高一數學教學計畫模板合集

高一數學教學計畫模板合集 篇1

本節課的教學內容,是指數函式的概念、性質及其簡單套用。教學重點是指數函式的圖像與性質。

I這是指數函式在本章的位置。

指數函式是學生在學習了函式的概念、圖象與性質後,學習的第一個新的初等函式。它是一種新的函式模型,也是套用研究函式的一般方法研究函式的一次實踐。指數函式的學習,一方面可以進一步深化對函式概念的理解,另一方面也為研究對數函式、冪函式、三角函式等初等函式打下基礎。因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法套用的過程。

指數函式模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地套用,與我們的日常生活、生產和科學研究有著緊密的聯繫,因此,學習這部分知識還有著一定的現實意義。

Ⅱ.教學目標設定

1。學生能從具體實例中概括指數函式典型特徵,並用數學符號表示,建構指數函式的概念。

2。學生通過自主探究,掌握指數函式的圖象特徵與性質,能夠利用指數函式的性質比較兩個冪的大小。

3。學生運用數形結合的思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函式的一般方法。

4。在探究活動中,學生通過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力。

Ⅲ.學生學情分析

授課班級學生為南京師大附中實驗班學生。

1。學生已有認知基礎

學生已經學習了函式的概念、圖象與性質,對函式有了初步的認識。學生已經完成了指數取值範圍的擴充,具備了進行指數運算的能力。學生已有研究一次函式、二次函式等初等函式的直接經驗。學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣。

2。達成目標所需要的認知基礎

學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。

3。難點及突破策略

難點:1。 對研究函式的一般方法的認識。

2。 自主選擇底數不當導致歸納所得結論片面。

突破策略:

1。教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段。

2。組織匯報交流活動,展現思維過程,相互評價,相互啟發,促進反思。

3。對猜想進行適當地證明或說明,合情推理與演繹推理相結合。

Ⅳ.教學策略設計

根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,採用自主學習方式。通過教師引領學生經歷研究函式及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段。

學生的自主學習,具體落實在三個環節:

(1)建構指數函式概念時,學生自主舉例,歸納特徵,並用符號表示,討論底數的取值範圍,完善概念。

(2)探究指數函式圖象特徵與性質時,學生自選底數,開展自主研究,並通過匯報交流相互提升。

(3)性質套用階段,學生自主舉例說明指數函式性質的套用。

研究函式的性質,可以從形和數兩個方面展開。從圖形直觀和數量關係兩個方面,經歷從特殊到一般、具體到抽象的過程。藉助具體的指數函式的圖象,觀察特徵,發現函式性質,進而猜想、歸納一般指數函式的圖象特徵與性質,並適時套用函式解析式輔以必要的說明和證明。

Ⅴ.教學過程設計

1。創設情境建構概念

師:我們已經學習了函式的概念、圖象與性質,大家都知道函式可以刻畫兩個變數之間的關係。你能用函式的觀點分析下面的例子嗎?

師:大家知道細胞分裂的規律嗎?(出示情境問題)

[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變數的關係?

[情境問題2]某种放射性物質不斷變化為其他物質,每經過一年,這種物質剩餘的質量是原來的84%。如果經過x年,該物質剩餘的質量為y,如何描述這兩個變數的關係?

[師生活動]引導學生分析,找到兩個變數之間的函式關係,並得到解析式y=2x和y=0。84x。

師:這樣的函式你見過嗎?是一次函式嗎?二次函式?這樣的函式有什麼特點?你能再舉幾個例子嗎?

〖問題1類似的函式,你能再舉出一些例子嗎?這些函式有什麼共同特點?能否寫成一般形式?

[設計意圖]通過列舉生活中指數函式的具體例子,感受指數函式與實際生活的聯繫。引導學生從具體實例中概括典型特徵,初步形成指數函式的概念,並用數學符號表示。初步得到y=ax這個形式後,引導學生關注底數的取值範圍,完成概念建構。指數範圍擴充到實數後,關注x∈R時,y=ax是否始終有意義,因此規定a>0。a≠1並不是必須的,常函式在高等數學裡是基本函式,也有重要的意義。為了使指數函式與對數函式能構成反函式,規定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”。

[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變數在指數位置,從而初步建立函式模型y=ax。

[教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現y=(-2)x最好,更便於引發對a的討論,但一般不會出現。進而提出這類函式一般形式y=ax。

Ⅵ.教後反思回顧

一、對於指數函式概念的認識

指數函式是一種函式模型,其基本特徵是自變數在指數位置。底數取值範圍有規定,使得這一模型形式簡單又不失本質。不必糾結於“y=22x是否為指數函式”,把重點放在概念的合理性的理解以及體會模型思想。

二、對於培養學生思維習慣的考慮

在學生自主探索的過程中,教師應注意培養學生良好的思維習慣。實際上,選擇底數a的數據的大小和數量,需要對指數函式的性質有預判;從列表到作圖的過程中,都可以感受到指數函式單調性等性質;觀察並歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數函式的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數學知識,也初步體驗了研究問題的基本方法。

三、關於設計定位的反思

本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應採用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什麼”等問話形式,促使學生暴露思維過程。

高一數學教學計畫模板合集 篇2

指導思想

準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。

教學建議

1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。

2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學套用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的.視野),以拓寬知識的廣度來求得知識的深度。

3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。

4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。

5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特徵,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。

6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。

教研課題

高中數學新課程新教法

教學進度

第一周 集 合

第二周 函式及其表示

第三周 函式的基本性質

第四周 指數函式

第五周 對數函式

第六周 冪函式

第七周 函式與方程

第八周 函式的套用

第九周 期中考試

第十十一周 空間幾何體

第十二周 點,直線,面之間的位置關係

第十三十四周 直線與平面平行與垂直的判定與性質

第十五十六周 直線與方程

第十八十九周 圓與方程

第二十周 期末考試

高一數學教學計畫模板合集 篇3

本學期的數學教學內容是高一數學下冊,包括第四章《三角函式》和第五章《平面向量》。按照數學教學大綱的要求,第四章教學需要36個課時(不包含考試與測驗的時間);第五章的教學需要22個課時,總計需要58個課時。本學期有兩次月考和五一長假,實際授課時間為18周,按每周6課時計算,數學課時達到110課時左右,時間相當充足。這為我們數學組全面貫徹“低切入、慢節奏”的教學方針提供了保障,也是我們提高學生數學水平的又一次極好的機會。

教學計畫:

依據南昌市的高一數學教學進度安排,本學期的期中考試(預計在4月14號至4月17號進行)涵蓋的內容為第四章的前9節,由於課時量充足,第10節“正切函式的圖像和性質”以及第11節“已知三角函式值求角”將在上半學期講授,這樣下半個學期的教學任務為30個課時。

我們備課組經過認真的思索、充分的討論,將期中考試前的教學進度安排如下:

