高一數學教學計畫模板 篇1
本節課的教學內容,是指數函式的概念、性質及其簡單套用。教學重點是指數函式的圖像與性質。
I這是指數函式在本章的位置。
指數函式是學生在學習了函式的概念、圖象與性質後,學習的第一個新的初等函式。它是一種新的函式模型,也是套用研究函式的一般方法研究函式的一次實踐。指數函式的學習,一方面可以進一步深化對函式概念的理解,另一方面也為研究對數函式、冪函式、三角函式等初等函式打下基礎。因此,本節課的學習起著承上啟下的作用,也是學生體驗數學思想與方法套用的過程。
指數函式模型在貸款利率的計算以及考古中年代的測算等方面有著廣泛地套用,與我們的日常生活、生產和科學研究有著緊密的聯繫,因此,學習這部分知識還有著一定的現實意義。
Ⅱ.教學目標設定
1。學生能從具體實例中概括指數函式典型特徵,並用數學符號表示,建構指數函式的概念。
2。學生通過自主探究,掌握指數函式的圖象特徵與性質,能夠利用指數函式的性質比較兩個冪的大小。
3。學生運用數形結合的思想,經歷從特殊到一般、具體到抽象的研究過程,體驗研究函式的一般方法。
4。在探究活動中,學生通過獨立思考和合作交流,發展思維,養成良好思維習慣,提升自主學習能力。
Ⅲ.學生學情分析
授課班級學生為南京師大附中實驗班學生。
1。學生已有認知基礎
學生已經學習了函式的概念、圖象與性質,對函式有了初步的認識。學生已經完成了指數取值範圍的擴充,具備了進行指數運算的能力。學生已有研究一次函式、二次函式等初等函式的直接經驗。學生數學基礎與思維能力較好,初步養成了獨立思考、合作交流、反思質疑等學習習慣。
2。達成目標所需要的認知基礎
學生需要對研究的目標、方法和途徑有初步的認識,需要具備較好的歸納、猜想和推理能力。
3。難點及突破策略
難點:1。 對研究函式的一般方法的認識。
2。 自主選擇底數不當導致歸納所得結論片面。
突破策略:
1。教師引導學生先明確研究的內容與方法,從總體上認識研究的目標與手段。
2。組織匯報交流活動,展現思維過程,相互評價,相互啟發,促進反思。
3。對猜想進行適當地證明或說明,合情推理與演繹推理相結合。
Ⅳ.教學策略設計
根據學生已有學習基礎,為提升學生的學習能力,本節課的教學,採用自主學習方式。通過教師引領學生經歷研究函式及其性質的過程,認識研究的目標與策略,在研究的過程中逐漸完善研究的方法與手段。
學生的自主學習,具體落實在三個環節:
(1)建構指數函式概念時,學生自主舉例,歸納特徵,並用符號表示,討論底數的取值範圍,完善概念。
(2)探究指數函式圖象特徵與性質時,學生自選底數,開展自主研究,並通過匯報交流相互提升。
(3)性質套用階段,學生自主舉例說明指數函式性質的套用。
研究函式的性質,可以從形和數兩個方面展開。從圖形直觀和數量關係兩個方面,經歷從特殊到一般、具體到抽象的過程。藉助具體的指數函式的圖象,觀察特徵,發現函式性質,進而猜想、歸納一般指數函式的圖象特徵與性質,並適時套用函式解析式輔以必要的說明和證明。
Ⅴ.教學過程設計
1。創設情境建構概念
師:我們已經學習了函式的概念、圖象與性質,大家都知道函式可以刻畫兩個變數之間的關係。你能用函式的觀點分析下面的例子嗎?
師:大家知道細胞分裂的規律嗎?(出示情境問題)
[情境問題1]某細胞分裂時,由一個分裂成2個,2個分裂成4個,4個分裂成8個,……如果細胞分裂x次,相應的細胞個數為y,如何描述這兩個變數的關係?
[情境問題2]某种放射性物質不斷變化為其他物質,每經過一年,這種物質剩餘的質量是原來的84%。如果經過x年,該物質剩餘的質量為y,如何描述這兩個變數的關係?
[師生活動]引導學生分析,找到兩個變數之間的函式關係,並得到解析式y=2x和y=0。84x。
師:這樣的函式你見過嗎?是一次函式嗎?二次函式?這樣的函式有什麼特點?你能再舉幾個例子嗎?
〖問題1類似的函式,你能再舉出一些例子嗎?這些函式有什麼共同特點?能否寫成一般形式?
[設計意圖]通過列舉生活中指數函式的具體例子,感受指數函式與實際生活的聯繫。引導學生從具體實例中概括典型特徵,初步形成指數函式的概念,並用數學符號表示。初步得到y=ax這個形式後,引導學生關注底數的取值範圍,完成概念建構。指數範圍擴充到實數後,關注x∈R時,y=ax是否始終有意義,因此規定a>0。a≠1並不是必須的,常函式在高等數學裡是基本函式,也有重要的意義。為了使指數函式與對數函式能構成反函式,規定a≠1。此處不需對此解釋,只要補充說“1的任何次方總是1,所以通常還規定a≠1”。
[師生活動]學生舉例,教師引導學生觀察,其共同特點是自變數在指數位置,從而初步建立函式模型y=ax。
[教學預設]學生能舉出具體的例子——y=3x,y=0。5x…。如出現y=(-2)x最好,更便於引發對a的討論,但一般不會出現。進而提出這類函式一般形式y=ax。
Ⅵ.教後反思回顧
一、對於指數函式概念的認識
指數函式是一種函式模型,其基本特徵是自變數在指數位置。底數取值範圍有規定,使得這一模型形式簡單又不失本質。不必糾結於“y=22x是否為指數函式”,把重點放在概念的合理性的理解以及體會模型思想。
二、對於培養學生思維習慣的考慮
在學生自主探索的過程中,教師應注意培養學生良好的思維習慣。實際上,選擇底數a的數據的大小和數量,需要對指數函式的性質有預判;從列表到作圖的過程中,都可以感受到指數函式單調性等性質;觀察並歸納性質,既需要特殊到一般的推理模式,也應養成有序進行觀察和歸納的良好的思維習慣。對所歸納的指數函式的性質,應根據學生已有的知識水平或教學要求進行證明或合理的說明。學生不僅學到了數學知識,也初步體驗了研究問題的基本方法。
三、關於設計定位的反思
本節課的教學設計,力圖體現因材施教原則。不同的學情下,教師應採用不同的教學策略。如果學生基礎相對薄弱,問題的提出可以分層次進行。另外,注意通過“你是怎么想的?”“你同意他的意見嗎?為什麼”等問話形式,促使學生暴露思維過程。
高一數學教學計畫模板 篇2
本學期,我負責高一三、四班的數學教學。這兩個班有138名學生。國中生基礎薄弱,整體水平不高。從兩周的課堂來看,學生的學習積極性仍然很高,有很多學生喜歡提問。但由於基礎知識薄弱,學習習慣差,自我控制能力差,無法正確定位自己,課堂效率普遍,教學工作存在必要的難度。為了做好本學期的教學工作,特制定以下教學工作計畫。
一、教學質量目標
(1)掌握必要的數學基礎知識和技能,理解基本數學概念和數學結論的實質,體驗數學思想和方法。
(2)培養學生的邏輯思維能力、計算能力、空間想像能力,以及綜合運用相關數學知識分析和解決問題的能力。使學生逐步學會觀察、分析、綜合、比較、抽象、概括、探索和創新的技能,運用歸納、演繹、類比的方法進行推理,正確、系統地表達推理過程的技能。
(3)根據數學學科特點,加強學習目的教育,提高學生學習數學的意識和興趣,培養學生良好的學習習慣、求實的科學態度、頑強的學習毅力和獨立思考的精神,探索創新。
(4)使學生具有必要的數學視野,逐步理解數學的科學價值、套用價值和文化價值,形成批判性思維習慣,倡導數學的理性精神,體驗數學的審美意義,理解普遍運動、變化、創新、創新,數學相互聯繫、相互轉化,進一步樹立辯證唯物主義和歷史唯物主義的世界觀。
