數量關係,與兩個角的位置無關,而互為鄰補角則要求兩個角有特殊的位置關係。

角的性質

1、對頂角相等。

2、同角或等角的餘角相等。

3、同角或等角的補角相等。

國中數學研修總結集錦 篇22

角度制知識:用度(°)、分(′)、秒(″)來測量角的大小的制度叫做角度制。

角度制

角度制:規定周角的360分之一為1度的角,用度作為單位來度量角的單位制叫做角度制。

角度制中單位的換算。

角度制中,1°=60′,1′=60″,1′=(1/60)°,1″=(1/60)′。

角度制就是運用60進制的例子。

角度制中角度的運算。

兩個角相加時,°與°相加,′與′相加,″與″相加,其中如果滿60則進1。

兩個角相減時,°與°相減,′與′相減,″與″相減,其中如果不夠則從上一個單位退1當作60。

測量角的大小的另外一個方法,角度制與弧度制的換算。

主要把握180°=π rad這個關係式。

例如:1度=π /180 弧度30度轉換成弧度值:弧度=30*π /180終邊相同的角的表示β=α+k360°k屬於整數。

知識歸納:除了角度制可以測量角的大小,還有一種——弧度制也可以測量角的大小。

國中數學研修總結集錦 篇23

一直以來,在試卷講評課的上法上總存在著一些困惑。例如,試卷上的錯題因人而異,如何上能照顧到全體,將每位學生出錯的問題解決?通過這次培訓我認識到,我們沒有足夠的時間面面俱到的講解,在一定的時間內想面面俱到,那么每個題目也只是蜻蜓點水,一節課下來真正沉澱到頭腦中的知識寥寥無幾。今後的試卷講評課我打算按照下面的思路來上,請劉老師多批評指正。

一、考試之後教師要做好測試分析,並充分備課。

通過測試分析,首先,弄清學生集中出錯的題目,找出學生的共性問題,並針對這些共性的問題展開備課。備課要備學生出錯的原因,試卷講評時如何對這些問題講解與完善。其次,弄清每位學生的得分,對於成績波動大的同學通過談話等方式及時了解情況並幫助解決困難。

二、下發試卷,學生自己糾錯。

給學生自己糾錯的機會,將能自己改正或通過小組合作改正的題目在試卷講評前改過來。

三、訂正答案,進一步改錯。

給學生標準答案,在答案的引導下,學生進一步尋找解題思路,完善解題步驟,查找丟分原因,加深對知識的理解。

四、重點題、錯題重點講解。

經過兩輪的改錯之後學生存留下的問題已經很少,教師試卷講評時就要解決這些遺留問題、重點題、錯題。對於這些問題可以通過分類講解、同類知識串講、變式訓練、一題多解、多個知識點上串下聯等方式講透。經過尋根問底,可使學生對不明確的知識點加深理解,再認識,然後鞏固練習。這個過程下來同時可複習到多個知識點,建立知識體系,拓展學生思維。

五、方法總結。

圍繞一個知識點講解之後,要讓學生總結解題思想、方法,掌握答題技巧。需要時可讓學生簡記。

六、解答疑問。

通過學生提出疑問,大家共同解答,完善學生對知識的認識。

近幾年教基礎年級,所以感覺上章節複習課較多,專題複習課很少。我們學校的章節複習課與劉老師的“出示問題,引出知識”是一致的。通過問題的解決實現知識點的複習。

通過聽兩位韓老師的課我感覺有幾處大的收穫:

一、要想實現高效課堂,教師首先高效備課。從兩位老師對題目的選取上能看到她們備課的用心。值得學習。

二、充分放手給學生,讓學生思考、解決問題、總結方法。教師適時點撥。

三、重要知識點、思想、方法及時簡記。“好腦子不如爛筆頭”,的確如此。根據艾賓浩斯的遺忘規律,一節課下來學到的知識點總在慢慢遺忘,如果課堂上不把關鍵點記錄下來的話,回過頭來複習時頭腦中的知識漏洞難以得到修繕。

通過這次學習我感覺收穫很大,希望劉老師多組織類似活動幫助年輕教師成長。同時對於這次培訓的膚淺認識希望劉老師多批評指正。謝謝!

國中數學研修總結集錦 篇24

一元一次方程定義

通過化簡,只含有一個未知數,且含有未知數的最高次項的次數是一的等式,叫一元一次方程。通常形式是ax+b=0(a,b為常數,且a≠0)。一元一次方程屬於整式方程,即方程兩邊都是整式。

一元指方程僅含有一個未知數,一次指未知數的次數為1,且未知數的係數不為0。我們將ax+b=0(其中x是未知數,a、b是已知數,並且a≠0)叫一元一次方程的標準形式。這裡a是未知數的係數,b是常數,x的次數必須是1。

即一元一次方程必須同時滿足4個條件:⑴它是等式;⑵分母中不含有未知數;⑶未知數最高次項為1;⑷含未知數的項的係數不為0。

一元一次方程的五個核心問題

一、什麼是等式?1+1=1是等式嗎?