(一單元)任意角的三角函式

§4.1角的概念的推廣 3課時

§4.2弧度制 3課時

§4.3任意角的三角函式 3~4課時

§4.4同角三角函式的基本關係 4課時

§4.5正弦、餘弦的誘導公式 4課時

複習課(習題課) 4課時

單元測試及講評(隨堂) 2課時

(二單元)兩角和與差的三角函式

§4.6兩角和與差的正弦、餘弦、正切 7課時

習題課 3課時

§4.7兩倍角的正弦、餘弦、正切 4課時

習題課 2課時

單元測試及講評(隨堂) 2課時

(三單元)三角函式的圖象及性質

§4.8正弦、餘弦函式的圖象和性質 5課時

習題課 2課時

§4.9函式 的圖象 4課時

總計授課53課時,餘下課時可安排期中複習。

期中考試後的授課計畫:

§4.10正切函式的圖象和性質 3課時

§4.11已知三角函式值求角 4課時

習題課 2課時

第四章複習 4課時

第五章

(一單元)向量及其運算

§5.1向量 1課時

§5.2向量的加減法 2課時

§5.3實數與向量的積 3課時

§5.4平面向量的坐標計算 3課時

§5.5線段的定比分點 2課時

§5.6平面向量的數量積及運算律 3課時

§5.7平面向量數量積的坐標表示 2課時

§5.8平移 2課時

習題課 3課時

單元測試與講評(隨堂) 2課時

§5.9正弦、餘弦定理 5課時

§5.10解斜三角形套用舉例 2課時

實習與研究性課題 4課時

習題課 3課時

單元測試與講評(隨堂) 2課時

競賽輔導:

為發展我校的素質教育,貫徹個性化發展的原則,數學組擬對在校生中有數學思維特長的學生進行競賽類的輔導。由6個班的學生共同組建一個30人左右的數學小組,每周由數學組的成員進行具有針對性的競賽輔導,目標是今年4月舉行的全國數學競賽。大體的時間安排如下:每周舉行1到2次,時間為第8節課。

教學課題:案頭工作的嘗試

案頭工作不僅僅是一個總結的過程,他同時也是創造性思維的一個反映,對於各門學科,特別是數理化三門理科具有特殊的意義。數學組經過研究,決定在這方面作出嘗試,擬從班上選出個別學生,對其進行案頭工作的指導,要求有專門的案頭本,每次對作業的錯誤進行總結,觀察這部分學生的學習狀況,並對其學習上的表現作出記錄。以便今後與其他學生作比較。

高一數學教學計畫模板合集 篇4

教學分析

課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.

值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.

三維目標

1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.

2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.

重點難點

教學重點:理解集合間包含與相等的含義.

教學難點:理解空集的含義.

課時安排

1課時

教學過程

導入新課

思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)

欲知誰正確,讓我們一起來觀察、研探.

思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.

類比實數的大小關係,如57

②不等式組

③ax>b

二、創設二次不等式的生活背景實例,引入課題

採用課本上的實例,有關網路收費問題

三、一元二次不等式的解法探索

(1)

在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。

由於這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最後以課外思考題的形式設計相應習題。

(2)

採取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織並完成,並撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,儘管這些知識不完整,語言或許不規範,思維或許不嚴密。

之後,從特殊到一般,研究一般的二元一次不等式的解法。由於經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。

反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。於是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。

四、練習環節

可以說,即使到了高三,仍然有不少同學對於一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬於技能課,對於技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。

課本上,配置了不少練習題。對於練習,我採取多種方式,或叫學生上黑板板書,藉助學生練習規範解題格式;或者口答,說解題思路及答案;或者下面獨立練習。

五、課堂小結

知識,思想、方法及感悟等

六、課後作業

①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源於課本上的A組或B組

②課外思考題:

1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同

2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值範圍

變式一:戓將R改為空集,此時結論如何

變式二:仿上,自己改編條件,並解之。

反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。

高一數學教學計畫模板合集 篇5

一、學情分析

這節課是在學生已經學過的二維的平面直角坐標系的基礎上的推廣,是以後學習空間向量等內容的基礎。

二、教學目標

1. 讓學生經歷用類比的數學思想方法探索空間直角坐標系的建立方法,進一步體會數學概念、方法產生和發展的過程,學會科學的思維方法。

2. 理解空間直角坐標系與點的坐標的意義,掌握由空間直角坐標系內的點確定其坐標或由坐標確定其在空間直角坐標系內的點,認識空間直角坐標系中的點與坐標的關係。

3. 進一步培養學生的空間想像能力與確定性思維能力。

三、教學重點:在空間直角坐標系中點的坐標的確定。

四、教學難點:通過建立空間直角坐標系利用點的坐標來確定點在空間內的位置

五、教學過程

(一)、問題情景

1. 確定一個點在一條直線上的位置的方法。

2. 確定一個點在一個平面內的位置的方法。

3. 如何確定一個點在三維空間內的位置?

例:如圖,在房間(立體空間)內如何確定一個同學的頭所在位置?

在學生思考討論的基礎上,教師明確:確定點在直線上,通過數軸需要一個數;確定點在平面內,通過平面直角坐標系需要兩個數。那么,要確定點在空間內,應該需要幾個數呢?通過類比聯想,容易知道需要三個數。要確定同學的頭的位置,知道同學的頭到地面的距離、到相鄰的兩個牆面的距離即可。

(此時學生只是意識到需要三個數,還不能從坐標的角度去思考,因此,教師在這兒要重點引導)

教師明晰:在地面上建立直角坐標系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內的電燈的位置,須要用第三個數表示物體離地面的高度,即需第三個坐標z.因此,只要知道電燈到地面的距離、到相鄰的兩個牆面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個坐標分別為4和5,到地面的距離為3,則可以用有序數組(4,5,3)確定這個電燈的位置(如圖26-3)。

這樣,仿照國中平面直角坐標系,就建立了空間直角坐標系O-xyz,從而確定了空間點的位置。

(二)、建立模型

1. 在前面研究的基礎上,先由學生對空間直角坐標系予以抽象概括,然後由教師給出準確的定義。

從空間某一個定點O引三條互相垂直且有相同單位長度的數軸,這樣就建立了空間直角坐標系O-xyz,點O叫作坐標原點,x軸、y軸、z軸叫作坐標軸,這三條坐標軸中每兩條確定一個坐標平面,分別稱為xOy平面,yOz平面,zOx平面。

教師進一步明確:

(1)在空間直角坐標系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個坐標係為右手坐標系,課本中建立的坐標系都是右手坐標系。

(2)將空間直角坐標系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直於z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等於y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。

2. 空間直角坐標系O-xyz中點的坐標。

思考:在空間直角坐標系中,空間任意一點A與有序數組(x,y,z)有什麼樣的對應關係?

在學生充分討論思考之後,教師明確:

(1)過點A作三個平面分別垂直於x軸,y軸,z軸,它們與x軸、y軸、z軸分別交於點P,Q,R,點P,Q,R在相應數軸上的坐標依次為x,y,z,這樣,對空間任意點A,就定義了一個有序數組(x,y,z)。

(2)反之,對任意一個有序數組(x,y,z),按照剛才作圖的相反順序,在坐標軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的坐標分別是x,y,z,再分別過這些點作垂直於各自所在的坐標軸的平面,這三個平面的交點就是所求的點A.

