高一數學教學計畫上學期 篇1
一、具體目標:
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學……
二、本學期要到達的教學目標
1、雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其資料反映出來的數學思想和方法。在基本技能方面能按照必須的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2、本事培養:
能運用數學概念、思想方法,辨明數學關係,構成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,構成數學的意思;從而經過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3、思想教育:
培養高一學生,學習數學的興趣、信心和毅力及實事求是的科學態度,勇於探索創新的精神,及欣賞數學的美學價值,並懂的數學來源於實踐又反作用於實踐的觀點;數學中普遍存在的對立統一、運動變化、相互聯繫、相互轉化等觀點。
高一數學教學計畫上學期 篇6
一、具體目標:
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學
二、本學期要達到的教學目標
1.雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2.能力培養:
能運用數學概念、思想方法,辨明數學關係,形成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,形成數學的意思;從而通過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3. 思想教育:
高一數學教學計畫上學期 篇2
本學期我擔任高一(3)、(4)兩班的數學教學工作,兩班學生共有138人。大部分學生國中的基礎較差,整體水平不高。從上課兩周來看,學生的學習進取性還比較高,愛問問題的學生比較多;但由於基礎知識不太牢固,沒有良好的學習習慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學工作有必須的難度,為把本學期教學工作做好,制定如下教學工作計畫。
一、教學質量目標
(1)獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
(2)培養學生的邏輯思維本事、運算本事、空間想像本事,以及綜合運用有關數學知識分析問題和解決問題的本事。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的本事;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的本事。
(3)根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4)使學生具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯繫和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會經過收集信息、處理數據、製作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重職責,既要不斷夯實基礎,加強綜合本事的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
二、教學目標、
(一)情感目標
(1)經過分析問題的方法的教學,培養學生的學習的興趣。
(2)供給生活背景,經過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究基本函式的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識。
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時間和空間給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維本事的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗發現挫折矛盾頓悟新的發現這一科學發現歷程法。
(二)本事要求
1、培養學生記憶本事。
(1)經過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(2)經過揭示立體集合、函式、數列有關概念、公式和圖形的對應關係,培養記憶本事。
2、培養學生的運算本事。
(1)經過機率的訓練,培養學生的運算本事。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算本事。
(3)經過函式、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性本事。
(4)經過一題多解、一題多變培養正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算本事。
三、學情分析
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際本事出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫忙學生解決好從國中到高中學習方法的過渡。從高一齊就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。
四、促進目標達成的重點工作及措施
重點工作:
認真貫徹高中數學新課標精神,樹立新的教學理念,以雙基教學為主要資料,堅持抓兩頭、帶中間、整體推進,使每個學生的數學本事都得到提高和發展。
分層推進措施
1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇於克服困難與戰勝困難的信心。
2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用比較的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、培養學生解答考題的本事,經過例題,從形式和資料兩方應對所學知識進行本事方面的分析,引導學生了解數學需要哪些本事要求。
4、讓學生經過單元考試,檢測自我的實際套用本事,從而及時總結經驗,找出不足,做好充分的準備
5、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
6、加強培養學生的邏輯思維本事和解決實際問題的本事,以及培養提高學生的自學本事,養成善於分析問題的習慣,進行辨證唯物主義教育;同時重視數學套用意識及套用本事的培養。
7、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創新教學方法,把學生被動理解知識轉化主動學習知識。
8、注意研究學生,做好初、高中學習方法的銜接工作。集中精力打好基礎,分項突破難點、所列基礎知識依據課程標準設計,著眼於基礎知識與重點資料,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。
高一數學教學計畫上學期 篇3
一、具體目標:
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學。
二、本學期要達到的教學目標
1.雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2.能力培養:
能運用數學概念、思想方法,辨明數學關係,形成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,形成數學的意思;從而通過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3.思想教育:
培養高一學生,學習數學的興趣、信心和毅力及實事求是的科學態度,勇於探索創新的精神,及欣賞數學的美學價值,並懂的數學來源於實踐又反作用於實踐的觀點;數學中普遍存在的對立統一、運動變化、相互聯繫、相互轉化等觀點。
三、進度授課計畫及進度表
掌握冪的運算;探索並理解指數函式的單調性與特殊點。
高一數學教學計畫上學期 篇4
一、學生在數學學習上存在的主要問題
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:
1、進一步學習條件不具備.高中數學與國中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合套用題及實際套用問題等.客觀上這些觀點就是分化點,有的內容還是高國中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中後,還像國中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計畫,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯繫,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、對自己學習數學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。
4、不能計畫學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。
5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質” ,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼” 。
此外,還有許多學生數學學習興趣不濃厚,不具備套用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重製約著學生數學成績的提高。
二、教學策略思考與實踐
針對我校高一學生的具體情況,我在高一數學新教材教學實踐與探究中,貫徹“因人施教,因材施教”原則。以學法指導為突破口;著重在“讀、講、練、輔、作業”等方面下功夫,取得一定效果。
加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計畫、課前自學、專心上課、及時複習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
制定計畫使學習目的明確,時間安排合理,不慌不忙,穩紮穩打,它是推動學生主動學習和克服困難的內在動力。但計畫一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨鍊學習意志。
課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,儘可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。“學然後知不足”,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時複習是高效率學習的重要一環,通過反覆閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯繫起來,進行分析比較,一邊複習一邊將複習成果整理在筆記上,使對所學的新知識由“懂”到“會”。
獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”。
解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不捨的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反覆思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來複習強化,作適當的重複性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統複習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯繫.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由“活”到“悟”。
課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情。
1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內涵和外延及辨析概念。例如,集合是數學中的一個原始概念,是不加定義的。它從常見的“我校高一年級學生” 、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數”等事物中抽象出來,但集合的概念又不同於特殊具體的實物集合,集合的確定及性質特徵是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。
再如象限角的概念,要向學生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導學生從多層次,多角度去認識和掌握數學概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結論。如高一新教材(上)等比數列的前n項和Sn.有q≠1和q=1兩種情形;對數計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規範。如在解對數函式題時,要注意“真數大於0”的隱含條件;解有關二次函式題時要注意二次項係數不為零的隱含條件等。讀書要鼓勵學生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學生議論數列與數集的聯繫與區別。數列與數的集合都是具有某種共同屬性的全體。數列中的數是有順序的,而數集中的元素是沒有順序的;同一個數可以在數列中重複出現,而數集中的元素是沒有重複的(相同的數在數集中算作同一個元素)。在引導學生閱讀時,教師要經常幫助學生歸類、總結,儘可能把相關知識表格化。如一元二次不等式的解情況列表,三角函式的圖象與性質列表等,便於學生記憶掌握。
2、講。外國有一位教育家曾經說過:教師的作用在於將“冰冷”的知識加溫後傳授給學生。講是實踐這種傳授的最直接和最有效的教學手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天“衝刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功紮實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
每堂新授課中,在複習必要知識和展示教學目標的基礎上,老師著重揭示知識的產生、形成、發展過程,解決學生疑惑。比如在學習兩角和差公式之前,學生已經掌握五套誘導公式,可以將求任意角三角函式值問題轉化為求某一個銳角三角函式值的問題。此時教師應進一步引導學生:對於一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函式就呼之欲出了,極大激發了學生的學習興趣。講課要注意從簡單到複雜的過程,要讓學生從感性認識上升到理性認識。鼓勵學生應積極、主動參與課堂活動的全過程,教、學同步。讓學生自己真正做學習的主人。
例如,講解函式的圖象應從振幅、周期、相位依次各自進行變化,然後再綜合,並儘可能利用多媒體輔助教學,使學生容易接受。其次講要注重突出數學思想方法的教學,注重學生數學能力的培養。例如講到等比數列的概念、通項公式、等比中項、等比數列的性質、等比數列的前n項和。可以引導學生對照等差數列的相應的內容,比較聯繫。讓學生更清楚等差數列和等比數列是兩個對偶概念。
高一數學教學計畫上學期 篇5
一、學生狀況分析
高一的學生整體水平一般,成績以中等為主,中上不多,後進生也有一些。幾個班中,從上課一周來看,學生的學習積極性還是比較高,愛問問題的同學比較多,但由於基礎知識不太牢固,上課效率不是很高。
二、教材分析
使用北師大版《普通高中課程標準實驗教科書數學》,教材在堅持我國數學教育優良傳統的前提下,認真處理繼承、借鑑、發展、創新之間的關係,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、套用性、聯繫性等特點。必修1有三章(集合與函式概念;基本初等函式;函式的套用);必修2有四章(空間幾何體;點線平面間的位置關係;直線與方程;圓與方程)。
三、教學任務
本期授課內容為必修1和必修2,必修1在期中考試前完成(約在11月5日前完成);必修2在期末考試前完成(約在12月31日前完成)。
四、教學質量目標
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3、提高學生提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6、具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
五、促進目標達成的重點工作
認真貫徹高中數學新課標精神,樹立新的教學理念,以雙基教學為主要內容,堅持抓兩頭、帶中間、整體推進,使每個學生的數學能力都得到提高和發展。教學方法及推進措施
六、相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從國中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:
(1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點。所列基礎知識依據課程標準設計,著眼於基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。。
(3)培養學生解答考題的能力,通過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。
(4)讓學生通過單元考試,檢測自己的實際套用能力,從而及時總結經驗,找出不足,做好充分的準備。
(5)抓好尖子生與後進生的輔導工作,提前展開數學奧競選拔和數學基礎輔導。
(6)重視數學套用意識及套用能力的培養。
(7)重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇於克服困難與戰勝困難的信心。
(8)合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用對比的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
(9)加強培養學生的邏輯思維能力和解決實際問題的能力,以及培養提高學生的自學能力,養成善於分析問題的習慣,進行辨證唯物主義教育。
(10)抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
(11)自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不同的教材內容選擇不同教法,提倡創新教學方法,把學生被動接受知識轉化主動學習知識。
高一數學教學計畫上學期 篇6
本節課的教學內容,是指數函式的概念、性質及其簡單套用。教學重點是指數函式的圖像與性質。
I這是指數函式在本章的位置。
指數函式是學生在學習了函式的概念、圖象與性質後,學習的第一個新的初等函式。它是一種新的函式模型,也是套用研究函式的一般方法研究函式的一次實踐。指數函式的學習,一方面可以進一步深化對函式概念的理解,另一方面也為研究對數函式、冪函式、三角函式等初等函式打下基礎。因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法套用的過程。
指數函式模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地套用,與我們的日常生活、生產和科學研究有著緊密的聯繫,因此,學習這部分知識還有著一定的現實意義。
Ⅱ.教學目標設定
1。學生能從具體實例中概括指數函式典型特徵,並用數學符號表示,建構指數函式的概念。
2。學生通過自主探究,掌握指數函式的圖象特徵與性質,能夠利用指數函式的性質比較兩個冪的大小。
3。學生運用數形結合的思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函式的一般方法。
4。在探究活動中,學生通過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力。
Ⅲ.學生學情分析
授課班級學生為南京師大附中實驗班學生。
1。學生已有認知基礎
學生已經學習了函式的概念、圖象與性質,對函式有了初步的認識。學生已經完成了指數取值範圍的擴充,具備了進行指數運算的能力。學生已有研究一次函式、二次函式等初等函式的直接經驗。學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣。
2。達成目標所需要的認知基礎
學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。
3。難點及突破策略
難點:1。 對研究函式的一般方法的認識。
2。 自主選擇底數不當導致歸納所得結論片面。
突破策略:
1。教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段。
2。組織匯報交流活動,展現思維過程,相互評價,相互啟發,促進反思。
3。對猜想進行適當地證明或說明,合情推理與演繹推理相結合。
Ⅳ.教學策略設計
根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,採用自主學習方式。通過教師引領學生經歷研究函式及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段。
學生的自主學習,具體落實在三個環節:
(1)建構指數函式概念時,學生自主舉例,歸納特徵,並用符號表示,討論底數的取值範圍,完善概念。
(2)探究指數函式圖象特徵與性質時,學生自選底數,開展自主研究,並通過匯報交流相互提升。
(3)性質套用階段,學生自主舉例說明指數函式性質的套用。
研究函式的性質,可以從形和數兩個方面展開。從圖形直觀和數量關係兩個方面,經歷從特殊到一般、具體到抽象的過程。藉助具體的指數函式的圖象,觀察特徵,發現函式性質,進而猜想、歸納一般指數函式的圖象特徵與性質,並適時套用函式解析式輔以必要的說明和證明。
Ⅴ.教學過程設計
1。創設情境建構概念
師:我們已經學習了函式的概念、圖象與性質,大家都知道函式可以刻畫兩個變數之間的關係。你能用函式的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變數的關係?