表示相等關係的式子叫做等式,等式可分三類:第一類是恆等式,就是用任何允許的數值代替等式中的字母,等式的兩邊總是相等,由數字組成的等式也是恆等式,如2+4=6,a+b=b+a等都是恆等式;第二類是條件等式,也就是方程,這類等式只能取某些數值代替等式中的字母時,等式才成立,如x+y=-5,x+4=7等都是條件等式;第三類是矛盾等式,就是無論用任何值代替等式中的字母,等式總不成立,如x2=-2,|a|+5=0等。

一個等式中,如果等號多於一個,叫做連等式,連等式可以化為一組只含有一個等號的等式。

等式與代數式不同,等式中含有等號,代數式中不含等號。

等式有兩個重要性質1)等式的兩邊都加上或減去同一個數或同一個整式,所得結果仍然是一個等式;(2)等式的兩邊都乘以或除以同一個數除數不為零,所得結果仍然是一個等式。

二、什麼是方程,什麼是一元一次方程?

含有未知數的等式叫做方程,如2x-3=8,x+y=7等。判斷一個式子是否是方程,只需看兩點:一是不是等式;二是否含有未知數,兩者缺一不可。

只含有一個未知數,並且含未知數的式子都是整式,未知數的次數是1,係數不是0的方程叫做一元一次方程。其標準形式是ax+b=0(a不為0,a,b是已知數),值得注意的是1)一個整式方程的"元"和"次"是將這個方程化成最簡形式後才能判定的。如方程2y2+6=3x+2y2,形式上是二元二次方程,但化簡後,它實際上是一個一元一次方程。(2)整式方程分母中不含有未知數。判斷是否為整式方程,是不能先將它化簡的如方程x+1/x=2+1/x,因為它的分母中含有未知數x,所以,它不是整式方程。如果將上面的方程進行化簡,則為x=2,這時再去作判斷,將得到錯誤的結論。

凡是談到次數的方程,都是指整式方程,即方程的兩邊都是整式。一元一次方程是整式方程中元數最少且次數最低的方程。

三、等式有什麼牛掰的基本性質嗎?

將方程中的某些項改變符號後,從方程的一邊移到另一邊的變形叫做移項,移項的依據是等式的基本性質1。

移項時不一定要把含未知數的項移到等式的左邊。如解方程3x-2=4x-5時就可以把含未知數的項移到右邊,而把常數項移到左邊,這樣會顯得簡便些。

去分母,將未知數的係數化為1,則是依據等式的基本性質2進行的。

四、等式一定是方程嗎?方程一定是等式嗎?

等式與方程有很多相同之處。如都是用等號連線的,等號左、右兩邊都是代數式,但它們還是有區別的。方程僅是含有未知數的等式,是等式中的特例。就是說,等式包含方程;反過來,方程並不包含所有的等式。如,13+5=18,18-13=5都屬於等式,但它們並不是方程。因此,等式一定是方程的說法是不對的。

五、"解方程"與"方程的解"是一回事兒嗎?

方程的解是使方程左、右兩邊相等的未知數的取值。而解方程是求方程的解或判斷方程無解的過程。即方程的解是結果,而解方程是一個過程。方程的解中的"解"是名詞,而解方程中的"解"是動詞,二者不能混淆。

國中數學研修總結集錦 篇25

1.對稱軸:如果一個圖形沿某條直線摺疊後,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.性質:(1)軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

(2)角平分線上的點到角兩邊距離相等。

(3)線段垂直平分線上的任意一點到線段兩個端點的距離相等。

(4)與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

(5)軸對稱圖形上對應線段相等、對應角相等。

3.等腰三角形的性質:等腰三角形的兩個底角相等,(等邊對等角)

4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三線合一”。

5.等腰三角形的判定:等角對等邊。

6.等邊三角形角的特點:三個內角相等,等於60°,

7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。

有一個角是60°的等腰三角形是等邊三角形

有兩個角是60°的三角形是等邊三角形。

8.直角三角形中,30°角所對的直角邊等於斜邊的一半。

9.直角三角形斜邊上的中線等於斜邊的一半。

本章內容要求學生在建立在軸對稱概念的基礎上,能夠對生活中的圖形進行分析鑑賞,親身經歷數學美,正確理解等腰三角形、等邊三角形等的性質和判定,並利用這些性質來解決一些數學問題。

國中數學研修總結集錦 篇26

1、多項式

有有限個單項式的代數和組成的式子,叫做多項式。

多項式里每個單項式叫做多項式的項,不含字母的項,叫做常數項。

單項式可以看作是多項式的特例

把同類單項式的係數相加或相減,而單項式中的字母的乘方指數不變。

在多項式中,所含的不同未知數的個數,稱做這個多項式的元數經過合併同類項後,多項式所含單項式的個數,稱為這個多項式的項數所含個單項式中次項的次數,就稱為這個多項式的次數。

2、多項式的值

任何一個多項式,就是一個用加、減、乘、乘方運算把已知數和未知數連線起來的式子。

3、多項式的恆等

對於兩個一元多項式fx、gx來說,當未知數x同取任一個數值a時,如果它們所得的值都是相等的,即fa=ga,那么,這兩個多項式就稱為是恆等的記為fx==gx,或簡記為fx=gx。

性質1如果fx==gx,那么,對於任一個數值a,都有fa=ga。

性質2如果fx==gx,那么,這兩個多項式的個同類項係數就一定對應相等。

4、一元多項式的根

一般地,能夠使多項式fx的值等於0的未知數x的值,叫做多項式fx的根。

多項式的加、減法,乘法

1、多項式的加、減法

2、多項式的乘法

單項式相乘,用它們係數作為積的係數,對於相同的字母因式,則連同它的指數作為積的一個因式。

3、多項式的乘法

多項式與多項式相乘,先用一個多項式等每一項乘以另一個多項式的各項,再把所得的積相加。

常用乘法公式

公式I平方差公式

a+ba—b=a^2—b^2

兩個數的和與這兩個數的差的積等於這兩個數的平方差。

國中數學研修總結集錦 篇27

三角函式關係

倒數關係

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

商的關係

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方關係

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函式關係六角形記憶法

構造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

倒數關係

對角線上兩個函式互為倒數;