這樣,在空間直角坐標系中,空間任意一點A與有序數組(x,y,z)之間就建立了一種一一對應關係:A (x,y,z)。

教師進一步指出:空間直角坐標系O-xyz中任意點A的坐標的概念

對於空間任意點A,作點A在三條坐標軸上的.射影,即經過點A作三個平面分別垂直於x軸、y軸和z軸,它們與x軸、y軸、z軸分別交於點P,Q,R,點P,Q,R在相應數軸上的坐標依次為x,y,z,我們把有序數組(x,y,z)叫作點A的坐標,記為A(x,y,z)。

(三)、例 題 與 練 習

1. 課本135頁例1.

注意:在分析中緊扣坐標定義,強調三個步驟,第一步從原點出發沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。

2. 課本135頁例2

探究: (1)在空間直角坐標系中,坐標平面xOy,xOz,yOz上點的坐標有什麼特點?

(2)在空間直角坐標系中,x軸、y軸、z軸上點的坐標有什麼特點?

解:(1)xOy平面、xOz平面、yOz平面內的點的坐標分別形如(x,y,0),(x,0,z),(0,y,z)。

(2)x軸、y軸、z軸上點的坐標分別形如(x,0,0),(0,y,0),(0,0,z)。

3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為坐標原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。

注意:此題可以由學生口答,教師點評。

解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。

討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標系,那么各頂點的坐標又是怎樣的呢?

得出結論:建立不同的坐標系,所得的同一點的坐標也不同。

[練 習]

1. 在空間直角坐標系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。

2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為坐標原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。

3. 寫出坐標平面yOz上yOz平分線上的點的坐標滿足的條件。

(四)、拓展延伸

分別寫出點(1,1,1)關於各坐標軸和各個坐標平面對稱的點的坐標。

六、評價設計

1、 練習 : 課本P136. 1、2、3

2、 課堂作業: 課本P138. 1、2

高一數學教學計畫模板合集 篇6

一、指導思想:

使學生學好從事社會主義現代化建設和進一步學習現代科學技術所必需的數學基礎知識和基本技能,培養學生的運算能力、邏輯思維能力和空間想像能力,以逐步形成運用數學知識來分析和解決實際問題的能力。要培養學生對數學的興趣,激勵學生為實現四個現代化學好數學的積極性,培養學生的科學態度和辨證唯物主義的觀點。

二、基本情況分析:

1、4班共人,男生 人,女生 人;本班相對而言,數學尖子約 人,中上等生約 人,中等生約 人,中下生約 人,差生約 人。 5班共 人,男生 人,女生 人;本班相對而言,數學尖子約 人,中上等生約人,中等生約 人,中下生約 人,差生約 人。

2、4班在國中升入高中的升學考試中,數學成績在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分為 ,最低分為 。

5班在國中升入高中的升學考試中,數學成績在100’及以上的有 人,80’—99’有 人,60’—79’有 人,40’—59’有 人,40’以下有 人,其中最高分為 ,最低分為 。

3、4/5班分別為高一年級9個班中編排一個普高班和一個普高班之後的體育班,整體分析的結果是:

三、教材分析:

1、教材內容:集合、一元二次不等式、簡易邏輯、映射與函式、指數函式和對數函式、數列、等差數列、等比數列。

2、集合概念及其基本理論,是近代數學最基本的內容之一;函式是中學數學中最重要的基本概念之一;數列有著廣泛的套用,是進一步學習高等數學的基礎。

3、教材重點:幾種函式的圖像與性質、不等式的解法、數列的概念、等差數列與等比數列的通項公式、前n項和的公式。

4、教材難點:關於集合的各個基本概念的涵義及其相互之間的區別和聯繫、映射的概念以及用映射來刻畫函式概念、反函式、一些代數命題的證明、 5、教材關鍵:理解概念,熟練、牢固掌握函式的圖像與性質。

6、採用了由淺入深、減緩坡度、分散難點,逐步展開教材內容的做法,符合從有限到無限的認識規律,體現了從量變到質變和對立統一的辯證規律。每階段的內容相對獨立,方法比較單一,有助於掌握每一階段內容。

7、各部分知識之間的聯繫較強,每一階段的知識都是以前一階段為基礎,同時為下階段的學習作準備。

8、全期教材重要的內容是:集合運算、不等式解法、函式的奇偶性與單調性、等差與等比數列的通項和前n項和。

四、教學要求:

1、理解集合、子集、交集、並集、補集的概念。了解空集和全集的意義,了解屬於、包含、相等關係的意義,能掌握有關的術語和符號,能正確地表示一些簡單的集合。

2、掌握一元二次不等式的解法和絕對值不等式的解法,並能熟練求解。

高一數學教學計畫模板合集 篇7

一.指導思想:

(1)隨著素質教育的深入展開,《新課程標準》提出了“教育要面向世界,面向未來,面向現代化”和“教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。其內容包括代數、幾何、三角的基本概念、規律和它們反映出來的思想方法,機率、統計的初步知識,計算機的使用等。

(2)培養學生的邏輯思維能力、運算能力、空間想像能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的能力。

(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。

(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯繫和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

(5)學會通過收集信息、處理數據、製作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。

(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。

二.學情分析:

我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:

1、進一步學習條件不具備.高中數學與國中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合套用題及實際套用問題等.客觀上這些觀點就是分化點,有的內容還是高國中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。

2、被動學習.許多同學進入高中後,還像國中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計畫,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯繫,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

3、對自己學習數學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。

4、不能計畫學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價

5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學生數學學習興趣不濃厚,不具備套用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重製約著學生數學成績的提高

三、教學目標與要求

必修1,主要涉及兩章內容:

第一章:集合

通過本章學習,使學生感受到用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言表示數學對象,為以後的學習奠定基礎。

1.了解集合的含義,體會元素與集合的屬於關係,並初步掌握集合的表示方法;

2.理解集合間的包含與相等關係,能識別給定集合的子集,了解全集與空集的含義;

3.理解補集的含義,會求在給定集合中某個集合的補集;

4.理解兩個集合的並集和交集的含義,會求兩個簡單集合的並集和交集;

5.滲透數形結合、分類討論等數學思想方法;

6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關係等數學知識的過程中,培養學生的思維能力。

第二章:函式的概念與基本初等函式Ⅰ

教學本章時應立足於現實生活從具體問題入手,以問題為背景,按照“問題情境—數學活動—意義建構—數學理論—數學套用—回顧反思”的順序結構,引導學生通過實驗、觀察、歸納、抽象、概括,數學地提出、分析和解決問題。通過本章學習,使學生進一步感受函式是探索自然現象、社會現象基本規律的工具和語言,學會用函式的思想、變化的觀點分析和解決問題,達到培養學生的創新思維的目的。

1.了解函式概念產生的背景,學習和掌握函式的概念和性質,能藉助函式的知識表述、刻畫事物的變化規律;