(5)通過收集信息、處理數據、製作圖像、分析原因、得出結論,學習解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期。教師負有雙重責任。他們不僅要不斷夯實基礎,加強綜合技能的培養,還要滲透高考思想方法,準備三年的學習。
二、教學目標
(I)情感目標
(1)通過問題分析的教學方法,培養學生的學習興趣。
(2)提供生活背景。通過數學建模,讓學生認識到數學是存在的,培養學習數學和運用數學的意識
高一數學教學計畫模板 篇3
一、基本情況分析
高一153班與154班兩個班,其中153班是文化班有男生51人,女生22人;154班是美術班有男生23人,女生21人,並且有音樂生8人。兩個班基礎差,學習數學的興趣都不高。
二、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
三、教學建議
1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學套用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。
5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特徵,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每周舉行一至二次教研活動,積累教學經驗。
6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
四、教研課題
高中數學新課程新教法
高一數學教學計畫模板 篇4
一.指導思想:
以發展教育的理念為指引,以學校教務處、教研組、年級組工作計畫為指南,加強備課組教師的教育教學理論學習,更新教學觀念,落實教學常規,全面提高學生的數學能力,尤其是提高創新意識和實踐能力,為社會培養創造型人才。
二.工作目標
1、全組成員精誠團結,互相學習,取長補短,力爭使我們高一數學備課組組成為一個優秀集體。
2、規定集體備課的時間(單周二上午第三節),分工協作,加強研討,統一助學案,統一教學進度,每周一練,又要根據本班的學情進行復備。
3、積極參與備課組的教學資源的建設,豐富部落格內容,鼓勵每位教師就自己在教學中的經驗、體會或教訓,及時總結。
三.學情分析:
1-2班屬普高班, 3-8班屬綜合重點班,學習情況在整個年段較好,大部分學生基礎相比較較紮實,上個學期,學生自覺性較好,自我控制力強,但部分學生上進心仍然不太強,缺少緊迫感,自我約束和自我提高能力有待加強,並且課堂內容除了基礎,也要注重能力培養,適當增加難度,向高考看齊。11-17班屬綜合普通班,學習情況一般,課堂主體性差,自我控制能力較弱,因此在教學中需時時提醒學生,培養其自覺性,9班園藝班,10班計算機班,學習情況一般,學生學習自覺性差,會出現各種各樣的違紀行為。經過一個學期的鍛鍊,各班數學計算能力有一定的提高,基本能脫離計算器,但很多學生偏科嚴重,上課走神,說話,睡覺,作業不按時按質完成,學習數學的積極性,主動性較差。所以在以後的教學中,重點在於培養學生學習數學的興趣,增強課堂的趣味性,教師上課照顧到全部學生。同時普通班和3+2班,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
四.具體工作和措施:
1.認真學習教學大綱和鑽研教材教法,把握好教材的廣度、深度和難度。
2.積極進行集體備課,為了能夠將集體備課落實到實處,集體備課做到統一時間,統一地點。
3..抓好每次備課組活動。遵守會議制度,活動目標明確,重點突出,形式多樣,確定專題發言人,能提前準備好教案,活動能充分討論,取長補短,做好記錄。
4.本組教師年輕化程度高,因此要加大新課標的學習力度,通過備課組學習,集體討論,個人學習為主,要求每人在學期末能撰寫一篇論文或案例,使每位教師由教學型向研究型邁進。
5.落實新老教師的傳、幫、帶工作,師徒結對,促進全體教師共同成長。
6.抓好國中與高中數學基礎知識、基本技能和基本數學方法的銜接教學,使知識系統化、網路化,牢固打好數學基礎。
7.課堂教學要多些師生互動,活躍課堂氣氛,教學中要注重滲透數學思想方法和數學雙基的教學。
8.教學中要注重:
(1)強化思維過程,努力提高學生的理性思維能力;
(2)增強實踐意識、重視探究和套用;
(3)倡導主動學習,營造自主探索和套用:教師要善於從教材實際和社會生活中提出問題,開設研究性課題,讓學生自主學習討論交流,在解決問題中激發興趣、樹立信心,培養鑽研精神,提高數學表達能力和數學交流能力;
9.貫徹落實教學常規,作業全批全改,在作業上寫好激勵性的評語。
10.精講精練,落實單元過關測試,教師要全批全改,及時認真講評。並做好試卷補償練習,單元卷由備課組成員輪流負責,做到側重知識點的覆蓋,難度控制(不可太難);
11.加強尖子生的培養和後進生的轉化工作。做好尖子生的培養工作及所有學生的學習情況跟蹤工作,爭取不讓學生掉隊,認真做好因材施教,積極探討“分層教學”的教學方法;
12.指導學生儘快適應高、國中過渡階段的學習,教學時應注意 高、國中知識的銜接,並對學生進行學法指導。
13.儘快了解學生的數學的基本情況,進一步培養好學生學習數學的興趣。
14.做好教情學情的調查,及時調整教與學,制定好研究性課題,組織本備課組教師做好學生的指導工作。
以上幾點就是我們高一數學備課組,在本學期的工作計畫,我們全組老師將會團結合作,共同努力,落實好學校和各部門的任務,並能夠按照自身特點和所教班級的具體情況認真做好自己的教育教學工作。
高一數學教學計畫模板 篇5
(1)隨著素質教育的深入展開,《課程方案》提出了教育要面向世界,面向未來,面向現代化和教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。其內容包括代數、幾何、三角的基本概念、規律和它們反映出來的思想方法,機率、統計的初步知識,計算機的使用等。
(2)培養學生的邏輯思維能力、運算能力、空間想像能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的能力。
(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯繫和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會通過收集信息、處理數據、製作圖像、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
學情分析及相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從國中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:(1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點.所列基礎知識依據課程標準設計,著眼於基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全局,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全局有機結合。.