商數關係

六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。(主要是兩條虛線兩端的三角函式值的乘積,下面4個也存在這種關係。)。由此,可得商數關係式。

平方關係

在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。

銳角三角函式定義

銳角角A的正弦(sin),餘弦(cos)和正切(tan),餘切(cot)以及正割(sec),餘割(csc)都叫做角A的銳角三角函式。

正弦(sin)等於對邊比斜邊;sinA=a/c

餘弦(cos)等於鄰邊比斜邊;cosA=b/c

正切(tan)等於對邊比鄰邊;tanA=a/b

餘切(cot)等於鄰邊比對邊;cotA=b/a

正割(sec)等於斜邊比鄰邊;secA=c/b

餘割(csc)等於斜邊比對邊。cscA=c/a

互餘角的三角函式間的關係

sin(90°-α)=cosα,cos(90°-α)=sinα,

tan(90°-α)=cotα,cot(90°-α)=tanα.

平方關係:

sin^2(α)+cos^2(α)=1

tan^2(α)+1=sec^2(α)

cot^2(α)+1=csc^2(α)

積的關係:

sinα=tanα·cosα

cosα=cotα·sinα

tanα=sinα·secα

cotα=cosα·cscα

secα=tanα·cscα

cscα=secα·cotα

倒數關係:

tanα·cotα=1

sinα·cscα=1

cosα·secα=1

中考數學知識點

1、反比例函式的概念

一般地,函式(k是常數,k0)叫做反比例函式。反比例函式的解析式也可以寫成的形式。自變數x的取值範圍是x0的一切實數,函式的取值範圍也是一切非零實數。

2、反比例函式的圖像

反比例函式的圖像是雙曲線,它有兩個分支,這兩個分支分別位於第一、三象限,或第二、四象限,它們關於原點對稱。由於反比例函式中自變數x0,函式y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標軸,但永遠達不到坐標軸。

3、反比例函式的性質

反比例函式k的符號k>0k<0圖像yO xyO x性質①x的取值範圍是x0,y的取值範圍是y0;

②當k>0時,函式圖像的兩個分支分別

在第一、三象限。在每個象限內,y隨x 的增大而減小。

①x的取值範圍是x0,y的取值範圍是y0;

②當k<0時,函式圖像的兩個分支分別在第二、四象限。在每個象限內,y隨x 的增大而增大。

4、反比例函式解析式的確定

確定及誒是的方法仍是待定係數法。由於在反比例函式中,只有一個待定係數,因此只需要一對對應值或圖像上的一個點的坐標,即可求出k的值,從而確定其解析式。

5、反比例函式的幾何意義

設是反比例函式圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

(1)△OPA的面積.

(2)矩形OAPB的面積。這就是係數的幾何意義.並且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

矩形PCEF面積=,平行四邊形PDEA面積=

國中數學研修總結集錦 篇28

一、基本知識

一、數與代數

A、數與式:

1、有理數:①整數→正整數,0,負整數;

②分數→正分數,負分數

數軸:①畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規定直線上向右的方向為正方向,就得到數軸。

②任何一個有理數都可以用數軸上的一個點來表示。

③如果兩個數只有符號不同,那么我們稱其中一個數為另外一個數的相反數,也稱這兩個數互為相反數。在數軸上,表示互為相反數的兩個點,位於原點的兩側,並且與原點距離相等。

④數軸上兩個點表示的數,右邊的總比左邊的大。正數大於0,負數小於0,正數大於負數。

絕對值:①在數軸上,一個數所對應的點與原點的距離叫做該數的絕對值。

②正數的絕對值是他的本身、負數的絕對值是他的相反數、0的絕對值是0。兩個負數比較大小,絕對值大的反而小。

有理數的運算:帶上符號進行正常運算。

加法:

①同號相加,取相同的符號,把絕對值相加。

②異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數的符號,並用較大的絕對值減去較小的絕對值。

③一個數與0相加不變。

減法:減去一個數,等於加上這個數的相反數。

乘法:①兩數相乘,同號得正,異號得負,絕對值相乘。

②任何數與0相乘得0。

③乘積為1的兩個有理數互為倒數。

除法:①除以一個數等於乘以一個數的倒數。

②0不能作除數。

乘方:求N個相同因數A的積的運算叫做乘方,乘方的結果叫冪,A叫底數,N叫次數或指數。

混合順序:先算乘法,再算乘除,最後算加減,有括弧要先算括弧里的。

2、實數

無理數

無理數:無限不循環小數叫無理數,例如:π=3.1415926…

平方根:①如果一個正數X的平方等於A,那么這個正數X就叫做A的算術平方根。

②如果一個數X的平方等於A,那么這個數X就叫做A的平方根。

③一個正數有2個平方根;0的平方根為0;負數沒有平方根。

④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。

立方根:①如果一個數X的立方等於A,那么這個數X就叫做A的立方根。

②正數的立方根是正數、0的立方根是0、負數的立方根是負數。

③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。

實數:①實數分有理數和無理數。

②在實數範圍內,相反數,倒數,絕對值的意義和有理數範圍內的相反數,倒數,絕對值的意義完全一樣;