2.理解有理指數冪的意義,掌握有理指數冪的運算性質;掌握指數函式的概念、圖象和性質;理解對數的概念,掌握對數的運算性質,掌握對數函式的概念、圖象和性質;了解冪函式的概念和性質,知道指數函式、對數函式、冪函式時描述客觀世界變化規律的重要數學模型;

第三章:函式的套用

函式的套用是學習函式的一個重要方面,學生學習函式的套用,目的就是利用已有的函式知識分析問題和解決問題.通過函式的套用,對完善函式思想,激發學生套用數學的意識,培養分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助。

1.了解函式與方程之間的關係;會用二分法求簡單方程的近似解;了解函式模型及其意義;

2.培養學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創新意識與探究能力、數學建模能力以及數學交流的能力。

必修4:主要涉及三章內容:

第一章:三角函式

通過本章學習,有助於學生認識三角函式與實際生活的緊密聯繫,以及三角函式在解決實際問題中的廣泛套用,從中感受數學的價值,學會用數學的思維方式觀察、分析現實世界、解決日常生活和其他學科學習中的問題,發展數學套用意識。

1.了解任意角的概念和弧度制;

2.掌握任意角三角函式的定義,理解同角三角函式的基本關係及誘導公式;

3.了解三角函式的周期性;

4.掌握三角函式的圖像與性質。

第二章:平面向量

在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數學和物理中的一些問題,發展運算能力和解決實際問題的能力。

1.理解平面向量的概念及其表示;

2.掌握平面向量的加法、減法和向量數乘的運算;

3.理解平面向量的正交分解及其坐標表示,掌握平面向量的坐標運算;

4.理解平面向量數量積的含義,會用平面向量的數量積解決有關角度和垂直的問題。

第三章:三角恆等變換

通過推導兩角和與差的餘弦、正弦、正切公式,二倍角的正弦、餘弦、正切公式以及積化和差、和差化積、半角公式的過程,讓學生在經歷和參與數學發現活動的基礎上,體會向量與三角函式的聯繫、向量與三角恆等變換公式的聯繫,理解並掌握三角變換的基本方法。

1.掌握兩角和與差的餘弦、正弦、正切公式;

2.掌握二倍角的正弦、餘弦、正切公式 ;

3.能正確運用三角公式進行簡單的三角函式式的化簡、求值和恆等式證明。

四、具體措施

(一)重視課本,夯實基礎,建立良好知識結構和認知結構體系

課本是考試內容的載體,是高考命題的依據,也是學生智慧型的生長點,是最有參考價值的資料。只有吃透課本上的例題、習題,才能全面、系統地掌握基礎知、基本技能和基本方法,構建數學的知識網路,以不變應萬變。在求活、求新、求變的命題的指導思想下,高考數學試題雖然不可能考查單純背誦、記憶的內容,也不會考查課本上的原題,但對高考試卷進行分析就不難發現,許多題目都能在課本上找到“影子”,不少高考題就是將課本題目進行引申、拓寬和變化,高考試題千變萬化,異彩紛呈,但無論怎樣變化、創新,都是基本數學問題的組合。所以,對基本數學問題的認識,基本數學問題解法模式的研究,基本問題所涉及的數學知識、技能、思想方法的理解,乃是數學複習課的重心。多年的教學實踐,使我們深刻體會到:基礎題、中檔題不需要題海,高檔題題海也是不能解決的。

(二)提升能力,適度創新

考查能力是高考的重點和永恆主題。教育部已明確指出高考從“以知識立意命題”轉向“以能力立意命題”。新課標提出能力是指思維能力、運算能力、空間想像能力以及實踐能力和創新意識,包括提出問題、分析問題和解決問題的能力,數學究能力、數學建模能力、數學交流能力、數學實踐能力、直覺猜想、歸納抽象、符號表示、運算求解、演繹證明、體系構建等諸多方面,能夠對客觀事物中的數量關係和數學模式做出思考和判斷。

其中理性思維能力是數學能力的核心,而分析問題和解決問題的能力(實踐能力)是數學的一種綜合能力,需將思維、運算、空間想像有機結合去完成的一種複合型能力,是思維能力的更高層次。邏輯思維能力在解題中表現為:①領會題意、明確目標;②尋找解題方向和有效解題步驟;③正確推理和運算,表述解題過程。能力的培養首先應重視知識與技能的學習、思想方法的滲透。知識與技能的掌握有助於能力的提高,思想方法的掌握有助於廣泛遷移的實現。

實踐能力在考試中表現為解答套用問題。創新是指在新的問題情境中,綜合靈活地套用所學知識、思想和方法,進行獨立思考、探索和研究,選擇有效的方法和手段分析和處理信息,提出解決問題的思路,創造性地解決問題。創新意識是理性思維高層次表現,對數學問題的“觀察、猜測、抽象、概括、證明,是發現問題和解決問題的重要途徑,對數學知識的遷移、組合、融匯的程度越高,顯示出的創新意識也就越強。

(三)強化數學思想方法

數學不僅僅是一種重要的工具,更重要的是一種思維模式,一種思想。注重對數學思想方法的考查也是高考數學命題的顯著特點之一。數學思想方法是對數學知識最高層次上的概括提煉,它蘊涵於數學知識的發生、發展和套用過程中,能夠遷移且廣泛套用於相關科學和社會生活。數學思想方法是數學的精髓,是適用於數學全部內容的通法,對於數學思想和方法的考查必然要與數學知識考查結合進行。只有運用數學思想方法,才能把數學的知識與技能轉化為分析問題和解決問題的能力。因此,在各個階段的複習中,要結合具體問題不失時機地運用、滲透數學思想方法,對其進行多次再現、不斷深化,逐步內化為自己能力的組成部分,實現“知識型”向“能力型”的轉化。

(四)強化思維過程,提高解題質量

數學基礎知識的學習要充分重視知識的形成過程,解數學題要著重研究解題的思維過程,弄清基本數學知識和基本數學思想在解題中的意義和作用,注意多題一解、一題多解和一題多變。多題一解有利於培養學生的求同思維;一題多解有利於培養學生的求異思維;一題多變有利於培養學生思維的靈活性與深刻性。在分析解決問題的過程中既構建知識的橫向聯繫,又養成學生多角度思考問題的習慣。

當處理的題目達到一定的量後,決定複習效果的關鍵因素就不再是題目的數量,而在於題目的質量和處理水平。一節課與其抓緊時間大汗淋淋地講三道題,不如愉快寬鬆的引導學生探討完兩道題。

我建議“教師跳進題海,學生跳出題海”。教師有計畫的精心研究全國各地的高考題和模擬題,從中精選和改編部分面目新,質量高,難度適中,針對性強的試題,有計畫的組織學生訓練,講評,以少勝多,提高效益。對學生要求“會、快、對”,“會”即有方法,會動手;“快”強調速度,在規定的時間內完成規定的題量;“對”即準確,指解答正確。只有會,才有可能得分;只有快,才能多得分(指整套試卷);只有對,才能得滿分(指某道試題)。