[情境問題2]某种放射性物質不斷變化為其他物質,每經過一年,這種物質剩餘的質量是原來的84%。如果經過x年,該物質剩餘的質量為y,如何描述這兩個變數的關係?
[師生活動]引導學生分析,找到兩個變數之間的函式關係,並得到解析式y=2x和y=0。84x。
師:這樣的函式你見過嗎?是一次函式嗎?二次函式?這樣的函式有什麼特點?你能再舉幾個例子嗎?
〖問題1類似的函式,你能再舉出一些例子嗎?這些函式有什麼共同特點?能否寫成一般形式?
[設計意圖]通過列舉生活中指數函式的具體例子,感受指數函式與實際生活的聯繫。引導學生從具體實例中概括典型特徵,初步形成指數函式的概念,並用數學符號表示。初步得到y=ax這個形式後,引導學生關注底數的取值範圍,完成概念建構。指數範圍擴充到實數後,關注x∈R時,y=ax是否始終有意義,因此規定a>0。a≠1並不是必須的,常函式在高等數學裡是基本函式,也有重要的意義。為了使指數函式與對數函式能構成反函式,規定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”。
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變數在指數位置,從而初步建立函式模型y=ax。
[教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現y=(-2)x最好,更便於引發對a的討論,但一般不會出現。進而提出這類函式一般形式y=ax。
Ⅵ.教後反思回顧
一、對於指數函式概念的認識
指數函式是一種函式模型,其基本特徵是自變數在指數位置。底數取值範圍有規定,使得這一模型形式簡單又不失本質。不必糾結於“y=22x是否為指數函式”,把重點放在概念的合理性的理解以及體會模型思想。
二、對於培養學生思維習慣的考慮
在學生自主探索的過程中,教師應注意培養學生良好的思維習慣。實際上,選擇底數a的數據的大小和數量,需要對指數函式的性質有預判;從列表到作圖的過程中,都可以感受到指數函式單調性等性質;觀察並歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數函式的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數學知識,也初步體驗了研究問題的基本方法。
三、關於設計定位的反思
本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應採用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什麼”等問話形式,促使學生暴露思維過程。
高一數學教學計畫上學期 篇7
一、教學目標
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、教材分析
1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學套用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。
5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。
三、教學內容
第一章 集合與函式概念
1.通過實例,了解集合的含義,體會元素與集合的“屬於”關係。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,了解全集與空集的含義。
5.理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用Venn圖表達集合的關係及運算,體會直觀圖示對理解抽象概念的作用。
8.通過豐富實例,進一步體會函式是描述變數之間的依賴關係的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函式,體會對應關係在刻畫函式概念中的作用;了解構成函式的要素,會求一些簡單函式的定義域和值域;了解映射的概念。
9.在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函式。
10.通過具體實例,了解簡單的分段函式,並能簡單套用。
11.通過已學過的函式特別是二次函式,理解函式的單調性、最大(小)值及其幾何意義;結合具體函式,了解奇偶性的含義。
12.學會運用函式圖象理解和研究函式的性質。
課時分配(14課時)
1.1.1 集合的含義與表示 約1課時 9月1日
1.1.2 集合間的基本關係 約1課時
9月4日
1.1.3 集合的基本運算 約2課時
9月12日小結與複習 約1課時
1.2.1 函式的概念 約2課時
1.2.2 函式的表示法 約2課時
9月13日
1.3.1 單調性與最大(小)值 約2課時
1.3.2 奇偶性 約1課時
9月25日小結與複習 約2課時
第二章 基本初等函式(I)
1.通過具體實例,了解指數函式模型的實際背景。
2.理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。
3.理解指數函式的概念和意義,能藉助計算器或計算機畫出具體指數函式的圖象,探索並理解指數函式的單調性與特殊點。
4.在解決簡單實際問題過程中,體會指數函式是一類重要的函式模型。
5.理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及其對簡化運算的作用。
6.通過具體實例,直觀了解對數函式模型所刻畫的數量關係,初步理解對數函式的概念,體會對數函式是一類重要的函式模型;能藉助計算器或計算機畫出具體對數函式的圖象,探索並了解對數函式的單調性和特殊點。
7.通過實例,了解冪函式的概念;結合函式的圖象,了解它們的變化情況。
課時分配(15課時)
2.1.1 引言、指數與指數冪的運算 約3課時 9月27日—30日
2.1.2 指數函式及其性質 約3課時 10月8日—10日
2.2.1 對數與對數運算 約3課時 10月11日—14日
2.2.2 對數函式及其性質 約3課時 10月15日—18日
2.3 冪函式 約1課時
10月19日—24日
小結 約2課時
第三章 函式的套用
1.結合二次函式的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函式的零點與方程根的聯繫。
根據具體函式的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。
2.利用計算工具,比較指數函式、對數函式以及冪函式增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函式類型增長的含義。
3.收集一些社會生活中普遍使用的函式模型(指數函式、對數函式、冪函式、分段函式等)的實例,了解函式模型的廣泛套用。
4.根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(克卜勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函式實例,採取小組合作的方式寫一篇有關函式概念的形成、發展或套用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 方程的根與函式的零點 約1課時 10月25日
3.1.2 用二分法求方程的近似解 約2課時 10月26日—27日
3.2.1 幾類不同增長的函式模型 約2課時
10月30日
3.2.2 函式模型的套用實例 約2課時
11月3日
小結 約1課時
考生只要在全面複習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規範答題,一定會穩中求進,取得優異的成績。