③每一個實數都可以在數軸上的一個點來表示。

3、代數式

代數式:單獨一個數或者一個字母也是代數式。

合併同類項:①所含字母相同,並且相同字母的指數也相同的項,叫做同類項;②把同類項合併成一項就叫做合併同類項。

③在合併同類項時,我們把同類項的係數相加,字母和字母的指數不變。

4、整式與分式

整式:①數與字母的乘積的代數式叫單項式,幾個單項式的和叫多項式,單項式和多項式統稱整式。

②一個單項式中,所有字母的指數和叫做這個單項式的次數。

③一個多項式中,次數最高的項的次數叫做這個多項式的次數。

整式運算:加減運算時,如果遇到括弧先去括弧,再合併同類項。

冪的運算:

A^M+A^N=A^(M+N)

(A^M)^N=A^(MN

(A/B)^N=A^N/B^N

除法一樣。

整式的乘法:

①單項式與單項式相乘,把他們的係數,相同字母的冪分別相乘,其餘字母連同他的指數不變,作為積的因式。

②單項式與多項式相乘,就是根據分配律用單項式去乘多項式的每一項,再把所得的積相加。

③多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。

公式兩條:平方差公式:A^2-B^2=(A+B)(A-B);

完全平方公式:(A+B)^2=A^2+2AB+B^2;(A-B)^2=A^2-2AB+B^2。

整式的除法:①單項式相除,把係數,同底數冪分別相除後,作為商的因式;對於只在被除式里含有的字母,則連同他的指數一起作為商的一個因式。

②多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。

分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。

方法:提公因式法、運用公式法、分組分解法、十字相乘法。

分式:①整式A除以整式B,如果除式B中含有分母,那么這個就是分式,對於任何一個分式,分母不為0。

②分式的分子與分母同乘以或除以同一個不等於0的整式,分式的值不變。

分式的運算:

乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

除法:除以一個分式等於乘以這個分式的倒數。

加減法:①同分母分式相加減,分母不變,把分子相加減。

②異分母的分式先通分,化為同分母的分式,再加減。

分式方程:①分母中含有未知數的方程叫分式方程。

②使方程的分母為0的解稱為原方程的增根。

B、方程與不等式

1、方程與方程組

一元一次方程:①在一個方程中,只含有一個未知數,並且未知數的指數是1,這樣的方程叫一元一次方程。

②等式兩邊同時加上或減去或乘以或除以(不為0)一個代數式,所得結果仍是等式。

解一元一次方程的步驟:去分母,移項,合併同類項,未知數係數化為1。

二元一次方程:含有兩個未知數,並且所含未知數的項的次數都是1的方程叫做二元一次方程。

二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。

適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。

二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。

解二元一次方程組的方法:代入消元法;加減消元法。

一元二次方程:只有一個未知數,並且未知數的項的最高係數為2的方程:ax^2+bx+c=0;

1)一元二次方程的二次函式的關係

大家已經學過二次函式(即拋物線)了,對他也有很深的了解,好像解法,在圖象中表示等等,其實一元二次方程也可以用二次函式來表示,其實一元二次方程也是二次函式的一個特殊情況,就是當Y=0的時候就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函式中,圖像與X軸的交點。也就是該方程的解了

2)一元二次方程的解法

大家知道,二次函式有頂點式(-b/2a

,4ac-b^2/4a),這大家要記住,很重要,因為在上面已經說過了,一元二次方程也是二次函式的一部分,所以他也有自己的一個解法,利用他可以求出所有的一元一次方程的解

(1)配方法

利用配方,使方程變為完全平方公式,在用直接開平方法去求出解

(2)分解因式法

提取公因式,套用公式法,和十字相乘法。在解一元二次方程的時候也一樣,利用這點,把方程化為幾個乘積的形式去解

(3)公式法

這方法也可以是在解一元二次方程的萬能方法了,方程的根X1={-b+√[b^2-4ac)]}/2a,X2={-b-√[b^2-4ac)]}/2a

3)解一元二次方程的步驟:

(1)配方法的步驟:

先把常數項移到方程的右邊,再把二次項的係數化為1,再同時加上1次項的係數的一半的平方,最後配成完全平方公式

(2)分解因式法的步驟:

把方程右邊化為0,然後看看是否能用提取公因式,公式法(這裡指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式

(3)公式法

就把一元二次方程的各係數分別代入,這裡二次項的係數為a,一次項的係數為b,常數項的係數為c

4)韋達定理

利用韋達定理去了解,韋達定理就是在一元二次方程中,二根之和=-b/a,二根之積=c/a

也可以表示為x1+x2=-b/a,x1x2=c/a。利用韋達定理,可以求出一元二次方程中的各係數,在題目中很常用

5)一元二次方程根的情況

利用根的判別式去了解,根的判別式可在書面上可以寫為“△”,讀作“diao

ta”,而△=b2-4ac,這裡可以分為3種情況:

I當△>0時,一元二次方程有2個不相等的實數根;

II當△=0時,一元二次方程有2個相同的實數根;

III當△B,則A+C>B+C;

在不等式中,如果減去同一個數(或加上一個負數),不等式符號不改向;

例如:如果A>B,則A-C>B-C;

在不等式中,如果乘以同一個正數,不等式符號不改向;

例如:如果A>B,則A*C>B*C(C>0);

在不等式中,如果乘以同一個負數,不等號改向;

例如:如果A>B,則A*C<B*C(C<0);

如果不等式乘以0,那么不等號改為等號;