在複習中,首先要訓練學生解題有“辦法”,能動手,但決不滿足於此,尤其對“會而不對”、“對而不全”、“眼高手低”的現象要引起足夠的重視;從以往的月考中可以找出各班的多數學生都有這個通病。要從審題的仔細、思維的嚴謹、表述的規範、計算的準確等方面下功夫,做到“會做的不丟分”。要儘可能穩中求快,對基本題提高熟悉程度,才有時間去思考新題、難題,對基礎題、中檔題要清楚明白,準確熟練,對難題要量力而行。

(五)認真總結每一次測試的得失,提高試卷的講評效果

試卷講評要有科學性、針對性、輻射性。講評不是簡單的公布正確答案,一是幫學生分析探求解題思路,二是分析錯誤原因,吸取教訓,三是適當變通、聯想、拓展、延伸,以例及類,探求規律。還可橫向比較,與其他班級比較,尋找個人教學的薄弱環節。

(六)加強應試指導

培養非智力因素充分利用每一次練習、測試的機會,培養學生的應試技巧,提高學生的得分能力,如對選擇題、填空題,要注意尋求合理、簡潔的解題途經,要力爭“保準求快”,對解答題要規範做答,努力作到“會而對,對而全”,減少無謂失分,指導學生經常總結臨場時的審題答題順序、技巧,總結考前和考場上心理調節的做法與經驗,力爭找到適合自己的心理調節方式和臨場審題、答題的具體方法,逐步提高自己的應試能力;幫助學生樹立信心、糾正不良的答題習慣、最佳化答題策略、強化一些注意事項.

高一數學教學計畫模板合集 篇8

分析近幾年高考數學試卷,考察方向越來越清晰,即本著課改方向:能力立意,重點考查學生數學本質思想的理解及其思維能力和創新意識。從題目上看比較貼近中學教學實際,在堅持對五個能力(空間想像能力、抽象概括能力、推理論證能力、運算求解能力、數據處理能力)、兩個意識(套用意識、創新意識)考查的同時,注重對數學思想與方法的考查,體現了數學的基礎性、套用性和工具性的學科特色。考查更加科學。本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。正因為如此,我們組對本學期計畫如下:

一、以“為學生的終身幸福奠基的理念”為指引,切實落實 “6+1”教學模式及精神實質,在學校“高效課堂,精細管理,激情教育”三箭齊發的大背景下,在教學處、年級組、教研組的監督與指導下,嚴格遵守教學計畫,落實教學常規,全體組員做到以下幾點:

(1)、全組成員精誠團結,互相學習,取長補短,一定要使我們高一數學備課組組成為一個優秀集體。

(2)、規定集體備課的時間,分工協作,加強研討,統一教學進度,統一課件,又要根據本班的學情進行復備。

(3)、積極參與備課組的教學資源的建設,鼓勵每位教師就自己在教學中的經驗、體會或教訓,及時總結。

2、四個重視,即重視課堂管理,重視過程管理,重視質量管理,重視合力管理。在組內形成一股正氣,形成濃厚的“趕學比幫超”的學風,研究6+1,研究高考,為自己的成才鋪路,為學校的逆勢崛起添力。

二、教學內容及教材分析

1、教材版本

人教出版設A版 數學必修1、數學必修4.

2、教材內容的整體分析:

主要內容包括:必修1集合與函式概念,基本初等函式,函式的套用三章內容;必修4三角函式,平面向量,三角恆等變換分為三章。

人教A版教材體現基礎性、時代性、典型性、和可接受性等,具有的如下特點:

(1)親和力:以生動活潑的呈現方式,激發興趣和美感,引發學習興趣。

(2)問題性:一恰時恰當的問題引導教學活動,培養問題意識,孕育創新精神。

3、重點、難點:集合的概念及性質,函式的概念及性質,三角函式的概念及性質,平面向量.

三、教學策略及主要措施

高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從國中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:

(1)注意研究學生,做好初、高中學習方法的銜接工作。

(2)集中精力打好基礎,分項突破難點.所列基礎知識依據課程標準設計,著眼於基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。.

(3)培養學生解答考題的能力,通過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。

(4)讓學生通過單元考試,檢測自己的實際套用能力,從而及時總結經驗,找出不足,做好充分的準備

(5)針對清北班、重點班和普通班不同的班級進行分類教學。對清北班、重點班學生嚴格要求,注重數學思想方法、計算、速度、規範等各方面的培養;普通班學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性及學習習慣的養成。

三類班級還都應做到:課前評價和彌補的策略;注意思維過程;注意數學知識間的比較和轉化過程,比較可使新舊知識建立聯繫,那么轉化則可把新問題化歸為舊問題(利用比較),然後利用已有的知識進行突破。

高一數學教學計畫模板合集 篇9

教學目標

1、通過對冪函式概念的學習以及對冪函式圖象和性質的歸納與概括,讓學生體驗數學概念的形成過程,培養學生的抽象概括能力。

2、使學生理解並掌握冪函式的圖象與性質,並能初步運用所學知識解決有關問題,培養學生的靈活思維能力。

3、培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。

教學重點、難點

重點:冪函式的性質及運用

難點:冪函式圖象和性質的發現過程

教學方法:

問題探究法

教具:多媒體

教學過程

一、創設情景,引入新課

問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關係?

(總結:根據函式的定義可知,這裡p是w的函式)

問題2:如果正方形的邊長為a,那么正方形的面積,這裡S是a的函式。問題3:如果正方體的邊長為a,那么正方體的體積,這裡V是a的函式。問題4:如果正方形場地面積為S,那么正方形的邊長,這裡a是S的函式問題5:如果某人s內騎車行進了km,那么他騎車的速度,這裡v是t的函式。

以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函式解析式有什麼共同點嗎?(右邊指數式,且底數都是變數)這只是我們生活中常用到的一類函式的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什麼名字呢?(變數在底數位置,解析式右邊都是冪的形式)(適當引導:從自變數所處的位置這個角度)(引入新課,書寫課題)

二、新課講解

由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s,v=t-1都是自變數的若干次冪的形式。

教師指出:我們把這樣的都是自變數的若干次冪的形式的函式稱為冪函式。

冪函式的定義:一般地,我們把形如的函式稱為冪函式(power function),其中是自變數,是常數。

1、冪函式與指數函式有什麼區別?(組織學生回顧指數函式的概念)結論:冪函式和指數函式都是我們高中數學中研究的兩類重要的基本初等函式,從它們的解析式看有如下區別:對冪函式來說,底數是自變數,指數是常數對指數函式來說,指數是自變數,底數是常數例1判別下列函式中有幾個冪函式?

① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨(由學生獨立思考、回答)

2、冪函式具有哪些性質?研究函式應該是哪些方面的內容。前面指數函式、對數函式研究了哪些內容?

(學生討論,教師引導。學生回答。)

3、冪函式的定義域是否與對數函式、指數函式一樣,具有相同的定義域?