高一數學教學計畫上學期 篇8
一 設計思想:
函式與方程是中學數學的重要內容,是銜接初等數學與高等數學的紐帶,再加上函式與方程還是中學數學四大數學思想之一,是具體事例與抽象思想相結合的體現,在教學過程中,我採用了自主探究教學法。通過教學情境的設定,讓學生由特殊到一般,有熟悉到陌生,讓學生從現象中發現本質,以此激發學生的成就感,激發學生的學習興趣和學習熱情。在現實生活中函式與方程都有著十分重要的套用,因此函式與方程在整個高中數學教學中占有非常重要的地位。
二 教學內容分析:
本節課是《普通高中課程標準》的新增內容之一,選自《普通高中課程標準實驗教課書數學I必修本(A版)》第94-95頁的第三章第一課時3.1.1方程的根與函式的的零點。
本節通過對二次函式的圖象的研究判斷一元二次方程根的存在性以及根的個數的判斷建立一元二次方程的根與相應的二次函式的零點的聯繫,然後由特殊到一般,將其推廣到一般方程與相應的函式的情形.它既揭示了國中一元二次方程與相應的二次函式的內在聯繫,也引出對函式知識的總結拓展。之後將函式零點與方程的根的關係在利用二分法解方程中(3.1.2)加以套用,通過建立函式模型以及模型的求解(3.2)更全面地體現函式與方程的關係,逐步建立起函式與方程的聯繫.滲透“方程與函式”思想。
總之,本節課滲透著重要的數學思想“特殊到一般的歸納思想”“方程與函式”和“數形結合”的思想,教好本節課可以為學好中學數學打下一個良好基礎,因此教好本節是至關重要的。
三 教學目標分析:
知識與技能:
1.結合方程根的幾何意義,理解函式零點的定義;
2.結合零點定義的探究,掌握方程的實根與其相應函式零點之間的等價關係;
3.結合幾類基本初等函式的圖象特徵,掌握判斷函式的零點個數和所在區間 的方法
情感、態度與價值觀:
1.讓學生體驗化歸與轉化、數形結合、函式與方程這三大數學思想在解決數學問題時的意義與價值;
2.培養學生鍥而不捨的探索精神和嚴密思考的良好學習習慣;
3.使學生感受學習、探索發現的樂趣與成功感
教學重點:函式零點與方程根之間的關係;連續函式在某區間上存在零點的判定方法。
教學難點:發現與理解方程的根與函式零點的關係;探究發現函式存在零點的方法。
四 教學準備
導學案,自主探究,合作學習,電子互動白板。
五 教學過程設計:
(一)、問題引人:
請同學們思考這個問題。用螢幕顯示判斷下列方程是否有實根,有幾個實根?
(1)
;(2)
?
學生活動:回答,思考解法。
教師活動:第二個方程我們不會解怎么辦?你是如何思考的?有什麼想法?我們可以考慮將複雜問題簡單化,將未知問題已知化,通過對第一個問題的研究,進而來解決第二個問題。對於第一個問題大家都習慣性地用代數的方法去解決,我們應該打破思維定勢,走出自己給自己畫定的牢籠!這樣我們先把所依賴的拐杖丟掉,假如第一個方程你不會解,也不會套用判別式,你要怎樣判斷其實根個數呢?
學生活動:思考作答。
設計意圖:通過設疑,讓學生對高次方程的根產生好奇。
(二)、概念形成:
預習展示1:
你能通過觀察二次方程的根及相應的二次函式圖象,找出方程的根,圖象與軸交點的坐標以及函式零點的關係嗎?
學生活動:觀察圖像,思考作答。
教師活動:我們來認真地對比一下。用投影展示學生填寫表格
問題1:你能通過觀察二次方程的根及相應的二次函式圖象,找出方程的根,圖象與
軸交點的坐標以及函式零點的關係嗎?
學生活動:得到方程的實數根應該是函式圖象與x軸交點的橫坐標的結論。
教師活動:我們就把使方程 成立的實數x稱做函式的零點.(引出零點的概念)
根據零點概念,提出問題,零點是點嗎?零點與函式方程的根有何關係?
學生活動:經過觀察表格,得出(請學生總結)
1)概念:函式的零點並不是“點”,它不是以坐標的形式出現,而是實數。例如函式的零點為x=-1,3
2)函式零點的意義:函式的零點就是方程實數根,亦即函式的圖象與軸交點的橫坐標.
3)方程有實數根函式的圖象與軸有交點函式有零點。
教師活動:引導學生仔細體會上述結論。
再提出問題:如何並根據函式零點的意義求零點?
學生活動:可以解方程而得到(代數法);
可以利用函式的圖象找出零點.(幾何法).
設計意圖:由學生最熟悉的二次方程和二次函式出發,發現一般規律,並嘗試的去總結零點,根與交點三者的關係。
(三)、探究性質:
(五)、探索研究(可根據時間和學生對知識的接受程度適當調整)
討論:請大家給方程的一個解的大約範圍,看誰找得範圍更小?
[師生互動]
師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區間大小情況。
生:分組討論,各抒己見。在探究學習中得到數學能力的提高
第五階段設計意圖:
一是為用二分法求方程的近似解做準備
二是小組探究合作學習培養學生的創新能力和探究意識,本組探究題目就是為了培養學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。
(六)、課堂小結:
零點概念
零點存在性的判斷
零點存在性定理的套用注意點:零點個數判斷以及方程根所在區間
(七)、鞏固練習(略)
高一數學教學計畫上學期 篇9
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法.針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎.
二、高一上冊數學教學教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承、借簽、發展、創新之間的關係,體現基礎性、時代性、典型性和可接受性等,具有如下特點:
1.“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習激情.
2.“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神.
3.“科學性”與“思想性”:通過不同數學內容的聯繫與啟發,強調類比、化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神.
4.“時代性”與“套用性”:以具有時代感和現實感的素材創設情境,加強數學活動,發展套用意識.
三、高一上冊數學教學教法分析:
1.選取與內容密切相關的、典型的、豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以達到培養其興趣的目的.
2.通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式.
3.在教學中強調類比、化歸等數學思想方法,儘可能養成其邏輯思維的習慣.
四、學情分析
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著.他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長.面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望.我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從國中到高中學習方法的過渡.從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法.
五、高一上冊數學教學教學措施:
1、激發學生的學習興趣.由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步.
2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考.