(3)培養學生解答考題的能力,通過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。
(4)讓學生通過單元考試,檢測自己的實際套用能力,從而及時總結經驗,找出不足,做好充分的準備
(5)抓好尖子生與後進生的輔導工作,提前展開數學奧競選拔和數學基礎輔導。
(6)注意運用現代化教學手段輔助數學教學;注意運用投影儀、電腦軟體等現代化教學手段輔助教學,提高課堂效率,激發學生學習興趣。
教學進度安排:
周 次 時 內 容 重 點、難 點
第1周
9.2~9.6 5 集合的含義與表示、
集合間的基本關係、
會求兩個簡單集合的並集與交集;會求給定子集的補集;。難點:理解概念
第2周
9.7~9.13 5 集合的基本運算
函式的概念、
函式的表示法 能使用Venn圖表達集合的關係及運算,會求一些簡單函式的定義域和值域;能簡單套用
第3周
9.14~9.20 5 單調性與最值、
奇偶性、實習、小結 學會運用函式圖象理解和研究函式的性質,理解函式單調性、最大(小)值及幾何意義
第4周
9.21~9.27 5 指數與指數冪的運算、
指數函式及其性質 掌握冪的運算;探索並理解指數函式的單調性與特殊點。難點:理解概念
第5周
9.28~10.4 5 (9月月考?、國慶放假)
第6周
10.5~10.11 5 對數與對數運算、
對數函式及其性質 理解對數的概念及其運算性質,知道用換底公式;探索並了解對數函式單調性與特殊點;知道指數函式與對數函式互為反函式
第7周
10.12~10.18 5 冪函式 從五個具體的冪函式(y=x,y=x2, y=x3, y=x-1, y=x1/2)圖象中認識冪函式的一些性質
第8周
10.19~10.25 5 方程的根與函式零點,
二分法求方程近似解, 能夠藉助計算器用二分法求相應方程的近似解;
第9周
10.26~11.1 5 幾類不同增長的模型、函式模型套用舉例 對比指數函式、對數函式以及冪函式增長差異;結合實例體會直線上升、指數爆炸、對數增長等不同函式類型增長的含義
第10周
11.2~11.8 期中複習及考試 分章歸納複習+1套模擬測試
第11周
11.9~11.15 5 任意角和弧度制
任意角的三角函式 了解任意角的概念和弧度制,能進行弧度和度的互化;藉助單位圓理解任意角三角函式的定義
第12周
11.16~11.22 5 三角函式的誘導公式
三角函式的圖像和性質 藉助三角函式線推導出誘導公式,能畫出y=sinx,y=cosx,y=tanx的圖像,了解三角函式的周期性
第13周
11.23~11.29 5 函式y=Asin(wx+q)的圖像 藉助圖像理解正弦函式餘弦函式正切函式的性質,藉助計算機畫出圖像觀察A w q對函式圖像變化的影響
第14周
11.30~12.6 5 三角函式模型的簡單套用 單元考試 會用三角函式解決一些簡單實際問題,體會三角函式是描述周期變化的重要函式模型
第15周
12.7~12.13 5 平面向量的實際背景及基本概念,平面向量的線性運算 掌握向量加、減法的運算,理解其幾何意義掌握數乘運算及兩個向量共線的含義了解平面向量的基本定理掌握正交分解及坐標表示、會用坐標表示平面向量的加減及數乘運算
第16周
12.14~12.20 5 平面向量的基本定理及坐標表示,平面向量的數量積, 理解用坐標表示的平面向量共線的條件,理解平面向量數量積德含義及其物理意義,體會平面向量數量積與向量投影的關係,掌握數量積的坐標表達式,會進行平面,向量數量積的運算、求夾角、及垂直關係
第17周
12.21~12.27 5 平面向量套用舉例,
小結 用向量方法解決莫些簡單的平面幾何問題、力學問題與其他一些實際問題的過程,體會向量是一種幾何問題,物理問題的工具,發展運算能力和解決實際問題的能力
第18周
12.28~1.3 5 兩角和與差點正弦、餘弦和正切公式 能以兩角差點餘弦公式導出兩角和與差點正弦、餘弦和正切公式,二倍角的正弦、餘弦和正切公式,了解它們的內在聯繫
第19周
1.4~1.10 5 簡單的三角恆等變換
高一數學教學計畫模板 篇6
一、具體目標:
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、套用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學……
二、本學期要到達的教學目標
1、雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其資料反映出來的數學思想和方法。在基本技能方面能按照必須的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2、本事培養:
能運用數學概念、思想方法,辨明數學關係,構成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,構成數學的意思;從而經過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3、思想教育:
培養高一學生,學習數學的興趣、信心和毅力及實事求是的科學態度,勇於探索創新的精神,及欣賞數學的美學價值,並懂的數學來源於實踐又反作用於實踐的觀點;數學中普遍存在的對立統一、運動變化、相互聯繫、相互轉化等觀點。
高一數學教學計畫上學期 篇6
一、具體目標:
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,了解概念、結論等產生的背景、套用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。通過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數據處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學套用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、套用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學
二、本學期要達到的教學目標
1.雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的程式與步驟進行運算、處理數據、能使用計數器及簡單的推理、畫圖。
2.能力培養:
能運用數學概念、思想方法,辨明數學關係,形成良好的思維品質;會根據法則、公式正確的進行運算、處理數據,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,形成數學的意思;從而通過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3. 思想教育:
高一數學教學計畫模板 篇7
教學分析
課本從學生熟悉的集合(自然數的集合、有理數的集合等)出發,通過類比實數間的大小關係引入集合間的關係,同時,結合相關內容介紹子集等概念.在安排這部分內容時,課本注重體現邏輯思考的方法,如類比等.
值得注意的問題:在集合間的關係教學中,建議重視使用Venn圖,這有助於學生通過體會直觀圖示來理解抽象概念;隨著學習的深入,集合符號越來越多,建議教學時引導學生區分一些容易混淆的關係和符號,例如∈與?的區別.
三維目標
1.理解集合之間包含與相等的含義,能識別給定集合的子集,能判斷給定集合間的關係,提高利用類比發現新結論的能力.
2.在具體情境中,了解空集的含義,掌握並能使用Venn圖表達集合的關係,加強學生從具體到抽象的思維能力,樹立數形結合的思想.
重點難點
教學重點:理解集合間包含與相等的含義.
教學難點:理解空集的含義.
課時安排
1課時
教學過程
導入新課
思路1.實數有相等、大小關係,如5=5,53等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如5<7,2≤2,試想集合間是否有類似的“大小”關係呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
②設A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
③設C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能發現兩個集合間有什麼關係嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什麼區別?
(3)結合例子④,類比實數中的結論:“若a≤b,且b≤a,則a=b”,在集合中,你發現了什麼結論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區域內,從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據從樓頂向下看的,要想直觀表示集合,聯想集合還能用什麼表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關係.
(7)任何方程的解都能組成集合,那么x2+1=0的實數根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應該如何命名呢?