(學生小組討論,得到結論。引導學生舉例研究。結論:冪指數不同,定義域並不完全相同,應區別對待。)教師指出:冪函式y=xn中,當n=0時,其表達式y=x0=1;定義域為(-∞,0)U(0,+∞),特彆強調,當x為任何非零實數時,函式的值均為1,圖象是從點(0,1)出發,平行於x軸的兩條射線,但點(0,1)要除外。)

例2寫出下列函式的定義域,並指出它們的奇偶性:①y=x ②y= ③y=x ④y=x

(學生解答,並歸納解決辦法。引導學生與指數函式、對數函式對照比較。引導學生具體問題具體分析,並作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函式的奇偶性也應具體分析。)

4、上述函式①y=x ②y= ③y=x ④y=x的單調性如何?如何判斷?

(學生思考,引導作圖可得。並加上y=x和y=x-1圖象)接下來,在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示。見後附圖1

讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)

教師總評:冪函式的性質

(1)所有的冪函式在(0,+∞)上都有定義,並且圖象都過點(1,1),

(2)如果a>0,則冪函式的圖象通過原點,並在區間[0,+∞)上是增函式,

(3)如果a<0,則冪函式在(0,+∞)上是減函式,在第一區間內,當x從右邊趨向於原點時,圖象在y軸右方無限地趨近y軸;當x趨向於+∞,圖象在x軸上方無限地趨近x軸。

5、通過觀察例1,在冪函式y=xa中,當a是(1)正偶數、(2)正奇數時,這一類函式有哪種性質?

學生思考,教師講評:(1)在冪函式y=xa中,當a是正偶數時,函式都是偶函式,在第一象限內是增函式。(2)在冪函式y=xa中,當a是正奇數時,函式都是奇函式,在第一象限內是增函式。

例3鞏固練習寫出下列函式的定義域,並指出它們的奇偶性和單調性:①y=x ②y=x ③y=x 。

例4簡單套用1:比較下列各組中兩個值的大小,並說明理由:

①0、75,0、76;

②(-0、95),(-0、96);

③0、23,0、24;

④0、31,0、31

例5簡單套用2:冪函式y=(m -3m-3)x在區間上是減函式,求m的值。

例6簡單套用2:

已知(a+1)<(3-2a),試求a的取值範圍。

課堂小結

今天的學習內容和方法有哪些?你有哪些收穫和經驗?

1、冪函式的概念及其指數函式表達式的區別

2、常見冪函式的圖象和冪函式的性質。

布置作業:

課本p、73 2、3、4、思考5

相關範文

高一數學教學計畫模板合集 篇10

指導思想:

(1)隨著素質教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現代化和教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。其內容包括代數、幾何、三角的基本概念、規律和它們反映出來的思想方法,機率、統計的初步知識,計算機的使用等。

(2)培養學生的邏輯思維能力、運算能力、空間想像能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的能力。

(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。

(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯繫和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

(5)學會通過收集信息、處理數據、製作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。

(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。

學情分析及相關措施:

高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從國中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:

(1)注意研究學生,做好初、高中學習方法的銜接工作。

(2)集中精力打好基礎,分項突破難點.所列基礎知識依據課程標準設計,著眼於基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。.

(3)培養學生解答考題的能力,通過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。

(4)讓學生通過單元考試,檢測自己的實際套用能力,從而及時總結經驗,找出不足,做好充分的準備

(5)抓好尖子生與後進生的輔導工作,提前展開數學奧競選拔和數學基礎輔導。

(6)注意運用現代化教學手段輔助數學教學;注意運用投影儀、電腦軟體等現代化教學手段輔助教學,提高課堂效率,激發學生學習興趣。

教學進度安排:

周 次 時 內 容 重 點、難 點

第1周

9.2~9.6 5 集合的含義與表示、

集合間的基本關係、

會求兩個簡單集合的並集與交集;會求給定子集的補集;。難點:理解概念

第2周

9.7~9.13 5 集合的基本運算

函式的概念、

函式的表示法 能使用Venn圖表達集合的關係及運算,會求一些簡單函式的定義域和值域;能簡單套用

第3周

9.14~9.20 5 單調性與最值、

奇偶性、實習、小結 學會運用函式圖象理解和研究函式的性質,理解函式單調性、最大(小)值及幾何意義

第4周

9.21~9.27 5 指數與指數冪的運算、

指數函式及其性質 掌握冪的運算;探索並理解指數函式的單調性與特殊點。難點:理解概念

第5周

9.28~10.4 5 (9月月考?、國慶放假)

第6周

10.5~10.11 5 對數與對數運算、

對數函式及其性質 理解對數的概念及其運算性質,知道用換底公式;探索並了解對數函式單調性與特殊點;知道指數函式與對數函式互為反函式

第7周

10.12~10.18 5 冪函式 從五個具體的冪函式(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認識冪函式的一些性質

第8周

10.19~10.25 5 方程的根與函式零點,

二分法求方程近似解, 能夠藉助計算器用二分法求相應方程的近似解;

第9周

10.26~11.1 5 幾類不同增長的模型、函式模型套用舉例 對比指數函式、對數函式以及冪函式增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函式類型增長的含義

第10周

11.2~11.8 期中複習及考試 分章歸納複習+1套模擬測試

第11周

11.9~11.15 5 任意角和弧度制

任意角的三角函式 了解任意角的概念和弧度制,能進行弧度和度的互化;藉助單位圓理解任意角三角函式的定義

第12周

11.16~11.22 5 三角函式的誘導公式

三角函式的圖像和性質 藉助三角函式線推導出誘導公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函式的周期性

第13周

11.23~11.29 5 函式y=Asin(wx+q)的圖像 藉助圖像理解正弦函式餘弦函式正切函式的性質,藉助計算機畫出圖像觀察A w q對函式圖像變化的影響

第14周

11.30~12.6 5 三角函式模型的簡單套用 單元考試 會用三角函式解決一些簡單實際問題,體會三角函式是描述周期變化的重要函式模型

第15周

12.7~12.13 5 平面向量的實際背景及基本概念,平面向量的線性運算 掌握向量加、減法的運算,理解其幾何意義掌握數乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標表示、會用坐標表示平面向量的加減及數乘運算

第16周

12.14~12.20 5 平面向量的基本定理及坐標表示,平面向量的數量積, 理解用坐標表示的平面向量共線的條件,理解平面向量數量積德含義及其物理意義,體會平面向量數量積與向量投影的關係,掌握數量積的坐標表達式,會進行平面,向量數量積的運算、求夾角、及垂直關係

第17周

12.21~12.27 5 平面向量套用舉例,

小結 用向量方法解決莫些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種幾何問題,物理問題的工具,發展運算能力和解決實際問題的能力

第18周

12.28~1.3 5 兩角和與差點正弦、餘弦和正切公式 能以兩角差點餘弦公式導出兩角和與差點正弦、餘弦和正切公式,二倍角的正弦、餘弦和正切公式,了解它們的內在聯繫

第19周

1.4~1.10 5 簡單的三角恆等變換

期末複習

高一數學教學計畫模板合集 篇11

一、基本情況分析

任教153班與154班兩個班,其中153班是文化班有男生51人,女生22人;154班是美術班有男生23人,女生21人,並且有音樂生8人。兩個班基礎差,學習數學的興趣都不高。

二、指導思想

準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。

三、教學建議

1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。

2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學套用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。