高一數學教學計畫上學期 篇10
一、指導思想:
使學生進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會提高的需要。具體目標如下。
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點:
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關係,體現基礎性,時代性,典型性和可理解性等到,具有如下特點:
1、“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習活力。
2、“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、“科學性”與“思想性”:經過不一樣數學資料的聯繫與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維本事,培育理性精神。
4、“時代性”與“套用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展套用意識。
三、教法分析:
1、選取與資料密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以到達培養其興趣的目的。
2、經過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改善學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,儘可能養成其邏輯思維的習慣。
四、學情分析:
兩個班均屬普高班,學習情景良好,但學生自覺性差,自我控制本事弱,所以在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算本事太差,學生不喜歡去算題,嫌麻煩,只注重思路,所以在以後的教學中,重點在於培養學生的計算本事,同時要進一步提高其思維本事。
同時,由於國中課改的原因,高中教材與國中教材銜接力度不夠,需在新授時適機補充一些資料。所以時間上可能仍然吃緊。同時,其底子薄弱,所以在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
五、教學措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和提高。
2、注意從實例出發,從感性提高到理性;注意運用比較的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維本事就解決實際問題的本事,以及培養提高學生的自學本事,養成善於分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。
5、自始至終貫徹教學四環節,針對不一樣的教材資料選擇不一樣教法。
6、重視數學套用意識及套用本事的培養。
高一數學教學計畫上學期 篇11
本學期,我負責高一三、四班的數學教學。這兩個班有138名學生。國中生基礎薄弱,整體水平不高。從兩周的課堂來看,學生的學習積極性仍然很高,有很多學生喜歡提問。但由於基礎知識薄弱,學習習慣差,自我控制能力差,無法正確定位自己,課堂效率普遍,教學工作存在必要的難度。為了做好本學期的教學工作,特制定以下教學工作計畫。
一、教學質量目標
(1)掌握必要的數學基礎知識和技能,理解基本數學概念和數學結論的實質,體驗數學思想和方法。
(2)培養學生的邏輯思維能力、計算能力、空間想像能力,以及綜合運用相關數學知識分析和解決問題的能力。使學生逐步學會觀察、分析、綜合、比較、抽象、概括、探索和創新的技能,運用歸納、演繹、類比的方法進行推理,正確、系統地表達推理過程的技能。
(3)根據數學學科特點,加強學習目的教育,提高學生學習數學的意識和興趣,培養學生良好的學習習慣、求實的科學態度、頑強的學習毅力和獨立思考的精神,探索創新。
(4)使學生具有必要的數學視野,逐步理解數學的科學價值、套用價值和文化價值,形成批判性思維習慣,倡導數學的理性精神,體驗數學的審美意義,理解普遍運動、變化、創新、創新,數學相互聯繫、相互轉化,進一步樹立辯證唯物主義和歷史唯物主義的世界觀。
(5)通過收集信息、處理數據、製作圖像、分析原因、得出結論,學習解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期。教師負有雙重責任。他們不僅要不斷夯實基礎,加強綜合技能的培養,還要滲透高考思想方法,準備三年的學習。
二、教學目標
(I)情感目標
(1)通過問題分析的教學方法,培養學生的學習興趣。
(2)提供生活背景。通過數學建模,讓學生認識到數學是存在的,培養學習數學和運用數學的意識
高一數學教學計畫上學期 篇12
本學期擔任高一(9)(10)兩班的數學教學工作,兩班學生共有120人,國中的基礎參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計畫。
一、指導思想:
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。(3)在探究函式、等差數列、等比數列的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)能力要求培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示立體集合、函式、數列有關概念、公式和圖形的對應關係,培養記憶能力。
2、培養學生的運算能力。
(1)通過機率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過函式、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
三、學生在數學學習上存在的主要問題
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:
1、進一步學習條件不具備.高中數學與國中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合套用題及實際套用問題等.客觀上這些觀點就是分化點,有的內容還是高國中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中後,還像國中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計畫,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯繫,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
高一數學教學計畫上學期 篇13
教學目標
1通過對冪函式概念的學習以及對冪函式圖象和性質的歸納與概括,讓學生體驗數學概念的形成過程,培養學生的抽象概括能力。
2使學生理解並掌握冪函式的圖象與性質,並能初步運用所學知識解決有關問題,培養學生的靈活思維能力。
3培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學重點、難點
重點:冪函式的性質及運用
難點:冪函式圖象和性質的發現過程
教學方法:問題探究法 教具:多媒體
教學過程
一、創設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關係?
(總結:根據函式的定義可知,這裡p是w的函式)
問題2:如果正方形的邊長為a,那么正方形的面積 ,這裡S是a的函式。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這裡V是a的函式。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這裡a是S的函式 問題5:如果某人 s內騎車行進了 km,那么他騎車的速度 ,這裡v是t的函式。
以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函式解析式有什麼共同點嗎?(右邊指數式,且底數都是變數) 這只是我們生活中常用到的一類函式的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什麼名字呢?(變數在底數位置,解析式右邊都是冪的形式)(適當引導:從自變數所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s , v=t-1都是自變數的若干次冪的形式。
教師指出:我們把這樣的都是自變數的若干次冪的形式的函式稱為冪函式。
冪函式的定義:一般地,我們把形如 的函式稱為冪函式(power function),其中 是自變數, 是常數。 1冪函式與指數函式有什麼區別?(組織學生回顧指數函式的概念) 結論:冪函式和指數函式都是我們高中數學中研究的兩類重要的基本初等函式,從它們的解析式看有如下區別: 對冪函式來說,底數是自變數,指數是常數 對指數函式來說,指數是自變數,底數是常數 例1判別下列函式中有幾個冪函式?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)
2冪函式具有哪些性質?研究函式應該是哪些方面的內容。前面指數函式、對數函式研究了哪些內容?
(學生討論,教師引導。學生回答。)
3冪函式的定義域是否與對數函式、指數函式一樣,具有相同的定義域?
(學生小組討論,得到結論。引導學生舉例研究。結論:冪指數 不同,定義域並不完全相同,應區別對待。)教師指出:冪函式y=xn中,當n=0時,其表達式y=x0=1;定義域為(-∞,0)U(0,+∞),特彆強調,當x為任何非零實數時,函式的值均為1,圖象是從點(0,1)出發,平行於x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函式的定義域,並指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學生解答,並歸納解決辦法。引導學生與指數函式、對數函式對照比較。引導學生具體問題具體分析,並作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函式的奇偶性也應具體分析。)
4上述函式①y=x ②y= ③y=x ④y=x 的單調性如何?如何判斷?
(學生思考,引導作圖可得。並加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示。見後附圖1
讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)
教師總評:冪函式的性質
(1)所有的冪函式在(0,+∞)上都有定義,並且圖象都過點(1,1),
(2)如果a>0,則冪函式的圖象通過原點,並在區間[0,+∞)上是增函式,
(3)如果a3等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如5<7,2≤2,試想集合間是否有類似的“大小”關係呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
②設A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
③設C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能發現兩個集合間有什麼關係嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什麼區別?