(9)與實數中的結論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什麼結論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關係來考慮.規定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內.教師指出:為了直觀地表示集合間的關係,我們常用平面上封閉曲線的內部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數解.
(8)空集記為 ,並規定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發現:對於任意兩個集合A,B有下列關係:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數解.
(8)空集.
高一數學教學計畫模板 篇8
本學期擔任高一X1、X2兩班的數學教學工作,兩班學生共有X人,通過一期的高中學習,學習能力更加參差不齊,但兩個班的學生整體水平較高;部分學生學習習慣不好,不能正確評價自己,這給教學工作帶來了一定的難度,特別X1班部分同學學習方法問題嚴重:只做,不歸納總結,學習效率低。學校要求高,教學任務艱巨。為把本學期教學工作做好,制定如下教學工作計畫。
一、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究三角函式、平面向量,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)能力要求
1、培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(2)通過揭示弧度、向量有關概念、三角公式和三角函式的圖象,培養記憶能力。
2、培養學生的運算能力。
(1)通過三角函式求值與化簡問題的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過三角函式、平面向量的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
3、培養學生的思維能力。
(1)通過對簡易邏輯的教學,培養學生思維的周密性及思維的邏輯性。
(2)通過不等式、函式的一題多解、多題一解,培養思維的靈活性和敏捷性,發展發散思維能力。
(3)通過三角函式、函式有關性質的引伸、推廣,培養學生的創造性思維。
(4)加強知識的橫向聯繫,培養學生的數形結合的能力。
(5)通過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。
(三)知識目標
二、教學要求
(一)三角函式
1理解任意角的概念、弧度的意義;能正確地進行弧度與角度的換算.
2掌握任意角的正弦、餘弦、正切的定義.並會利用與單位圓有關的三角函式線表示正弦、餘弦和正切;了解任意角的餘切、正割、餘割的定義;掌握同角三角函式的基本關係式,掌握正弦、餘弦的誘導公式.
3.掌握兩角和與兩角差的正弦、餘弦、正切公式;掌握二倍角的正弦、餘弦、正切公式;通過公式的推導,了解它們的內在聯繫,從而培養邏輯推理能力
4能正確運用三角公式,進行簡單三角函式式的化簡、求值及恆等式證明(包括引出半角、積化和差、和差化積公式,但不要求記憶).
5.會用與單位圓有關的三角函式線畫正弦函式、正切函式的圖象.並在此基礎上由誘導公式畫出餘弦函式的圖象;了解周期函式與最小正周期的意義;了解奇偶函式的意義;並通過它們的圖象理解正弦函式、餘弦函式、正切函式的性質以及簡化這些函式圖象的繪製過程;會用“五點法”畫正弦函式、餘弦函式和函式y=Asin(ωx+φ)的簡圖.理解A,ω、φ的物理意義.
6.會由已知三角函式值求角.並會用符號arcsinx、arccosx、arctanx表示角。
(二)平面向量
1、理解向量的概念,掌握向量的幾何表示,了解共線問量的概念
2、掌握向量的加法與減法
3、掌握實數與向量的積,理解兩個向量共線的充要條件
4、了解平面向量的基本定理,理解平面向量的坐標的概念,掌握平面向量的坐標運算.
5、掌握平面向量的數量積及其幾何意義,了解用平面向量的數量積可以處理有關長度、角度和垂直的問題,掌握向量垂直的條件
6、掌握平面兩點間的距離公式,掌握線段的定比分點和中點坐標公式,並能熟練運用;掌握平移公式
7、掌握正弦定理、餘弦定理,並能運用它們解斜三角形,能利用計算器解決解斜三角形的汁算問題通過解三角形的套用的教學,繼續提高運用所學知識解決實際問題的能力
8、通過“實習作業解三角形在測量中的套用”,提高套用數學知識解決實際問題的能力和實際操作的能力
9、通過“研究性學習課題:向量在物理中的套用”,學會提出問題,明確探究方向,體驗數學活動的過程·培養創新精神和套用能力,學會交流.
三、教學重點
1、掌握同角三角函式的基本關係式
2、掌握兩角和與兩角差的正弦、餘弦、正切公式;掌握二倍角的正弦、餘弦、正切公式;
3、用“五點法”畫正弦函式、餘弦函式和函式y=Asin(ωx+φ)的簡圖。
4、掌握向量的加法與減法,掌握平面向量的坐標運算.掌握實數與向量的積,理解兩個向量共線的充要條件。掌握正弦定理、餘弦定理,並能運用它們解斜三角形
四、教學難點
1、函式y=Asin(ωx+φ)的簡圖
2、會用與單位圓有關的三角函式線畫正弦函式、正切函式的圖象
3、掌握正弦定理、餘弦定理,並能運用它們解斜三角形
五、工作措施.
1、抓好課堂教學,提高教學效益。
課堂教學是教學的主要環節,因此,抓好課堂教學是教學之根本,是大面積提高數學成績的主途徑。
(1)、紮實落實集體備課,通過集體討論,抓住教學內容的實質,形成較好的教學方案,擬好典型例題、練習題、周練題、章考題。
(2)、加大課堂教改力度,培養學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養學生自主探究的精神,通過“知識的產生,發展”,逐步形成知識體系;通過“知識質疑、展活”遷移知識、套用知識,提高能力。同時要養成學生良好的學習習慣,不斷提高學生的數學素養,從而提高數學素養,並大面積提高數學成績。
2、加強課外輔導,提高競爭能力。
課外輔導是課堂的有力補充,是提高數學成績的有力手段。
(1)加強數學數學競賽的指導,提高學習興趣。
(2)加強學習方法的指導,全方面提高他們的數學能力,特別是自主能力,並通過強化訓練,不斷提高解題能力,使他們的數學成績更上一城樓。
(2)、加強對邊緣生的輔導。邊緣生是一個班級教學成敗的關鍵,因此,我將下大力氣輔導邊緣生,通過個別加集體的方法,並定時單獨測試,面批面改,從而使他們的數學成績有質的飛躍。
3、搞好單元考試、階段性考試的分析。
學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,並指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。
高一數學教學計畫模板 篇9
一、學生在數學學習上存在的主要問題
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:
1、進一步學習條件不具備.高中數學與國中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分布與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合套用題及實際套用問題等.客觀上這些觀點就是分化點,有的內容還是高國中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中後,還像國中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計畫,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯繫,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、對自己學習數學的好差(或成敗)不了解,更不會去進行反思總結,甚至根本不關心自己的成敗。