3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。

4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。

5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特徵,實行啟發式和討論式教學。

發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。

6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。

四、教研課題

高中數學新課程新教法

五、教學進度

第一周:集合

第二周:函式及其表示

第三周:函式的基本性質

第四周:指數函式

第五周:對數函式

第六周:冪函式

第七周:函式與方程

第八周:函式的套用

第九周:期中考試

第十、十一周:空間幾何體

第十二周:點,直線,面之間的位置關係

第十三、十四周:直線與平面平行與垂直的判定與性質。

第十五、十六周:直線與方程

第十八、十九周:圓與方程

高一數學教學計畫模板合集 篇12

一、指導思想:

使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。

1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。

6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

我們所使用的教材是人教版《普通高中課程標準實驗教科書數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關係,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:

1.“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。

2.“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。

3.“科學性”與“思想性”:通過不同數學內容的聯繫與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。

4.“時代性”與“套用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展套用意識。

高一數學教學計畫模板合集 篇13

一、教學思想:

使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。

1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。

2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。

3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。

4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。

5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

二、教材特點:

我們所使用的教材是人教版《普通高中課程標準實驗教科書·數學(A版)》,它在堅持我國數學教育優良傳統的前提下,認真處理繼承,借簽,發展,創新之間的關係,體現基礎性,時代性,典型性和可接受性等到,具有如下特點:

1.“親和力”:以生動活潑的呈現方式,激發興趣和美感,引發學習激情。

2.“問題性”:以恰時恰點的問題引導數學活動,培養問題意識,孕育創新精神。

3.“科學性”與“思想性”:通過不同數學內容的聯繫與啟發,強調類比,推廣,特殊化,化歸等思想方法的運用,學習數學地思考問題的方式,提高數學思維能力,培育理性精神。

4.“時代性”與“套用性”:以具有時代性和現實感的素材創設情境,加強數學活動,發展套用意識。

三、教法分析:

1.選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以達到培養其興趣的目的。

2.通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。

3.在教學中強調類比,推廣,特殊化,化歸等數學思想方法,儘可能養成其邏輯思維的習慣。

四、學情分析:

兩個班一個普高一個職高,學習情況良好,但學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。班級存在的最大問題是計算能力太差,學生不喜歡去算題,嫌麻煩,只注重思路,因此在以後的教學中,重點在於培養學生的計算能力,同時要進一步提高其思維能力。同時,由於國中課改的原因,高中教材與國中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。

五、教學措施:

1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。

2、注意從實例出發,從感性提高到理性;注意運用對比的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善於分析問題的習慣,進行辨證唯物主義教育。

4、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。

5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。

6、重視數學套用意識及套用能力的培養。

俗話說的好,好的教學計畫是教學成功的一半,作為一名優異的教師,做好一定的教學計畫很有必要。

高一數學教學計畫模板合集 篇14

本學期我擔任高一(3)、(4)兩班的數學教學工作,兩班學生共有138人。大部分學生國中的基礎較差,整體水平不高。從上課兩周來看,學生的學習進取性還比較高,愛問問題的學生比較多;但由於基礎知識不太牢固,沒有良好的學習習慣,自控本事較差,不能正確地定位自我;所以上課效率一般,教學工作有必須的難度,為把本學期教學工作做好,制定如下教學工作計畫

一、教學質量目標

(1)獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,體會數學思想和方法。

(2)培養學生的邏輯思維本事、運算本事、空間想像本事,以及綜合運用有關數學知識分析問題和解決問題的本事。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的本事;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的本事。

(3)根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。

(4)使學生具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯繫和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。

(5)學會經過收集信息、處理數據、製作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。

(6)本學期是高一的重要時期,教師承擔著雙重職責,既要不斷夯實基礎,加強綜合本事的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。

二、教學目標、

(一)情感目標

(1)經過分析問題的方法的教學,培養學生的學習的興趣。

(2)供給生活背景,經過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。

(3)在探究基本函式的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識。

(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。

(5)還時間和空間給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維本事的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。

(6)讓學生體驗發現挫折矛盾頓悟新的發現這一科學發現歷程法。

(二)本事要求

1、培養學生記憶本事。

(1)經過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。

(2)經過揭示立體集合、函式、數列有關概念、公式和圖形的對應關係,培養記憶本事。

2、培養學生的運算本事。

(1)經過機率的訓練,培養學生的運算本事。

(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算本事。

(3)經過函式、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性本事。

(4)經過一題多解、一題多變培養正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。

(5)利用數形結合,另闢蹊徑,提高學生運算本事。

三、學情分析

高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,夢想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,應對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際本事出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫忙學生解決好從國中到高中學習方法的過渡。從高一齊就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。

四、促進目標達成的重點工作及措施

重點工作:

認真貫徹高中數學新課標精神,樹立新的教學理念,以雙基教學為主要資料,堅持抓兩頭、帶中間、整體推進,使每個學生的數學本事都得到提高和發展。

分層推進措施

1、重視學生非智力因素培養,要經常性地鼓勵學生,增強學生學習數學興趣,樹立勇於克服困難與戰勝困難的信心。

2、合理引入課題,由數學活動、故事、提問、師生交流等方式激發學生學習興趣,注意從實例出發,從感性提高到理性;注意運用比較的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。

3、培養學生解答考題的本事,經過例題,從形式和資料兩方應對所學知識進行本事方面的分析,引導學生了解數學需要哪些本事要求。

4、讓學生經過單元考試,檢測自我的實際套用本事,從而及時總結經驗,找出不足,做好充分的準備

5、抓住公式的推導和內在聯繫;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的本事。

6、加強培養學生的邏輯思維本事和解決實際問題的本事,以及培養提高學生的自學本事,養成善於分析問題的習慣,進行辨證唯物主義教育;同時重視數學套用意識及套用本事的培養。

7、自始至終貫徹教學四環節(引入、探究、例析、反饋),針對不一樣的教材資料選擇不一樣教法,提倡創新教學方法,把學生被動理解知識轉化主動學習知識。

8、注意研究學生,做好初、高中學習方法的銜接工作。集中精力打好基礎,分項突破難點、所列基礎知識依據課程標準設計,著眼於基礎知識與重點資料,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,本事要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。

高一數學教學計畫模板合集 篇15

一、教學目標

準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。

二、教材分析

1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。

2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學套用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。

3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。

4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。

5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。

三、教學內容

第一章 集合與函式概念

1.通過實例,了解集合的含義,體會元素與集合的“屬於”關係。

2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。

3.理解集合之間包含與相等的含義,能識別給定集合的子集。

4.在具體情境中,了解全集與空集的含義。

5.理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。

6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。

7.能使用Venn圖表達集合的關係及運算,體會直觀圖示對理解抽象概念的作用。

8.通過豐富實例,進一步體會函式是描述變數之間的依賴關係的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函式,體會對應關係在刻畫函式概念中的作用;了解構成函式的要素,會求一些簡單函式的定義域和值域;了解映射的概念。