(3)結合例子④,類比實數中的結論:“若a≤b,且b≤a,則a=b”,在集合中,你發現了什麼結論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區域內,從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據從樓頂向下看的,要想直觀表示集合,聯想集合還能用什麼表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關係.
(7)任何方程的解都能組成集合,那么x2+1=0的實數根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應該如何命名呢?
(9)與實數中的結論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什麼結論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關係來考慮.規定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內.教師指出:為了直觀地表示集合間的關係,我們常用平面上封閉曲線的內部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數解.
(8)空集記為 ,並規定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發現:對於任意兩個集合A,B有下列關係:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數解.
(8)空集.
高一數學教學計畫上學期 篇14
一、基本情況分析:
1、學生情況分析:4個重點班的學生,基礎比較好,學習積極性高。普通班學生在基礎、學習習慣、學習自覺性等方面都有一定差距,因此在教學中需時時提醒學生,培養其自覺性。學生存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以後的教學中,重點在於強化基礎知識,培養學生的計算能力,提高思維能力,爭取每堂課教學一個知識點,掌握一個知識點。
2、教材分析:本學期時間短,教學任務是必修4第二章,必修5,必修2涉及平面向量,解三角形,數列,空間幾何體,點,線面的位置關係,直線與方程,圓與方程。
二、教學內容:
本學期的數學教學內容是高一數學下冊,包括第四章《三角函式》和第五章《平面向量》。按照數學教學大綱的要求,第四章教學需要36個課時(不包含考試與測驗的時間);第五章的教學需要22個課時,總計需要58個課時。本學期有兩次月考和五一長假,實際授課時間為18周,按每周6課時計算,數學課時達到110課時左右,時間相當充足。這為我們數學組全面貫徹“低切入、慢節奏”的教學方針提供了保障,也是我們提高學生數學水平的又一次極好的機會。
三、本學期教學目標
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
能運用數學概念、思想方法,辨明數學關係,形成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,形成數學的意思;從而通過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
培養學生,學習數學的興趣、信心和毅力及實事求是的科學態度,勇於探索創新的精神,及欣賞數學的美學價值,並懂的`數學來源於實踐又反作用於實踐的觀點;數學中普遍存在的對立統一、運動變化、相互聯繫、相互轉化等觀點。
四、教學計畫:
本學期的期中考試(預計在4月14號至4月17號進行)涵蓋的內容為第四章的前9節,由於課時量充足,第10節“正切函式的圖像和性質”以及第11節“已知三角函式值求角”將在上半學期講授,這樣下半個學期的教學任務為30個課時。
我們備課組經過認真的思索、充分的討論,將期中考試前的教學進度安排如下:
(一單元)任意角的三角函式
4.1角的概念的推廣3課時
4.2弧度制3課時
4.3任意角的三角函式3~4課時
4.4同角三角函式的基本關係4課時
4.5正弦、餘弦的誘導公式4課時
複習課(習題課)4課時
單元測試及講評2課時
(二單元)兩角和與差的三角函式
4.6兩角和與差的正弦、餘弦、正切7課時
習題課3課時
4.7兩倍角的正弦、餘弦、正切4課時
習題課2課時
單元測試及講評2課時
(三單元)三角函式的圖象及性質
4.8正弦、餘弦函式的圖象和性質5課時
習題課2課時
4.9函式的圖象4課時總計授課53課時,餘下課時可安排期中複習。
期中考試後的授課計畫:
4.10正切函式的圖象和性質3課時
4.11已知三角函式值求角4課時
習題課2課時
第四章複習4課時
第五章
(一單元)向量及其運算
5.1向量1課時
5.2向量的加減法2課時
5.3實數與向量的積3課時
5.4平面向量的坐標計算3課時
5.5線段的定比分點2課時
5.6平面向量的數量積及運算律3課時
5.7平面向量數量積的坐標表示2課時
5.8平移2課時
習題課3課時
單元測試與講評(隨堂)2課時
5.9正弦、餘弦定理5課時
5.10解斜三角形套用舉例2課時
實習與研究性課題4課時
習題課3課時
單元測試與講評2課時
總結:以上就是本學期的數學教學計畫,希望能對你有所幫助,如有不足之處,請批評指正!
高一數學教學計畫上學期 篇15
本學期的數學教學內容是高一數學下冊,包括第四章《三角函式》和第五章《平面向量》。按照數學教學大綱的要求,第四章教學需要36個課時(不包含考試與測驗的時間);第五章的教學需要22個課時,總計需要58個課時。本學期有兩次月考和五一長假,實際授課時間為18周,按每周6課時計算,數學課時達到110課時左右,時間相當充足。這為我們數學組全面貫徹“低切入、慢節奏”的教學方針提供了保障,也是我們提高學生數學水平的又一次極好的機會。
教學計畫:
依據南昌市的高一數學教學進度安排,本學期的期中考試(預計在4月14號至4月17號進行)涵蓋的內容為第四章的前9節,由於課時量充足,第10節“正切函式的圖像和性質”以及第11節“已知三角函式值求角”將在上半學期講授,這樣下半個學期的教學任務為30個課時。
我們備課組經過認真的思索、充分的討論,將期中考試前的教學進度安排如下:
(一單元)任意角的三角函式
§4.1角的概念的推廣 3課時
§4.2弧度制 3課時
§4.3任意角的三角函式 3~4課時
§4.4同角三角函式的基本關係 4課時
§4.5正弦、餘弦的誘導公式 4課時
複習課(習題課) 4課時
單元測試及講評(隨堂) 2課時
(二單元)兩角和與差的三角函式
§4.6兩角和與差的正弦、餘弦、正切 7課時
習題課 3課時
§4.7兩倍角的正弦、餘弦、正切 4課時
習題課 2課時
單元測試及講評(隨堂) 2課時
(三單元)三角函式的圖象及性質
§4.8正弦、餘弦函式的圖象和性質 5課時
習題課 2課時
§4.9函式 的圖象 4課時
總計授課53課時,餘下課時可安排期中複習。
期中考試後的授課計畫:
§4.10正切函式的圖象和性質 3課時
§4.11已知三角函式值求角 4課時
習題課 2課時
第四章複習 4課時
第五章
(一單元)向量及其運算
§5.1向量 1課時
§5.2向量的加減法 2課時
§5.3實數與向量的積 3課時
§5.4平面向量的坐標計算 3課時
§5.5線段的定比分點 2課時
§5.6平面向量的數量積及運算律 3課時