所以在題目中,要求出乘以的數,那么就要看看題中是否出現一元一次不等式,如果出現了,那么不等式乘的數就不等於0,否則不等式不成立;

3、函式

變數:因變數Y,自變數X。

在用圖像表示變數之間的關係時,通常用水平方向的數軸上的點自變數,用豎直方向的數軸上的點表示因變數。

一次函式:①若兩個變數X,Y間的關係式可以表示成Y=KX+B(B為常數,K不等於0)的形式,則稱Y是X的一次函式。

②當B=0時,稱Y是X的正比例函式。

一次函式的圖像:

①把一個函式的自變數X與對應的因變數Y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函式的圖像。

②正比例函式Y=KX的圖像是經過原點的一條直線。

③在一次函式中,當K〈0,B〈O時,則經234象限;

當K〈0,B〉0時,則經124象限;

當K〉0,B〈0時,則經134象限;

當K〉0,B〉0時,則經123象限。

④當K〉0時,Y的值隨X值的增大而增大,當X〈0時,Y的值隨X值的增大而減少。

二空間與圖形

A、圖形的認識

1、點,線,面

點,線,面:①圖形是由點,線,面構成的。

②面與面相交得線,線與線相交得點。

③點動成線,線動成面,面動成體。

展開與摺疊:①在稜柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,稜柱的所有側棱長相等,稜柱的上下底面的形狀相同,側面的形狀都是長方體。

②N稜柱就是底面圖形有N條邊的稜柱,上下底面就是N邊形。

截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。

視圖:主視圖,左視圖,俯視圖。

多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形。

弧、扇形:①由一條弧和經過這條弧的端點的兩條半徑所組成的圖形叫扇形。

②圓可以分割成若干個扇形。

2、角

線:①線段有兩個端點。

②將線段向一個方向無限延長就形成了射線。射線只有一個端點。

③將線段的兩端無限延長就形成了直線。直線沒有端點。

④經過兩點有且只有一條直線。

比較長短:①兩點之間的所有連線中,線段最短。兩點之間直線最短。

②兩點之間線段的長度,叫做這兩點之間的距離。

角的度量與表示:①角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。

②一度的1/60是一分,一分的1/60是一秒。即:60分為1度,60秒為1分。

角的比較:①角也可以看成是由一條射線繞著他的端點旋轉而成的。

②一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角,180。始邊繼續旋轉,當他又和始邊重合時,所成的角叫做周角,360。

③從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。

平行:①同一平面內,不相交的兩條直線叫做平行線。

②經過直線外一點,有且只有一條直線與這條直線平行。

③如果兩條直線都與第3條直線平行,那么這兩條直線互相平行。

垂直:①如果兩條直線相交成直角,那么這兩條直線互相垂直。

②互相垂直的兩條直線的交點叫做垂足。

③平面內,過一點有且只有一條直線與已知直線垂直。

垂直平分線:垂直和平分一條線段的直線叫垂直平分線。

垂直平分線垂直平分的一定是線段,不能是射線或直線,這根據射線和直線可以無限延長有關,再看後面的,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了2點後(關於畫法,後面會講)一定要把線段穿出2點。

垂直平分線定理:

性質定理:在垂直平分線上的點到該線段兩端點的距離相等;

判定定理:到線段2端點距離相等的點在這線段的垂直平分線上;

角平分線:把一個角平分的射線叫該角的角平分線。

定義中有幾個要點要注意一下的:角的角平分線是一條射線,不是線段也不是直線,很多時,在題目中會出現直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的集合。

性質定理:角平分線上的點到該角兩邊的距離相等;

判定定理:到角的兩邊距離相等的點在該角的角平分線上;

正方形:一組鄰邊相等的矩形是正方形

性質:正方形具有平行四邊形、菱形、矩形的一切性質

判定:1、對角線相等的菱形2、鄰邊相等的矩形

二、基本定理

1、過兩點有且只有一條直線

2、兩點之間線段最短

3、同角或等角的補角相等

——補角=180-角度。

4、同角或等角的餘角相等——餘角=90-角度。

5、過一點有且只有一條直線和已知直線垂直

6、直線外一點與直線上各點連線的所有線段中,垂線段最短

7、平行公理:經過直線外一點,有且只有一條直線與這條直線平行

8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9、同位角相等,兩直線平行

10、內錯角相等,兩直線平行

11、同旁內角互補,兩直線平行

12、兩直線平行,同位角相等

13、兩直線平行,內錯角相等

14、兩直線平行,同旁內角互補

15、定理

三角形兩邊的和大於第三邊

16、推論

三角形兩邊的差小於第三邊

17、三角形內角和定理:

三角形三個內角的和等於180°

18、推論1

直角三角形的兩個銳角互余

19、推論2

三角形的一個外角等於和它不相鄰的兩個內角的和

20、推論3

三角形的一個外角大於任何一個和它不相鄰的內角

21、全等三角形的對應邊、對應角相等

22、邊角邊公理(SAS):有兩邊和它們的夾角對應相等的兩個三角形全等

23、角邊角公理(

ASA):有兩角和它們的夾邊對應相等的

兩個三角形全等

24、推論(AAS):有兩角和其中一角的對邊對應相等的兩個三角形全等

25、邊邊邊公理(SSS):有三邊對應相等的兩個三角形全等

26、斜邊、直角邊公理(HL):有斜邊和一條直角邊對應相等的兩個直角三角形全等

27、定理1

在角的平分線上的點到這個角的兩邊的距離相等

28、定理2

到一個角的兩邊的距離相同的點,在這個角的平分線上

29、角的平分線是到角的兩邊距離相等的所有點的集合

30、推論1

等腰三角形頂角的平分線平分底邊並且垂直於底邊

31、推論2等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合,即三線合一;