9.在實際情境中,會根據不同的需要選擇恰當的方法(如圖像法、列表法、解析法)表示函式。

10.通過具體實例,了解簡單的分段函式,並能簡單套用。

11.通過已學過的函式特別是二次函式,理解函式的單調性、最大(小)值及其幾何意義;結合具體函式,了解奇偶性的含義。

12.學會運用函式圖象理解和研究函式的性質。

課時分配(14課時)

1.1.1 集合的含義與表示 約1課時 9月1日

1.1.2 集合間的基本關係 約1課時

9月4日

1.1.3 集合的基本運算 約2課時

9月12日小結與複習 約1課時

1.2.1 函式的概念 約2課時

1.2.2 函式的表示法 約2課時

9月13日

1.3.1 單調性與最大(小)值 約2課時

1.3.2 奇偶性 約1課時

9月25日小結與複習 約2課時

第二章 基本初等函式(I)

1.通過具體實例,了解指數函式模型的實際背景。

2.理解有理指數冪的含義,通過具體實例了解實數指數冪的意義,掌握冪的運算。

3.理解指數函式的概念和意義,能藉助計算器或計算機畫出具體指數函式的圖象,探索並理解指數函式的單調性與特殊點。

4.在解決簡單實際問題過程中,體會指數函式是一類重要的函式模型。

5.理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;通過閱讀材料,了解對數的發現歷史以及其對簡化運算的作用。

6.通過具體實例,直觀了解對數函式模型所刻畫的數量關係,初步理解對數函式的概念,體會對數函式是一類重要的函式模型;能藉助計算器或計算機畫出具體對數函式的圖象,探索並了解對數函式的單調性和特殊點。

7.通過實例,了解冪函式的概念;結合函式的圖象,了解它們的變化情況。

課時分配(15課時)

2.1.1 引言、指數與指數冪的運算 約3課時 9月27日—30日

2.1.2 指數函式及其性質 約3課時 10月8日—10日

2.2.1 對數與對數運算 約3課時 10月11日—14日

2.2.2 對數函式及其性質 約3課時 10月15日—18日

2.3 冪函式 約1課時

10月19日—24日

小結 約2課時

第三章 函式的套用

1.結合二次函式的圖象,判斷一元二次方程根的存在性及根的個數,從而了解函式的零點與方程根的聯繫。

根據具體函式的圖象,能夠藉助計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法。

2.利用計算工具,比較指數函式、對數函式以及冪函式增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函式類型增長的含義。

3.收集一些社會生活中普遍使用的函式模型(指數函式、對數函式、冪函式、分段函式等)的實例,了解函式模型的廣泛套用。

4.根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(克卜勒、伽利略、笛卡兒、牛頓、萊布尼茨、歐拉等)的有關資料或現實生活中的函式實例,採取小組合作的方式寫一篇有關函式概念的形成、發展或套用的文章,在班級中進行交流。

課時分配(8課時)

3.1.1 方程的根與函式的零點 約1課時 10月25日

3.1.2 用二分法求方程的近似解 約2課時 10月26日—27日

3.2.1 幾類不同增長的函式模型 約2課時

10月30日

3.2.2 函式模型的套用實例 約2課時

11月3日

小結 約1課時

考生只要在全面複習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規範答題,一定會穩中求進,取得優異的成績。

高一數學教學計畫模板合集 篇16

一、學生在數學學習上存在的主要問題

我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:

1、進一步學習條件不具備.高中數學與國中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合套用題及實際套用問題等.客觀上這些觀點就是分化點,有的內容還是高國中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。

2、被動學習.許多同學進入高中後,還像國中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計畫,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯繫,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。

3、對自己學習數學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。

4、不能計畫學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。

5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質” ,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼” 。

此外,還有許多學生數學學習興趣不濃厚,不具備套用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重製約著學生數學成績的提高。

二、教學策略思考與實踐

針對我校高一學生的具體情況,我在高一數學新教材教學實踐與探究中,貫徹“因人施教,因材施教”原則。以學法指導為突破口;著重在“讀、講、練、輔、作業”等方面下功夫,取得一定效果。

加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計畫、課前自學、專心上課、及時複習、獨立作業、解決疑難、系統小結和課外學習幾個方面。

制定計畫使學習目的明確,時間安排合理,不慌不忙,穩紮穩打,它是推動學生主動學習和克服困難的內在動力。但計畫一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨鍊學習意志。

課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,儘可能把問題解決在課堂上。

上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。“學然後知不足”,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。

及時複習是高效率學習的重要一環,通過反覆閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯繫起來,進行分析比較,一邊複習一邊將複習成果整理在筆記上,使對所學的新知識由“懂”到“會”。

獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”。

解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不捨的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反覆思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來複習強化,作適當的重複性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。

系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統複習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯繫.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由“活”到“悟”。

課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情。

1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內涵和外延及辨析概念。例如,集合是數學中的一個原始概念,是不加定義的。它從常見的“我校高一年級學生” 、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數”等事物中抽象出來,但集合的概念又不同於特殊具體的實物集合,集合的確定及性質特徵是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。

再如象限角的概念,要向學生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導學生從多層次,多角度去認識和掌握數學概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結論。如高一新教材(上)等比數列的前n項和Sn.有q≠1和q=1兩種情形;對數計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規範。如在解對數函式題時,要注意“真數大於0”的隱含條件;解有關二次函式題時要注意二次項係數不為零的隱含條件等。讀書要鼓勵學生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學生議論數列與數集的聯繫與區別。數列與數的集合都是具有某種共同屬性的全體。數列中的數是有順序的,而數集中的元素是沒有順序的;同一個數可以在數列中重複出現,而數集中的元素是沒有重複的(相同的數在數集中算作同一個元素)。在引導學生閱讀時,教師要經常幫助學生歸類、總結,儘可能把相關知識表格化。如一元二次不等式的解情況列表,三角函式的圖象與性質列表等,便於學生記憶掌握。

2、講。外國有一位教育家曾經說過:教師的作用在於將“冰冷”的知識加溫後傳授給學生。講是實踐這種傳授的最直接和最有效的教學手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天“衝刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功紮實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。

每堂新授課中,在複習必要知識和展示教學目標的基礎上,老師著重揭示知識的產生、形成、發展過程,解決學生疑惑。比如在學習兩角和差公式之前,學生已經掌握五套誘導公式,可以將求任意角三角函式值問題轉化為求某一個銳角三角函式值的問題。此時教師應進一步引導學生:對於一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函式就呼之欲出了,極大激發了學生的學習興趣。講課要注意從簡單到複雜的過程,要讓學生從感性認識上升到理性認識。鼓勵學生應積極、主動參與課堂活動的全過程,教、學同步。讓學生自己真正做學習的主人。

例如,講解函式的圖象應從振幅、周期、相位依次各自進行變化,然後再綜合,並儘可能利用多媒體輔助教學,使學生容易接受。其次講要注重突出數學思想方法的教學,注重學生數學能力的培養。例如講到等比數列的概念、通項公式、等比中項、等比數列的性質、等比數列的前n項和。可以引導學生對照等差數列的相應的內容,比較聯繫。讓學生更清楚等差數列和等比數列是兩個對偶概念。