§5.7平面向量數量積的坐標表示 2課時
§5.8平移 2課時
習題課 3課時
單元測試與講評(隨堂) 2課時
§5.9正弦、餘弦定理 5課時
§5.10解斜三角形套用舉例 2課時
實習與研究性課題 4課時
習題課 3課時
單元測試與講評(隨堂) 2課時
競賽輔導:
為發展我校的素質教育,貫徹個性化發展的原則,數學組擬對在校生中有數學思維特長的學生進行競賽類的輔導。由6個班的學生共同組建一個30人左右的數學小組,每周由數學組的成員進行具有針對性的競賽輔導,目標是今年4月舉行的全國數學競賽。大體的時間安排如下:每周舉行1到2次,時間為第8節課。
教學課題:案頭工作的嘗試
案頭工作不僅僅是一個總結的過程,他同時也是創造性思維的一個反映,對於各門學科,特別是數理化三門理科具有特殊的意義。數學組經過研究,決定在這方面作出嘗試,擬從班上選出個別學生,對其進行案頭工作的指導,要求有專門的案頭本,每次對作業的錯誤進行總結,觀察這部分學生的學習狀況,並對其學習上的表現作出記錄。以便今後與其他學生作比較。
高一數學教學計畫上學期 篇16
一、教學目標
培養學生德、智、體等方面全面發展,使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能,強化學生的交流意識、合作意識、探究意識、重點培養學生創新精神和實踐能力,並注重培養學生良好的學習習慣。
二、具體措施
1、同組數學教師加強同頭研究,集中集體智慧,統一進度、統一考試、統一安排。
2、每長周星期三下午召開同組數學教師會,總結上一周教學得與失,布置下一長周教學任務。
3、每一章節小考一次,重點班、普通班分別命題,分層次檢測,每章責任人見附表。
4、每個組員加強自身業務知識學習,每學期至少聽課15節。
5、全組教師儘量採用多媒體教學,加大大課堂容量,加強課堂趣味性。
三、進度安排
說明:各班教學進度可根據本班實際情況適當調整!
高一數學教學計畫上學期 篇17
一.學情分析
我校選用的數學教材是由人民教育出版社、課程教材研究所、中學數學課程教材研究開發中心編著的A版教材。與舊教材作一比較,發現本套教材是在繼承我國高中數學教科書編寫優良傳統和基礎上積極創新,充分體現了數學的美學價值和人文精神。我校是一所普通的高中,在重點高中和私立學校擴招的影響下,我校新生的素質可想而知了。學生基礎差,學習興趣不大,怎樣調動學生的學習興趣是本期在教學中要解決的重要問題。
二.教材分析
本教材有下列幾個特點:
1、更加注重強調數學知識的實際背景和套用,使教材具有很強的“親和力”,即以生動活潑的呈現方式,激發學生的興趣和美感,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,使學生興趣盎然地投入學習。
2. 以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神,體現了問題性,本套教材的一個很大特點是每一章都可以看到“觀察”“思考”“探索”以及用“問號性”圖示呈現的“邊空”等欄目,利用這些欄目,在知識形過過程的“關鍵點”上,在運用數學思想方法產生解決問題策略的“關節點”上,在數學知識之間聯繫的“聯結點”上,在數學問題變式的“發散點”上,在學生思維的“最近發展區”內,提出恰當的、對學生數學思維有適度啟發的問題,以引導學生的數學探究活動,切實轉變學生的學習方式。
3. 信息技術是一種強有力的認識工具,在教材的編寫過程體現了積極探索數學課程與信息技術的整合,幫助學生利用信息技術的力量,對數學的本質作進一步的理解。
4.關注學生數學發展的不同需求,為不同學生提供不同的發展空間,促進學生個性和潛能的發展提供了很好的平台。例如教材通過設定“觀察與猜想”、“閱讀與思考”、“探究與發現”等欄目,一方面為學生提供了一些關於探究性、拓展性、思想性、時代性和套用性的選學材料,拓展學生的數學活動空間和擴大學生的數學知識面,另一方面也體現了數學的科學價值,反映了數學在推動其他科學和整個文化進步中的作用。
5. 新教材注重數學史滲透,特別是注重介紹我國對數學的貢獻,充分體現數學的人文價值,科學價值和文化價值,激發了學生的愛國主義情感和民族自豪感。
三. 教學任務與目的
1.了解集合的含義與表示,理解集合間的關係和運算,感受集合語言的意義和作用。進一步體會函式是描述變數之間的依賴關係的重要數學模型,會用集合與對應的語言描述函式,體會對應關係在刻畫函式概念中的作用。了解函式的構成要素,會求簡單函式定義域和值域,會根據實際情境的不同需要選擇恰當的方法表示函式。
通過已學過的具體函式,理解函式的單調性、最大(小)值及其幾何意義,了解奇偶性的含義,會用函式圖象理解和研究函式的性質。根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(克卜勒、伽利略、笛卡兒、牛頓、萊布尼茲、歐拉等)的有關資料,了解函式概念的發展歷程。
2. 了解指數函式模型的實際背景。理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。理解指數函式的概念和意義,能藉助計算器或計算機畫出具體指數函式的圖象,探索並理解指數函式的單調性與特殊點。在解決簡單實際問題的過程中,體會指數函式是一類重要的函式模型。
理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及對簡化運算的作用。通過具體實例,直觀了解對數函式模型所刻畫的數量關係,初步理解對數函式的概念,體會對數函式是一類重要的函式模型;能藉助計算器或計算機畫出具體對數函式的圖象,探索並了解對數函式的單調性與特殊點。知道指數函式y=ax 與對數函式y=loga x互為反函式(a > 0, a≠1)。通過實例,了解冪函式的概念;結合函式y=x, y=x2, y=x3, y=1/x, y=x1/2 的圖象,了解它們的變化情況。
3. 結合二次函式的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函式的零點與方程根的聯繫.根據具體函式的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法.利用計算工具,比較指數函式、對數函式以及冪函式間的增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函式類型增長的含義.收集一些社會生活中普遍使用的函式模型,了解函式模型的廣泛套用。
4. 利用實物模型、計算機軟體觀察大量空間圖形,認識柱、錐、台、球及其簡單組合體的結構特徵,並能運用這些特徵描述現實生活中簡單物體的結構。能畫出簡單空間圖形(長方體、球、圓柱、圓錐、稜柱等的簡易組合)的三視圖,能識別上述的三視圖所表示的立體模型,會使用材料(如紙板)製作模型,會用斜二側法畫出它們的直觀圖。
通過觀察用兩種方法(平行投影與中心投影)畫出的視圖與直觀圖,了解空間圖形的不同表示形式。完成實習作業,如畫出某些建築的視圖與直觀圖(在不影響圖形特徵的基礎上,尺寸、線條等不作嚴格要求)。了解球、稜柱、稜錐、台的表面積和體積的計算公式(不要求記憶公式)。
5以長方體為載體,使學生在直觀感知的基礎上,認識空間中點、直線、平面之間的位置關係。通過對大量圖形的觀察、實驗、操作和說理,使學生進一步了解平行、垂直判定方法以及基本性質。學會準確地使用數學語言表述幾何對象的位置關係,體驗公理化思想,培養邏輯思維能力,並用來解決一些簡單的推理論證及套用問題.