32、推論3

等邊三角形的各角都相等,並且每一個角都等於60°

33、等腰三角形的判定定理

如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

34、等腰三角形的性質定理

等腰三角形的兩個底角相等

(即等邊對等角)

35、推論1

三個角都相等的三角形是等邊三角形

36、推論

有一個角等於60°的等腰三角形是等邊三角形

37、在直角三角形中,如果一個銳角等於30°那么它所對的直角邊等於斜邊的一半

38、直角三角形斜邊上的中線等於斜邊上的一半

39、定理

線段垂直平分線上的點和這條線段兩個端點的距離相等

40、逆定理

和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

42、定理1

關於某條直線對稱的兩個圖形是全等形

43、定理

如果兩個圖形關於某直線對稱,那么對稱軸是對應點連線的垂直平分線

44、定理3

兩個圖形關於某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上

45、逆定理

如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關於這條直線對稱

46、勾股定理

直角三角形兩直角邊a、b的平方和、等於斜邊c的平方,即a2+b2=c2

47、勾股定理的逆定理

如果三角形的三邊長a、b、c有關係a2+b2=c2,那么這個三角形是直角三角形

48、定理

四邊形的內角和等於360°

49、四邊形的外角和等於360°

50、多邊形內角和定理

n邊形的內角的和等於(n-2)×180°

51、推論

任意多邊的外角和等於360°

52、平行四邊形性質定理1

平行四邊形的對角相等

53、平行四邊形性質定理2

平行四邊形的對邊相等

54、推論

夾在兩條平行線間的平行線段相等

55、平行四邊形性質定理3

平行四邊形的對角線互相平分

56、平行四邊形判定定理1

兩組對角分別相等的四邊形是平行四邊形

57、平行四邊形判定定理2

兩組對邊分別相等的四邊

形是平行四邊形

58、平行四邊形判定定理3

對角線互相平分的四邊形是平行四邊形

59、平行四邊形判定定理4

一組對邊平行相等的四邊形是平行四邊形

60、矩形性質定理1

矩形的四個角都是直角

61、矩形性質定理2

矩形的對角線相等

62、矩形判定定理1

有三個角是直角的四邊形是矩形

63、矩形判定定理2

對角線相等的平行四邊形是矩形

64、菱形性質定理1

菱形的四條邊都相等

65、菱形性質定理2

菱形的對角線互相垂直,並且每一條對角線平分一組對角

66、菱形面積=對角線乘積的一半,即S=(a×b)÷2

67、菱形判定定理1

四邊都相等的四邊形是菱形

68、菱形判定定理2

對角線互相垂直的平行四邊形是菱形

69、正方形性質定理1

正方形的四個角都是直角,四條邊都相等

70、正方形性質定理2正方形的兩條對角線相等,並且互相垂直平分,每條對角線平分一組對角

71、定理1

關於中心對稱的.兩個圖形是全等的

72、定理2

關於中心對稱的兩個圖形,對稱點連線都經過對稱中心,並且被對稱中心平分

73、逆定理

如果兩個圖形的對應點連線都經過某一點,並且被這一點平分,那么這兩個圖形關於這一點對稱

74、等腰梯形性質定理

等腰梯形在同一底上的兩個角相等

75、等腰梯形的兩條對角線相等

76、等腰梯形判定定理

在同一底上的兩個角相等的梯

形是等腰梯形

77、對角線相等的梯形是等腰梯形

78、平行線等分線段定理

如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等

79、推論1

經過梯形一腰的中點與底平行的直線,必平分另一腰

80、推論2

經過三角形一邊的中點與另一邊平行的直線,必平分第三邊

81、三角形中位線定理

三角形的中位線平行於第三邊,並且等於它的一半

82、梯形中位線定理

梯形的中位線平行於兩底,並且等於兩底和的一半

L=(a+b)÷2

S=L×h

83、(1)比例的基本性質:如果a:b=c:d,那么ad=bc

如果

ad=bc,那么a:b=c:d

84、(2)合比性質:如果a/b=c/d,那么(a±b)/b=(c±d)/d

85、(3)等比性質:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b

86、平行線分線段成比例定理

三條平行線截兩條直線,所得的對應線段成比例

87、推論

平行於三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例

88、定理

如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行於三角形的第三邊

89、平行於三角形的一邊,並且和其他兩邊相交的直線,

所截得的三角形的三邊與原三角形三邊對應成比例

90、定理

平行於三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似

91、相似三角形判定定理1

兩角對應相等,兩三角形相似(ASA)

92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似

93、判定定理2

兩邊對應成比例且夾角相等,兩三角形相似(SAS)

94、判定定理3

三邊對應成比例,兩三角形相似(SSS)

95、定理

如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似(HL)

96、性質定理1

相似三角形對應高的比,對應中線的比與對應角平分線的比都等於相似比

97、性質定理2

相似三角形周長的比等於相似比

98、性質定理3

相似三角形面積的比等於相似比的平方

99、任意銳角的正弦值等於它的餘角的餘弦值,任意銳角的餘弦值等於它的餘角的正弦值sin(a)=cos(90-a),cos(a)=sin(90-a)

(a<90)

100、任意銳角的正切值等於它的餘角的餘切值,任意銳角的餘切值等於它的餘角的正切值tan(a)=cot(90-a),cot(a)=tan(90-a)