4、不能計畫學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。
5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎么做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質” ,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼” 。
此外,還有許多學生數學學習興趣不濃厚,不具備套用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重製約著學生數學成績的提高。
二、教學策略思考與實踐
針對我校高一學生的具體情況,我在高一數學新教材教學實踐與探究中,貫徹“因人施教,因材施教”原則。以學法指導為突破口;著重在“讀、講、練、輔、作業”等方面下功夫,取得一定效果。
加強學法指導,培養良好學習習慣。良好的學習習慣包括制定計畫、課前自學、專心上課、及時複習、獨立作業、解決疑難、系統小結和課外學習幾個方面。
制定計畫使學習目的明確,時間安排合理,不慌不忙,穩紮穩打,它是推動學生主動學習和克服困難的內在動力。但計畫一定要切實可行,既有長遠打算,又有短期安排,執行過程中嚴格要求自己,磨鍊學習意志。
課前自學是學生上好新課,取得較好學習效果的基礎.課前自學不僅能培養自學能力,而且能提高學習新課的興趣,掌握學習主動權.自學不能搞走過場,要講究質量,力爭在課前把教材弄懂,上課著重聽老師講課的思路,把握重點,突破難點,儘可能把問題解決在課堂上。
上課是理解和掌握基本知識、基本技能和基本方法的關鍵環節。“學然後知不足”,課前自學過的同學上課更能專心聽課,他們知道什麼地方該詳,什麼地方可略;什麼地方該精雕細刻,什麼地方可以一帶而過,該記的地方才記下來,而不是全抄全錄,顧此失彼。
及時複習是高效率學習的重要一環,通過反覆閱讀教材,多方查閱有關資料,強化對基本概念知識體系的理解與記憶,將所學的新知識與有關舊知識聯繫起來,進行分析比較,一邊複習一邊將複習成果整理在筆記上,使對所學的新知識由“懂”到“會”。
獨立作業是學生通過自己的獨立思考,靈活地分析問題、解決問題,進一步加深對所學新知識的理解和對新技能的掌握過程.這一過程是對學生意志毅力的考驗,通過運用使學生對所學知識由“會”到“熟”。
解決疑難是指對獨立完成作業過程中暴露出來對知識理解的錯誤,或由於思維受阻遺漏解答,通過點撥使思路暢通,補遺解答的過程.解決疑難一定要有鍥而不捨的精神,做錯的作業再做一遍。對錯誤的地方沒弄清楚要反覆思考,實在解決不了的要請教老師和同學,並要經常把易錯的地方拿出來複習強化,作適當的重複性練習,把求老師問同學獲得的東西消化變成自己的知識,長期堅持使對所學知識由“熟”到“活”。
系統小結是學生通過積極思考,達到全面系統深刻地掌握知識和發展認識能力的重要環節.小結要在系統複習的基礎上以教材為依據,參照筆記與有關資料,通過分析、綜合、類比、概括,揭示知識間的內在聯繫.以達到對所學知識融會貫通的目的.經常進行多層次小結,能對所學知識由“活”到“悟”。
課外學習包括閱讀課外書籍與報刊,參加學科競賽與講座,走訪高年級同學或老師交流學習心得等.課外學習是課內學習的補充和繼續,它不僅能豐富學生的文化科學知識,加深和鞏固課內所學的知識,而且能滿足和發展他們的興趣愛好,培養獨立學習和工作能力,激發求知慾與學習熱情。
1、讀。俗話說“不讀不憤,不憤不悱”。首先要讀好概念。讀概念要“咬文嚼字”,掌握概念內涵和外延及辨析概念。例如,集合是數學中的一個原始概念,是不加定義的。它從常見的“我校高一年級學生” 、“我家的家用電器”、“太平洋、大西洋、印度洋、北冰洋”及“自然數”等事物中抽象出來,但集合的概念又不同於特殊具體的實物集合,集合的確定及性質特徵是由一組公理來界定的。“確定性、無序性、互異性”常常是“集合”的代名詞。
再如象限角的概念,要向學生解釋清楚,角的始邊與x軸的非負半軸重合和與x軸的正半軸重合的細微差別;根據定義如果終邊不在某一象限則不能稱為象限角等等。這樣可以引導學生從多層次,多角度去認識和掌握數學概念。其次讀好定理公式和例題。閱讀定理公式時,要分清條件和結論。如高一新教材(上)等比數列的前n項和Sn.有q≠1和q=1兩種情形;對數計算中的一個公式,其中要求讀例題時,要注重審題分析,注意題中的隱含條件,掌握解題的方法和書寫規範。如在解對數函式題時,要注意“真數大於0”的隱含條件;解有關二次函式題時要注意二次項係數不為零的隱含條件等。讀書要鼓勵學生相互議論。俗語說“議一議知是非,爭一爭明道理”。例如,讓學生議論數列與數集的聯繫與區別。數列與數的集合都是具有某種共同屬性的全體。數列中的數是有順序的,而數集中的元素是沒有順序的;同一個數可以在數列中重複出現,而數集中的元素是沒有重複的(相同的數在數集中算作同一個元素)。在引導學生閱讀時,教師要經常幫助學生歸類、總結,儘可能把相關知識表格化。如一元二次不等式的解情況列表,三角函式的圖象與性質列表等,便於學生記憶掌握。
2、講。外國有一位教育家曾經說過:教師的作用在於將“冰冷”的知識加溫後傳授給學生。講是實踐這種傳授的最直接和最有效的教學手段。首先講要注意循序漸進的原則。循序漸進,防止急躁。由於學生年齡較小,閱歷有限,為數不少的高中學生容易急躁,有的同學貪多求快,囫圇吞棗,有的同學想靠幾天“衝刺”一蹴而就,有的取得一點成績便洋洋自得,遇到挫折又一蹶不振。針對這些情況,教師要讓學生懂得學習是一個長期的鞏固舊知識、發現新知識的積累過程,決非一朝一夕可以完成,為什麼高中要上三年而不是三天!許多優秀的同學能取得好成績,其中一個重要原因是他們的基本功紮實,他們的閱讀、書寫、運算技能達到了自動化或半自動化的熟練程度。
每堂新授課中,在複習必要知識和展示教學目標的基礎上,老師著重揭示知識的產生、形成、發展過程,解決學生疑惑。比如在學習兩角和差公式之前,學生已經掌握五套誘導公式,可以將求任意角三角函式值問題轉化為求某一個銳角三角函式值的問題。此時教師應進一步引導學生:對於一些半特殊的教(750度,150度等)能不能不通過查表而求出精確值呢?這樣兩角和差的三角函式就呼之欲出了,極大激發了學生的學習興趣。講課要注意從簡單到複雜的過程,要讓學生從感性認識上升到理性認識。鼓勵學生應積極、主動參與課堂活動的全過程,教、學同步。讓學生自己真正做學習的主人。
例如,講解函式的圖象應從振幅、周期、相位依次各自進行變化,然後再綜合,並儘可能利用多媒體輔助教學,使學生容易接受。其次講要注重突出數學思想方法的教學,注重學生數學能力的培養。例如講到等比數列的概念、通項公式、等比中項、等比數列的性質、等比數列的前n項和。可以引導學生對照等差數列的相應的內容,比較聯繫。讓學生更清楚等差數列和等比數列是兩個對偶概念。
高一數學教學計畫模板 篇10
教學目標
1通過對冪函式概念的學習以及對冪函式圖象和性質的歸納與概括,讓學生體驗數學概念的形成過程,培養學生的抽象概括能力。
2使學生理解並掌握冪函式的圖象與性質,並能初步運用所學知識解決有關問題,培養學生的靈活思維能力。
3培養學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。
教學重點、難點
重點:冪函式的性質及運用
難點:冪函式圖象和性質的發現過程
教學方法:問題探究法 教具:多媒體
教學過程
一、創設情景,引入新課
問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數p(元)和購買的水果量w(千克)之間有何關係?