6. 在平面直角坐標系中,結合具體圖形,探索確定直線位置的幾何要素。理解直線的傾斜角和斜率的概念,經歷用代數方法刻畫直線斜率的過程,掌握過兩點的直線斜率的計算公式。能根據斜率判定兩條直線平行或垂直。
根據確定直線位置的幾何要素,探索並掌握直線方程的幾種形式(點斜式、兩點式及一般式),體會斜截式與一次函式的關係。能用解方程組的方法求兩直線的交點坐標。探索並掌握兩點間的距離公式、點到直線的距離公式,會求兩條平行直線間的距離。
四.教學措施和活動
1. 加強集體備課與個人學習,個人要加強自我學習和養成解數學題的習慣,提高個人專業素養和教學基本功。
2、注重培養學生自主學習的能力,轉變學生學習數學的方式。學生是學習和發展的主人,教學中要體現學生的主體地位,增強學生的自我學習,自我教育與發展的意識和能力。改善學生的學習方式是高中數學新課程追求的基本理念。
3、了解新課程教學基本程式,掌握新課程教學常規策略,立足於提高課堂教學效率。
4、與學生多溝通、多交流,真正成為學生的良師益友。
5、要深刻理解領悟新教材的立意進行教學,而不要盲目地加深難度。
高一數學教學計畫上學期 篇18
一、指導思想:使學生學好從事社會主義現代化建設和進一步學習現代科學技術所必需的數學基礎知識和基本技能,培養學生的運算能力、邏輯思維能力和空間想像能力,以逐步形成運用數學知識來分析和解決實際問題的能力。要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性,培養學生的科學態度和辨證唯物主義的觀點。
二、基本情況分析:
1、4班共人,男生 人,女生 人;本班相對而言,數學尖子約 人,中上等生約 人,中等生約 人,中下生約 人,差生約 人。 5班共 人,男生 人,女生 人;本班相對而言,數學尖子約 人,中上等生約人,中等生約 人,中下生約 人,差生約 人。
2、4班在國中升入高中的升學考試中,數學成績在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分為 ,最低分為 。
5班在國中升入高中的升學考試中,數學成績在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分為 ,最低分為 。
3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之後的體育班,整體分析的結果是:
三、教材分析:
1、教材內容:集合、一元二次不等式、簡易邏輯、映射與函式、指數函式和對數函式、數列、等差數列、等比數列。
2、集合概念及其基本理論,是近代數學最基本的內容之一;函式是中學數學中最重要的基本概念之一;數列有著廣泛的套用,是進一步學習高等數學的基礎。
3、教材重點:幾種函式的圖像與性質、不等式的解法、數列的概念、等差數列與等比數列的通項公式、前n項和的公式。
4、教材難點:關於集合的各個基本概念的涵義及其相互之間的區別和聯繫、映射的概念以及用映射來刻畫函式概念、反函式、一些代數命題的證明、 5、教材關鍵:理解概念,熟練、牢固掌握函式的圖像與性質。
6、採用了由淺入深、減緩坡度、分散難點,逐步展開教材內容的做法,符合從有限到無限的認識規律,體現了從量變到質變和對立統一的辯證規律。每階段的內容相對獨立,方法比較單一,有助於掌握每一階段內容。
7、各部分知識之間的聯繫較強,每一階段的知識都是以前一階段為基礎,同時為下階段的學習作準備。
8、全期教材重要的內容是:集合運算、不等式解法、函式的奇偶性與單調性、等差與等比數列的通項和前n項和。
四、教學要求:
1、理解集合、子集、交集、並集、補集的概念。了解空集和全集的意義,了解屬於、包含、相等關係的意義,能掌握有關的術語和符號,能正確地表示一些簡單的集合。
2、掌握一元二次不等式的解法和絕對值不等式的解法,並能熟練求解。
高一數學教學計畫上學期 篇19
一、指導思想
在我校整體建構和諧教學模式下,使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5、提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6、具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教材特點
我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(a版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關係,體現基礎性,時代性,典型性和可接受性等到,具有如下特點
1、“親和力“:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。
2、“問題性“:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。
3、“科學性“與“思想性“:通過不同數學內容的聯繫與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。
4、“時代性“與“套用性“:以具有時代性和現實感的素材創設情境,加強數學活動,發展套用意識。
三、教法分析
1、選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟“的衝動,以達到培養其興趣的目的。
2、通過“觀察“,“思考“,“探究“等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3、在教學中強調類比,推廣,特殊化,化歸等數學思想方法,儘可能養成其邏輯思維的習慣。
四、學情分析
高一班學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以後的教學中,重點在於培養學生的計算能力,同時要進一步提高其思維能力。同時,由於國中課改的原因,高中教材與國中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
高一數學教學計畫上學期 篇20
一、基本情況分析
高一153班與154班兩個班,其中153班是文化班有男生51人,女生22人;154班是美術班有男生23人,女生21人,並且有音樂生8人。兩個班基礎差,學習數學的興趣都不高。
二、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
三、教學建議
1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學套用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。
5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特徵,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。
6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
四、教研課題
高中數學新課程新教法