101、圓是定點的距離等於定長的點的集合

102、圓的內部可以看作是圓心的距離小於半徑的點的集合

103、圓的外部可以看作是圓心的距離大於半徑的點的集合

104、同圓或等圓的半徑相等

105、到定點的距離等於定長的點的軌跡,是以定點為圓心,定長為半徑的圓

106、和已知線段兩個端點的距離相等的點的軌跡,是著條線段的垂直平分線

107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線

108、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線

109、定理

不在同一直線上的三點確定一個圓。

110、垂徑定理

垂直於弦的直徑平分這條弦並且平分弦所對的兩條弧

111、推論1

①平分弦(不是直徑)的直徑垂直於弦,並且平分弦所對的兩條弧

②弦的垂直平分線經過圓心,並且平分弦所對的兩條弧(直徑)

③平分弦所對的一條弧的直徑,垂直平分弦,並且平分弦所對的另一條弧

112、推論2

圓的兩條平行弦所夾的弧相等

113、圓是以圓心為對稱中心的中心對稱圖形

114、定理

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

115、推論

在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其餘各組量都相等

116、定理

一條弧所對的圓周角等於它所對的圓心角的一半

117、推論1

同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等

118、推論2

半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑

119、推論3

如果三角形一邊上的中線等於這邊的一半,那么這個三角形是直角三角形

120、定理

圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角

121、①直線L和⊙O相交

0<=d<r

②直線L和⊙O相切

d=r

③直線L和⊙O相離

d>r

122、切線的判定定理

經過半徑的外端並且垂直於這條半徑的直線是圓的切線

123、切線的性質定理

圓的切線垂直於經過切點的半徑

124、推論1

經過圓心且垂直於切線的直線必經過切點

125、推論2

經過切點且垂直於切線的直線必經過圓心

126、切線長定理

從圓外一點引圓的兩條切線相交與一點,它們的切線長相等

,圓心和這一點的連線平分兩條切線的夾角

127、圓的外切四邊形的兩組對邊的和相等

128、弦切角定理

弦切角等於它所夾的弧對的圓周角?

129、推論

如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等

130、相交弦定理

圓內的兩條相交弦,被交點分成的兩條線段長的積相等

131、推論

如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項

132、切割線定理

從圓外一點引圓的切線和割線,切線長是這點到割線與圓交點的兩條線段長的比例中項?

133、推論

從圓外一點引圓的兩條割線,這一點到每條

割線與圓的交點的兩條線段長的積相等

134、如果兩個圓相切,那么切點一定在連心線上

135、①兩圓外離

d>R+r

②兩圓外切

d=R+r

③兩圓相交

R-r<d<R+r(R>r)

④兩圓內切

d=R-r(R>r)

⑤兩圓內含

d<R-r(R>r)

136、定理

相交兩圓的連心線垂直平分兩圓的公共弦

137、定理

把圓平均分成n(n≥3):

⑴依次連結各分點所得的多邊形是這個圓的內接正n邊形

⑵經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形

138、定理

任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓

139、正n邊形的每個內角都等於(n-2)×180°/n

140、定理

正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形

141、正n邊形的面積Sn=pn*rn/2

p表示正n邊形的周長

142、正三角形面積√3a^2/4

a表示邊長

143、如果在一個頂點周圍有k個正n邊形的角,由於這些角的和應為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4

144、弧長計算公式:L=n兀R/180——》L=nR

145、扇形面積公式:S扇形=n兀R^2/360=LR/2

146、內公切線長=d-(R-r)

外公切線長=d-(R+r)

國中數學研修總結集錦 篇29

轉眼的時間,我在教師的崗位上又走過了半年。追憶往昔,展望未來,為了更好的總結經驗教訓無愧於“合格的人民教師”這一稱號,我現將20xx-20xx年度第一學期工作情況總結如下:

一、師德方面:加強修養,塑造師德

我始終認為作為一名教師應把“師德”放在一個重要的位置上,因為這是教師的立身之本。“學高為師,身正為范”,這個道理古今皆然。從踏上講台的第一天,我就時刻嚴格要求自己,力爭做一個有崇高師德的人。我始終堅持給學生一個好的師範,希望從我這走出去的都是合格的學生,都是一個個大寫的“人”。為了給自己的學生一個好的表率,同時也是使自己陶冶情操,加強修養,課餘時間我閱讀了大量的書籍,不斷提高自己水平。今後我將繼續加強師德方面的修養,力爭在這一方面有更大的提高。

二、教學方面:虛心求教,強化自我

擔任七年級兩個班的數學教學的工作任務是艱巨的,在實際工作中,那就得實幹加巧幹國中數學教師工作總結20xx-範文大全國中數學教師工作總結20xx-範文大全。對於一名數學教師來說,加強自身業務水平,提高教學質量無疑是至關重要的。隨著歲月的流逝,伴著我教學天數的增加,我越來越感到我知識的匱乏,經驗的缺少。面對講台下那一雙雙渴望的眼睛,每次上課我都感到自己責任之重大。為了儘快充實自己,使自己教學水平有一個質的飛躍,我從以下幾個方面對自身進行了強化。

首先是從教學理論和教學知識上。我借閱大量有關教學理論和教學方法的書籍,對於裡面各種教學理論和教學方法儘量做到博採眾家之長為己所用!。在讓先進的理論指導自己的教學實踐的同時,我也在一次次的教學實踐中來驗證和發展這種理論。