(總結:根據函式的定義可知,這裡p是w的函式)
問題2:如果正方形的邊長為a,那么正方形的面積 ,這裡S是a的函式。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這裡V是a的函式。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這裡a是S的函式 問題5:如果某人 s內騎車行進了 km,那么他騎車的速度 ,這裡v是t的函式。
以上是我們生活中經常遇到的幾個數學模型,你能發現以上幾個函式解析式有什麼共同點嗎?(右邊指數式,且底數都是變數) 這只是我們生活中常用到的一類函式的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什麼名字呢?(變數在底數位置,解析式右邊都是冪的形式)(適當引導:從自變數所處的位置這個角度)(引入新課,書寫課題)
二、新課講解
由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s , v=t-1都是自變數的若干次冪的形式。
教師指出:我們把這樣的都是自變數的若干次冪的形式的函式稱為冪函式。
冪函式的定義:一般地,我們把形如 的函式稱為冪函式(power function),其中 是自變數, 是常數。 1冪函式與指數函式有什麼區別?(組織學生回顧指數函式的概念) 結論:冪函式和指數函式都是我們高中數學中研究的兩類重要的基本初等函式,從它們的解析式看有如下區別: 對冪函式來說,底數是自變數,指數是常數 對指數函式來說,指數是自變數,底數是常數 例1判別下列函式中有幾個冪函式?
① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)
2冪函式具有哪些性質?研究函式應該是哪些方面的內容。前面指數函式、對數函式研究了哪些內容?
(學生討論,教師引導。學生回答。)
3冪函式的定義域是否與對數函式、指數函式一樣,具有相同的定義域?
(學生小組討論,得到結論。引導學生舉例研究。結論:冪指數 不同,定義域並不完全相同,應區別對待。)教師指出:冪函式y=xn中,當n=0時,其表達式y=x0=1;定義域為(-∞,0)U(0,+∞),特彆強調,當x為任何非零實數時,函式的值均為1,圖象是從點(0,1)出發,平行於x軸的兩條射線,但點(0,1)要除外。)
例2寫出下列函式的定義域,並指出它們的奇偶性:①y=x ②y= ③y=x ④y=x
(學生解答,並歸納解決辦法。引導學生與指數函式、對數函式對照比較。引導學生具體問題具體分析,並作簡單歸納:分數指數應化成根式,負指數寫成正數指數再寫出定義域。冪函式的奇偶性也應具體分析。)
4上述函式①y=x ②y= ③y=x ④y=x 的單調性如何?如何判斷?
(學生思考,引導作圖可得。並加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優點和錯誤之處。教師利用幾何畫板演示。見後附圖1
讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)
教師總評:冪函式的性質
(1)所有的冪函式在(0,+∞)上都有定義,並且圖象都過點(1,1),
(2)如果a>0,則冪函式的圖象通過原點,並在區間[0,+∞)上是增函式,
(3)如果a3等等,類比實數之間的關係,你會想到集合之間有什麼關係呢?(讓學生自由發言,教師不要急於作出判斷,而是繼續引導學生)
欲知誰正確,讓我們一起來觀察、研探.
思路2.複習元素與集合的關係——屬於與不屬於的關係,填空:(1)0N;(2)2Q;(3)-1.5R.
類比實數的大小關係,如5<7,2≤2,試想集合間是否有類似的“大小”關係呢?(答案:(1)∈;(2)?;(3)∈)
推進新課
提出問題
(1)觀察下面幾個例子:
①A={1,2,3},B={1,2,3,4,5};
②設A為國興中學高一(3)班男生的全體組成的集合,B為這個班學生的全體組成的集合;
③設C={x|x是兩條邊相等的三角形},D={x|x是等腰三角形};
④E={2,4,6},F={6,4,2}.
你能發現兩個集合間有什麼關係嗎?
(2)例子①中集合A是集合B的子集,例子④中集合E是集合F的子集,同樣是子集,有什麼區別?
(3)結合例子④,類比實數中的結論:“若a≤b,且b≤a,則a=b”,在集合中,你發現了什麼結論?
(4)按升國旗時,每個班的同學都聚集在一起站在旗桿附近指定的區域內,從樓頂向下看,每位同學是哪個班的,一目了然.試想一下,根據從樓頂向下看的,要想直觀表示集合,聯想集合還能用什麼表示?
(5)試用Venn圖表示例子①中集合A和集合B.
(6)已知A?B,試用Venn圖表示集合A和B的關係.
(7)任何方程的解都能組成集合,那么x2+1=0的實數根也能組成集合,你能用Venn圖表示這個集合嗎?
(8)一座房子內沒有任何東西,我們稱為這座房子是空房子,那么一個集合沒有任何元素,應該如何命名呢?
(9)與實數中的結論“若a≥b,且b≥c,則a≥c”相類比,在集合中,你能得出什麼結論?
活動:教師從以下方面引導學生:
(1)觀察兩個集合間元素的特點.
(2)從它們含有的元素間的關係來考慮.規定:如果A B,但存在x∈B,且x A,我們稱集合A是集合B的真子集,記作A B(或B A).
(3)實數中的“≤”類比集合中的 .
(4)把指定位置看成是由封閉曲線圍成的,學生看成集合中的元素,從樓頂看到的就是把集合中的元素放在封閉曲線內.教師指出:為了直觀地表示集合間的關係,我們常用平面上封閉曲線的內部代表集合,這種圖稱為Venn圖.
(5)封閉曲線可以是矩形也可以是橢圓等等,沒有限制.
(6)分類討論:當A B時,A B或A=B.
(7)方程x2+1=0沒有實數解.
(8)空集記為 ,並規定:空集是任何集合的子集,即 A;空集是任何非空集合的真子集,即 A(A≠ ).
(9)類比子集.
討論結果:
(1)①集合A中的元素都在集合B中;
②集合A中的元素都在集合B中;
③集合C中的元素都在集合D中;
④集合E中的元素都在集合F中.
可以發現:對於任意兩個集合A,B有下列關係:集合A中的元素都在集合B中;或集合B中的元素都在集合A中.
(2)例子①中A B,但有一個元素4∈B,且4 A;而例子②中集合E和集合F中的元素完全相同.
(3)若A B,且B A,則A=B.
(4)可以把集合中元素寫在一個封閉曲線的內部來表示集合.
(5)如圖1121所示表示集合A,如圖1122所示表示集合B.
圖1-1-2-1 圖1-1-2-2
(6)如圖1-1-2-3和圖1-1-2-4所示.
圖1-1-2-3 圖1-1-2-4
(7)不能.因為方程x2+1=0沒有實數解.
(8)空集.
高一數學教學計畫模板 篇11
1、認真按時完成教學任務,本學期學完高一數學的全部內容,並力爭擠出時間學習高二數學的第一章,為高三學習爭取更多的時間。
2、繼續實施“導學案教學方法”完善導學案,形成集美中學特色的教學方法,培養學生自我學習的能力和習慣,使學生做到簡單知識自己能學會,較難知識在老師點拔下能學會,難度大的知識在老師的講解下能輕鬆學會。
3、教師間相互聽課,每周每個教師聽課不少於兩節,並及時的反饋交流,互相取長補短使老教師呆板陳舊的教學方法變得活潑生動,充滿生機,使新教師教學水平逐步走向成熟而穩健;組織好期中、期末的複習、考試、出題、評卷、講評、個別指導工作,約在12周左右進行期中考試。
4、加強尖子生的培養工作,定期對他們進行輔導或者跟蹤檢測,以使他們成為全市的數學尖子,為學校爭光,進而帶動全校數學成績的提高,提高集美中學的數學層次。
5、重點工作放在中下等學生的教學、管理、輔導、心理調節與學習方法指導上,使他們學所有所得、學有所成,培養他們的自信心,自我學習的意識和能力,著眼於學生的未來,迫使他們養成良好的學習習慣,思維習慣,行為習慣,以期在高考中取得優異成績,為學校贏得更大的榮譽。
高一數學教學計畫模板 篇12
一、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生 的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究函式、等差數列、等比數列的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)能力要求
1、培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(3)通過揭示立體集合、函式、數列有關概念、公式和圖形的對應關係,培養記憶能力。
2、培養學生 的運算能力。
(1)通過機率的訓練,培養學生 的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生 的運算能力。
(3)通過函式、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
3、培養學生 的思維能力。
(1)通過對簡易邏輯的教學,培養學生 思維的周密性及思維的邏輯性。
(2)通過不等式、函式的一題多解、多題一解,培養思維的靈活性和敏捷性,發展發散思維能力。
(3)通過不等式、函式的引伸、推廣,培養學生 的創造性思維。
(4)加強知識的橫向聯繫,培養學生 的數形結合的能力。
(5)通過典型例題不同思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。
(三)知識目標
1.集合、簡易邏輯
(1)理解集合、子集、補訂、交集、交集的概念.了解空集和全集的意義.了解屬於、包含、相等關係的意義.掌握有關的術語和符號,並會用它們正確表示一些簡單的集合.
(2)理解邏輯聯結詞"或"、"且"、"非"的含義.理解四種命題及其相互關係.掌握充分條件、必要條件及充要條件的意義.
(3)掌握一元二次不等式、絕對值不等式的解法。
2.函式
(1)了解映射的概念,理解函式的概念.
(2)了解函式的單調性、奇偶性的概念,掌握判斷一些簡單函式的單調性、奇偶性的方法.
(3)了解反函式的概念及互為反函式的函式圖像間的關係,會求一些簡單函式的反函式.
(4)理解分數指數冪的概念,掌握有理指數冪的運算性質.掌握指數函式的概念、圖像和性質.
(5)理解對數的概念,掌握對數的運算性質.掌握對數函式的概念、圖像和性質.
(6)能夠運用函式的性質、指數函式和對數函式的性質解決某些簡單的實際問題.
3.數列
(1)理解數列的概念,了解數列通項公式的意義,了解遞推公式是給出數列的一種方法,並能根據遞推公式寫出數列的前幾項.
(2)理解等差數列的概念,掌握等差數列的通項公式與前n項和公式,並能解決簡單的實際問題.
(3)理解等比數列的概念,掌握等比數列的通項公式與前n項和公式,並能解決簡單的實際問題.
二、教學重點
1、集合、子集、補集、交集、並集.一元二次不等式的解法
四種命題.充分條件和必要條件.
2.映射、函式、函式的單調性、反函式、指數函式、對數函式、函式的套用.
3.等差數列及其通項公式.等差數列前n項和公式.
等比數列及其通項公式.等比數列前n項和公式.
三、教學難點
1. 四種命題.充分條件和必要條件
2. 反函式、指數函式、對數函式
3. 等差、等比數列的性質
四、工作措施.
1、抓好課堂教學,提高教學效益。
課堂教學是教學的主要環節,因此,抓好課堂教學是教學之根本,是大面積提高數學成績的主途徑。
(1)、紮實落實集體備課,通過集體討論,抓住教學內容的實質,形成較好的教學方案,擬好典型例題、練習題、周練題、章考題、月考題。
(2)、加大課堂教改力度,培養學生 的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養學生自主探究的精神,通過“知識的產生,發展”,逐步形成知識體系;通過“知識質疑、展活”遷移知識、套用知識,提高能力。同時要養成學生良好的學習習慣,不斷提高學生的數學素養,從而提高數學素養,並大面積提高數學成績。
高一數學教學計畫模板 篇13
一、指導思想:
在學校教學工作意見指導下,認真落實學校對備課組工作的各項要求,嚴格執行學校的各項教育教學制度和要求,強化數學教學研究,提高全組老師的教學、教研水平,明確任務,團結協作,圓滿完成教學教研任務。
二、教材簡析:
本學期仍然使用人教版《普通高中課程標準實驗教科書·數學(A版)》教材,在堅持我校數學教育優良傳統的前提下,在學生九年義務教育數學課程的基礎上,進一步提高學生所必要的數學素養,以滿足學生的發展與社會進步的需要,認真處理繼承、借鑑、發展、創新之間的關係,體現基礎性、時代性、典型性和可接受性等,具有親和力、問題性、科學性、思想性、套用性、聯繫性等特點。
三、教學任務:
本學期授課內容:必修一、必修二。
四、學生基本情況及教學目標:
學生基本情況:本屆學生普遍基礎較差,學習自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。其次,學生的計算能力太差,學生不喜歡去算題,嫌麻煩,因此在以後的教學中,重點在於培養學生的計算能力,同時要進一步提高其思維能力。同時,由於國中課改的原因,高中教材與國中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,因為學生底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
教學目標:認真貫徹高中數學新課標精神,樹立新的教學理念,以“雙基”教學為主要內容,堅持“抓兩頭、帶中間、整體推進”,使每個學生的數學能力都得到提高和發展。高一學生共有20個班,分兩個教學層次,每層個10個班。實驗班的學生可根據實際情況提高教學目標。平行班學生的主要任務有兩點,第一點:保證重點學生的數學成績穩步上升,成為學生的優勢科目;第二點:加強數學學習比較困難學生的輔導培養,增加其信息並逐步縮小數學成績差距。
五、教法分析:
1、選取與內容密切相關的,典型的,豐富的和學生熟悉的課堂素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學套用的學習情境,使學生產生對數學的親切感,引發學生“看個究竟”的衝動,以達到培養其興趣的目的。
2、通過“觀察”,“思考”,“探究”等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3、在教學中引導學生通過類比,推廣,特殊化,化歸等方法,儘可能培養學生邏輯思維的習慣。
六、教學措施:
1、認真落實,搞好集體備課。每周進行一次集體備課。各位老師根據自已承擔的任務,提前一周進行單元式的備課,並出好本周的練習活頁。教研會時,由一名老師作主要發言人,對本周的教材內容作分析,然後大家研究討論其中的重點、難點、教學方法等。
2、詳細計畫,保證練習質量。教學中用配備資料《導學案》,要求學生按教學進度完成相應的習題,教師要提前向學生指出不做的題,以免影響學生的時間,每周以內容“滾動式”編一份練習試卷,學生完成後老師要收齊批改,對存在的普遍性問題要安排時間講評。