其次是從教學經驗上。由於自己教學經驗有限,有時還會在教學過程中碰到這樣或那樣的問題而不知如何處理。因而我虛心向老教師學習,力爭從他們那裡儘快增加一些寶貴的教學經驗。我個人應付和處理課堂各式各樣問題的能力大大增強。

最後我做到“不恥下問” 教學互長。從另一個角度來說,學生也是老師的。由於學生接受新知識快,接受信息多,因此我從和他們的交流中亦能豐富我的教學知識。

為了不辜負領導的信任和同學的希望,我決心盡我最大所能去提高自身水平,爭取較出色的完成教學。為此,我一方面下苦功完善自身知識體系,打牢基礎知識,使自己能夠比較自如的進行教學;另一方面,繼續向其他教師學習,抽出業餘時間向具有豐富教學經驗的老師學習。對待課程,虛心聽取他們意見,備好每一節課;仔細聽課,認真學習他們上課的安排和技巧。這半年來,通過認真學習教學理論,刻苦鑽研教學,虛心向老教師學習,我自己感到在教學方面有了較大的提高。學生的成績也證實了這一點,我教的班級在歷次考試當中都取的了較好的成績,。

三、 考勤紀律方面

我嚴格遵守學校的各項規章制度,不遲到、不早退、有事主動請假。在工作中,尊敬領導、團結同事,能正確處理好與領導同事之間的關係。平時,勤儉節約、任勞任怨、對人真誠、熱愛學生、人際關係和諧融洽,從不鬧無原則的糾紛,處處以一名人民教師的要求來規範自己的言行,毫不鬆懈地培養自己的綜合素質和能力。

我擔任的兩個班級的數學教學工作取得了一定的成績,我將繼續努力,取得更優異的教學成績,為學校爭光!

國中數學研修總結集錦 篇30

不知不覺,一個學期的教學工作又告一段落了。本學期是我第一次擔任數學教學工作,經驗尚淺,開始,對於重難點,易錯點及中考方向可以說毫無頭緒。為不辜負校領導及前輩們的信任,我絲毫不敢怠慢,認真學,積極請教,努力適應新時期教學工作的要求,從各方面嚴格要求自己,結合學生的實際情況,勤勤懇懇,兢兢業業,使教學工作有計畫,有組織,有效率地開展。一學期下來確實取得了一定的成績。為使今後的工作取得更大的進步,現對本學期教學工作做出總結,希望能發揚優點,克服不足,以促進教訓工作更上一層樓。

一、認真備課,不但備學生而且備教材備教法,根據教材內容及學生的實際,設計課的類型,選擇教學方法,認真寫好教案。每一課都做到“有備而來”,每堂課都在課前做好充分的準備,課後及時對該課作出總結,寫好教學後記,並認真按蒐集每課書的知識要點,歸納成集。

二、增強上課技能,提高教學質量,做到線索清晰,層次分明,言簡意賅,深入淺出。在課堂上特別注意調動學生的積極性,加強師生交流,充分體現學生的主作用,讓學生學得容易,學得輕鬆,學得愉快;注意精講精練,在課堂上老師講得儘量少,學生動口動手動腦儘量多;同時在每一堂課上都充分考慮每一個層次的學生學需求和學能力,讓各個層次的學生都得到提高。現在很多學生反映喜歡上數學課了。

國中數學研修總結集錦 篇31

平面直角坐標系:在平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。

水平的數軸稱為x軸或橫軸,豎直的數軸稱為y軸或縱軸,兩坐標軸的交點為平面直角坐標系的原點。

平面直角坐標系的要素:

①在同一平面

②兩條數軸

③互相垂直

④原點重合

三個規定:

①正方向的規定橫軸取向右為正方向,縱軸取向上為正方向

②單位長度的規定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數軸上必須相同。

③象限的規定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。

相信上面對平面直角坐標系知識的講解學習,同學們已經能很好的掌握了吧,希望同學們都能考試成功。

國中數學研修總結集錦 篇32

1.分式:形如A/B,A、B是整式,B中含有未知數且B不等於0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

2.分式有意義的條件:分母不等於0。

3.約分:把一個分式的分子和分母的公因式(不為1的數)約去,這種變形稱為約分。

4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。

分式的基本性質:分式的分子和分母同時乘以(或除以)同一個不為0的整式,分式的值不變。用式子表示為:A/B=A*C/B*C A/B=A÷C/B÷C (A,B,C為整式,且C≠0)

5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分時,一般將一個分式化為最簡分式.

6.分式的四則運算:

1)同分母分式加減法則:同分母的分式相加減,分母不變,把分子相加減.用字母表示為:a/c±b/c=a±b/c

2)異分母分式加減法則:異分母的.分式相加減,先通分,化為同分母的分式,然後再按同分母分式的加減法法則進行計算.用字母表示為:a/b±c/d=ad±cb/bd

3)分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘的積作為積的分母.用字母表示為:a/b * c/d=ac/bd

4)分式的除法法則:

(1)兩個分式相除,把除式的分子和分母顛倒位置後再與被除式相乘.a/b÷c/d=ad/bc

(2)除以一個分式,等於乘以這個分式的倒數:a/b÷c/d=a/b*d/c

7.分式方程的意義:分母中含有未知數的方程叫做分式方程.

8.分式方程的解法:

①去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);

②按解整式方程的步驟求出未知數的值;

③驗根(求出未知數的值後必須驗根,因為在把分式方程化為整式方程的過程中,擴大了未知數的取值範圍,可能產生增根)。