3、抓好第二課堂,穩定數學優生,培養數學能力興趣。尖尖班的教學進度可適當調整,教學難度要有所提升;其他各班要培育好本班的優生,注意激發學生的學習興趣,隨時注意學生學習方法的指導。備課組也將組織學生上培優班。
4、加強輔導工作。對已經出現數學學習困難的學生,教師的下班輔導十分重要。教師教學中,要儘快掌握班上學生的數學學習情況,有針對性地進行輔導工作,既要注意照顧好班上優生層,更不能忽視班上的困難學生。
高一數學教學計畫模板 篇14
本學期的數學教學內容是必修4包括第一章《三角函式》和第二章《平面向量》。按照數學教學大綱的要求,必修4教學需要36個課時(不包含考試與測驗 的時間);第五章的教學需要22個課時,總計需要58個課時。必修3需要30個課時。 本學期有兩次月考和五一長假,實際授課時間為18周,按每周5.5課時計算,數學課時達到93課時左右,時間比較充足。這為我們數學組全面貫徹低切入、 慢節奏的教學方針提供了保障,也是我們提高學生數學水平的又一次極好的機會。
一、指導思想
本學期高一備課組以學校工作計畫為指導,以提高教學質量為目標,以最佳化課堂教學為中心,團結合作,努力提高思想素質和業務素質,團結合作,互相學習,認真 備好課,上好每一節課,並結合新教材的特點,開展研究性學習的活動,在教學中,抓好基礎知識教學,著重學生能力的培養,打好基礎,全面提高,為來年高考作 好充分的準備,爭取優異的成績。
二、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,通過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究三角函式的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗發現挫折矛盾頓悟新的發現這一科學發現歷程法。
(二)能力要求
1、培養學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體數據的記憶。
(2)通過揭示三角函式有關概念、公式和圖形的對應關係,培養記憶能力。
2、培養學生的運算能力。
1)通過機率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)通過算法初步,1算法步驟2程式框圖(起始框,判斷框,附值框,)3silab語言(順序,條件語句,循環語句)。第二部分,統計,第三步分,機率,古典概型,幾何概型。的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
三、 具體措施
1、期中考前上好第一冊(必修3),期中考後完成好必修4
2、抓好數學補差,培優活動 各班在星期1或星期4的下午
3、立足於教材。
4、要求學生完成課後練習及每一章課後習題
5、繼續學習《現代教育技術》,努力學習多媒體課件的製作。
6、繼續認真開展師徒結對活動,以老帶新。師徒間經常聽課交流,認真評課。集中備課,共同商討教材等。
7、抓好競賽輔導,
8、段統一考試在周日或者周三的晚自修時間,每隔2周考一次;
9、回響學校教務處的備課計畫安排,督促組員落實工作;
10、抓好集體備課
高一數學教學計畫模板 篇15
教材分析:
解不等式是不等式學習的主要內容,是中學數學的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎,國中已經學習,二次不等式是重點,也是學習的難點。作為數學重要的工具及方法,經常運用於其它數學知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數形結合”方法,這種方法將二次函式,二次方程結合為一體,並且藉助“圖形”直觀地得出答案,充分展現了數學知識之間的內在聯繫,另外也展現了“數形結合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉化為一次不等式組的方法,這種方法思路自然,同時也體現了“轉化”思想,難度也不大,應該更加符合學生的實際思維及思路。
學情分析:
國中已經學習了一元一次不等式(或組)的解法,積累了一定的解題經驗。同時,對於二次方程,二次函式等相關知識學生均較為熟悉。然而,根據自己的調查,一少部分學生對於一元一次不等式及不等式組的解法都表現出一定程度的陌生。進而,可以先從複習簡單的一次不等式及不等式組入手加以展開教學。
學生心理方面,學習積極性較高,對數學的學習興趣、信心也比較理想,有較強的學習動機——考上大學,儘管是外在的誘因。
教學目標:
①知識與技能
熟練掌握一元一次不等式及不等式組的解法,初步學會兩種方法求出一元二次不等式的解集
②過程與方法
經歷不等式求解的探索及發現過程,體驗“數形結合及轉化”思想的魅力,掌握方法,學會學習
③情感、態度及價值觀
在上述過程中,體驗成功,激發了對數學學習的興趣及信心,發展了對數學學習的積極情感,增強了學習的內在動機
教學重點:
一元二次不等式的解法
教學難點:
解法的探索及發現,關鍵在於“識圖能力”
反思:
今天的課堂,這個難點突破欠缺力量,主要緣於自己備課時對難點考慮不到位,進而缺乏必要的設計。在課堂上,就難點特別與個別差生進行了交流,並且給予了幫助及指導。在指導過程中,我找出了他們困難的二個環節:
首先,對平面曲線上點的橫坐標與縱座標之間的對應關係表現陌生,進而對它們的取值變化情況感到費解。
其次,是差生的思維能力尚處於“經驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標取值範圍只能是“一籌莫展”。
在了解情況後,遵循“最近發展區”原理,以問題串的形式給差生提供必要的幫助後,差生也順利度過了難關。由此足以說明,從知識的角度而言,“沒有教不好的學生,只有不會教的教師:這句話還是相當有道理的。當然,這一切的前提就是對學生“學情”的掌握。美國著名心理學家、結構主義學派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學科任何年齡段的任何知識。
教學程式:
一、複習一元一次不等式及不等式組的解法
以題組形式設計習題
①2x+3>7
②不等式組
③ax>b
二、創設二次不等式的生活背景實例,引入課題
採用課本上的實例,有關網路收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。
由於這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最後以課外思考題的形式設計相應習題。
(2)
採取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織並完成,並撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,儘管這些知識不完整,語言或許不規範,思維或許不嚴密。
之後,從特殊到一般,研究一般的二元一次不等式的解法。由於經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。
反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。於是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。
四、練習環節
可以說,即使到了高三,仍然有不少同學對於一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節課顯然屬於技能課,對於技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習題。對於練習,我採取多種方式,或叫學生上黑板板書,藉助學生練習規範解題格式;或者口答,說解題思路及答案;或者下面獨立練習。
五、課堂小結
知識,思想、方法及感悟等
六、課後作業
①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源於課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值範圍
變式一:戓將R改為空集,此時結論如何
變式二:仿上,自己改編條件,並解之。
反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。